
EBOOK-ASTROINFORMATICS SERIES: IEEE CS CONNECT-AN INITIATIVE OF IEEE COMPUTER

SOCIETY BANGALORE CHAPTER

A MANUAL ON MACHINE LEARNING AND

ASTRONOMY:

AUTHORED, EDITED AND COMPILED BY

SNEHANSHU SAHA

Page 1 of 316



June 15, 2019

Chapter contributions from: Suryoday Basak, Rahul Yedida, Kakoli Bora

Archana Mathur, Surbhi Agrawal, Margarita Safonova

Nithin Nagaraj, Gowri Srinivasa, Jayant Murthy

PES University

University of Texas at Arlington

North Carolina State University

Indian Statistical Institute

National Institute for Advanced Studies

Indian Institute of Astrophysics

June 15, 2019

2



Preface

The E-book is dedicated to the new field of Astroinformatics: an interdisciplinary area of

research where astronomers, mathematicians and computer scientists collaborate to solve

problems in astronomy through the application of techniques developed in data science.

Classical problems in astronomy now involve the accumulation of large volumes of complex

data with different formats and characteristic and cannot be addressed using classical tech-

niques. As a result, machine learning (ML) algorithms and data analytic techniques have

exploded in importance, often without a mature understanding of the pitfalls in such studies.

This E-book aims to capture the baseline, set the tempo for future research in India

and abroad, and prepare a scholastic primer that would serve as a standard document for

future research. The E-book should serve as a primer for young astronomers willing to apply

ML in astronomy, a way that could rightfully be called "Machine Learning Done Right",

borrowing the phrase from Sheldon Axler ("Linear Algebra Done Right")! The motivation of

this handbook has two specific objectives:

• develop efficient models for complex computer experiments and data analytic tech-

niques which can be used in astronomical data analysis in the short term, and various

related branches in physical, statistical, computational sciences much later (larger goal

as far as memetic algorithm is concerned).

• develop a set of fundamentally correct thumb rules and experiments, backed by solid

mathematical theory, and render the marriage of astronomy and Machine Learning

stability for far reaching impact. We will do this in the context of specific science prob-

lems of interest to the proposers: the classification of exoplanets, classification of nova,

separation of stars, galaxies and quasars in the survey catalogs, and the classification of

multi-wavelength sources.

We hope the E-book serves its purpose and inspires scientists across communities to collabo-

rate and develop a very promising field. We gratefully acknowledge the grant (File Number:

EMR/2016/005687) received from SCIENCE & ENGINEERING RESEARCH BOARD (SERB),

under the scheme- Extra Mural Research (EMR), a division of DST.

************************************************************************************************

Sincerely,

Authors
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1 INTRODUCTION

While developing methodologies for of Astroinformatics, during the next three to five years

we anticipate a number of applied research problems to be addressed. These include:

• Decision-theoretical model addressing exoplanet habitability using the power of convex

optimization and algorithmic machine learning: we will focus here on the applicability

and efficacy of various machine learning algorithms to the investigation of planetary

habitability. There are several different methods available, namely, K-Nearest Neighbor

(KNN), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), Naïve

Bayes, and Linear Discriminant Analysis (LDA). We plan to evaluate their performance

in the determination of the habitability of exoplanets. PHL’s Exoplanet Catalog (PHL-

EC) is one of the most complete catalogs which contains observed and estimated

stellar and planetary parameters for a total of 3415 (July 2016) currently confirmed

exoplanets, where the estimates of the surface temperature are given for 1586 planets.

We will test the machine learning algorithms on this and other catalogs to derive the

Habitability Index for each planet. Through this, we expect to develop a unified scheme

to determine the habitability index of an exoplanet. We will implement a standalone

or web-based software package to be applied to any new planets found. Exoplanets

are one of the most exciting subjects in astrophysics, and we expect large volumes of

new data to become available with Gaia and the next generation of dedicated planet

hunting missions, including WFIRST and JWST.

• Variational Approaches to eccentricity estimation: The problem of determining optimal

eccentricity as a feature in computing the habitability score – Variational Calculus and

the theory of Optimal control (“Variational Methods in Optimization" by Donald R.

Smith) will be used.

• Star-Galaxy Classification using Machine Learning: Using the data from the Super

COSMOS Sky Survey (SSS), we intend to demonstrate the efficiency of gradient boosted

methods, particularly that of the XGBoost algorithm, to be able to produce results

which can compete with those of other ensemble-based machine learning methods in

the task of star-galaxy classification. Extensive experiments involving cost-sensitive

learning and variable subset selection shall be carried out which, in turn, should help

resolve some intrinsic problems with the data. The improvisations are expected to

work well in handling the complexity of the data set which otherwise have not been

attempted in the literature.
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• ML Driven Mining and Automatic Labeling of the Habitability Catalog: Classical prob-

lems in astronomy are compounded by accumulation of large volume of complex

data, rendering the task of classification and interpretation incredibly laborious. The

presence of noise in the data makes analysis and interpretation even more arduous.

Machine learning algorithms and data analytic techniques provide the right platform

for the challenges posed by these problems. Novel Meta-heuristic (Cross culture Evo-

lution based) clustering and probabilistic herding based clustering algorithms will be

proposed to investigate the potential habitability of exoplanets by using information

from PHL’s Exoplanet Catalog (PHL-EC). Accuracy of such predictions is evaluated.

The machine learning algorithms are integrated to analyze data from PHL’s Exoplanet

Catalog (PHL-EC) with specific examples being presented and discussed. Exoplanet,

a software for analyzing data obtained from PHL’s Exoplanet Catalog via machine

learning, will also be developed and deployed in public domain.

• Nova Classification using Machine Learning: We propose a completely novel and never

attempted before classification scheme, based on the shape of the light curves obtained

from the AAVSO database. Nova eruptions discovered by Payne-Gaposhkin in 1964

occur on the surface of white dwarf stars in interacting binaries, generically called

cataclysmic variables by Warner in 1995. They usually have a red dwarf companion star,

where material accumulates on the surface until the pressure and temperature become

high enough for a thermonuclear runaway reaction to occur. We obtain the light curves

for the V-band from the AAVSO database. The AAVSO database has photometric magni-

tude estimates from amateur and professional astronomers all around the world. This

database has magnitudes for roughly 200 novas. A catalog of 93 very well-observed nova

light curves has been formed, in which light curves were constructed from numerous

individually measured magnitudes, and 26 of the light curves following the eruption

all the way to quiescent. An automatic classification scheme of nova, not attempted

before, is a fundamental contribution beyond reasonable doubt.

This E-book is one of the outcomes of the extended research efforts in AstroInformatics. We

would like to thank the Science and Engineering research Board (SERB), Department of Sci-

ence and Technology, Government of India for supporting our research by providing us with

resources to conduct our experiments. The project reference number is: EMR/2016/005687.
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2 PROS AND CONS OF CLASSIFICATION OF EXOPLANETS: IN SEARCH

FOR THE RIGHT HABITABILITY METRIC

Since time immemorial, humanity was looking at cosmos and believing other worlds being

out there, inhabited with other or, may be same, beings like us. Indian ancient texts talk

about travelling to other worlds in ‘bodily form’ (as says inscription on the iron pillar at Qutub

Minar, probably left in 4th century BC). Ancient Greeks also believed in the existence of other

planetary bodies with beings living on them (with mentions dating as far back as 6th century

BC: Thales of Miletus and Pythagoras). With our technological advances, we are continuing

this same quest, the quest for the habitable planet, ultimately, the second Earth; or at the least,

for the answer to the question of whether we are alone in the Universe. Currently, we already

know about the existence of thousands of exoplanets, and the estimates of the actual number

of planets exceed the number of stars in our Galaxy alone by orders of magnitude (both

bound and free-floating); small rocky planets, super-Earths, the most abundant type. Our

interest in exoplanets lies in the fact that, anthropically, we believe that life can only originate

and exist on planets, therefore, the most fundamental interest is in finding a habitable planet

- the planet with life on it. This quest can be broadly classified into the following: looking for

Earth-like conditions or the planets similar to the Earth (Earth similarity), and looking for the

possibility of life in a form known or unknown to us (habitability). But what is habitability? Is

it the ability of a planet to beget life – a potential habitability? Or is it our ability to detect it:

a planet may host life as we know it, in other words, be inhabited, but we will not detect it

unless it evolved sufficiently to change the environment on a planetary scale. In both cases,

the only comparison for recognition is our planet, therefore, we are looking for the terrestrial

likeness in exoplanets.

With a constantly increasing number of discovered exoplanets and the possibility that

stars with planets are a rule rather than an exception, it became possible to begin characteriz-

ing exoplanets in terms of planetary parameters, types, populations and, ultimately, in the

habitability potential. This is also important in understanding the formation pathways of

exoplanets. But since complete appraisal of the potential habitability needs the knowledge of

multiple planetary parameters which, in turn, requires hours of expensive telescope time,

it became necessary to prioritize the planets to look at, to develop some sort of a quick

screening tool for evaluating habitability perspectives from observed properties. Here, the

quick selection is needed for a long painstaking spectroscopic follow-up to look for the

tell-tales of life, the bio-signatures-atmospheric gases that only living organisms produce in

abundance. It can be oxygen, ozone, methane, carbon dioxide or, better, their combinations
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(see e.g. Safonova et al. 2016; Krissansen-Totton et al. 2018, and references therein). For all

the upcoming space missions dedicated to the search of life in the Universe: PLATO, Euclid,

JWST, etc., we need to make a list of our preferred candidates, so that this quest hopefully

can be completed within our lifetimes. It is estimated that one in five solar-type stars and

approximately half of all M-dwarf stars may host an Earth-like planet in the habitable zone

(HZ). Extrapolation of Kepler data shows that in our Galaxy alone there could be as many as

40 billion such planets (e.g. Borucki et al. 2010; Batalha et al. 2013; Petigura et al. 2013). And

it is quite possible that soon we may actually detect most of them. But with the ultimate goal

of a discovery of life, astronomers do not have millennia to quietly sit and sift through more

information than even petabytes of data. Obtaining the spectra of a small planet around a

small star is difficult, and even a large-scale expensive space mission (such as e.g. JWST) may

be able to observe only about a hundred stars over its lifetime (e.g., Turnbull et al. 2012).

For that purpose, several assessment scales have been introduced: a concept of the Habit-

able Zone (HZ) – a range of orbital distances from the host star that allows the preservation of

the water in liquid state on the surface of a planet (Kasting et al., 1993); Earth Similarity Index

– an ensemble of planetary physical parameters with Earth as reference frame for habitability,

or Planetary Habitability Index (PHI), based on the biological requirements such as water or

a substrate (Schulze-Makuch et al. 2011); habitability index for transiting exoplanets (HITE)

based on the certain limit of planetary insolation at the surface (Barnes et al. 2015). Our

group has developed an index applicable to small planets – Mars Similarity Index (MSI) – as

potential planets to host extremophile life forms (Kashyap et al. 2017). Habitability may also

be viewed as probabilistic measure, in contrast to the binary definition of, say, being in the

HZ or not, and such approach requires optimization classification methods that are part of

machine learning (ML) techniques. Thus, we have introduced a Cobb-Douglas Habitability

Score – an index based on Cobb-Douglas habitability production function (CD-HPF), which

computes the habitability score by using measured and estimated planetary parameters

(Bora et al. 2016), and recently extended it to include a statistical ML classification method

(XGBoost) used for supervised learning problems, where the training data with multiple

features are used to predict a target variable (Saha et al. 2018).

However, all classification strategies have caveats, and some (e.g. Tasker et al. 2017) reject

the exercise entirely on the basis of impossibility to quantitatively compare habitability, and

on the idea that pretending otherwise can risk damaging the field in the eyes of the public

community. In addition, some researchers believe that the priority for the exoplanet and

planetary science community is to explore the diversity of exoplanets, and not to concentrate

on exclusions.
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The first qualitative scale for habitability was the concept of a HZ – it assumes once a

planet is in the HZ, it is potentially habitable. However, such criterion is binary, and we

know that e.g. our Moon is inside the HZ and is a rocky planetary body, but definitely not

potentially habitable for our kind of life. Earth itself is located on the very edge of the HZ

(making it marginally habitable) and will get out of it in the next 1-3 billion years. Mars is

technically inside the HZ, and Venus once was. Titan, on the other hand, is totally outside the

HZ but may host a life, albeit dissimilar to ours. Besides, recent discoveries of free-floating

planets (planets without the host star where the concept of a HZ cannot apply) brought back

the interest in their potential habitability that was first addressed in 1999 (Stevenson, 1999).

Coming to more quantitative assessments, HITE predicted that planets that receive

between 60-90% of same amount of insolation as Earth are likely to be habitable. It however

assumes only circular orbits and the location inside HZ, which again refers back to mostly

Earth similarity; besides our Solar System has a unique feature of very low ellipticities. It

was earlier proposed that low eccentricity favours multiple planetary systems which, in turn,

favours habitability (Limbach and Turner, 2015). However, most know exoplanets have high

eccentricities; the most potentially habitable planets now, TRAPPIST-1 and Proxima b, have

high ellipticities, and it was estimated recently (Wang et al. 2017) that though eccentricity

shrinks HZ, even high ellipticity orbits can have low effect on planetary climate provided they

are in a certain spin-orbit resonances. For e = 0.4, if p = 0.1 (where p is the ratio of orbital

period to spin period), the HZ is the widest and the climate is most stable.

The ESI is based on the well-known statistical Bray-Curtis scale of quantifying the dif-

ference between samples, frequently used by ecologists to quantify differences between

samples based on count data. However, most multivariate community analyses are about

understanding a complex dataset and not finding the ‘truth’, meant in a sense of ‘significance’.

Thus, it may not be enough to understand a complex hierarchy of classification. But since all

we know is the Earth-based habitability, our search for habitable exoplanets (an Earth-like

life clearly favoured by the Earth-like conditions) has to be by necessity anthropocentric,

and any such indexing has to be centred around finding Earth-like planets, at least initially.

But Earth may not be the ideal place for life, and the concept of a super-habitability was

introduced in 2014 (Heller and Armstrong, 2014). Though this concept got rid of a HZ limits

admitting the tidal heating as a possible heat source, it still assumed the necessity of liquid

water on the surface as a prerequisite for life, preferably as a shallow ocean with no large

continuous land masses. Recent simulations, however, has shown that too much water is

not good for the detectability of exo-life (Desch et al. 2018). Exoplanets without land would

have life with much slower biogeochemical cycles and oxygen in the atmosphere would
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be indistinguishable from the one produced abiogenically. The question now shifts to the

definition of habitability as our ability to detect it if we cannot get to the planets which may

have life not on the surface, they are as good as uninhabited.

The search for life on the planets outside the Solar System can be broadly classified into

the following: looking for Earth-like conditions or the planets similar to the Earth (Earth

similarity), and looking for the possibility of life in a form known or unknown to us (habit-

ability). The two frequently used indices, ESI and PHI, describe heuristic methods to score

similarity/habitability in the efforts to categorize different exoplanets or exomoons. ESI, in

particular, considers Earth as the reference frame for habitability and is a quick screening

tool to categorize and measure physical similarity of any planetary body with the Earth. The

PHI assesses the probability that life in some form may exist on any given world, and is

based on the essential requirements of known life: a stable and protected substrate, energy,

appropriate chemistry and a liquid medium. Bora et. al (2016), [?] proposed a different

metric, a Cobb-Douglas Habitability Score (CDHS), based on Cobb-Douglas habitability

production function (CD-HPF), convex optimization techniques and constrained behavior of

the optimizing model drawing inspiration from the earlier work (Ginde et. al. [Ginde2016],

2016 and Saha et.al, 2016 [3]) which computes the habitability score by using measured and

calculated planetary input parameters. The metric, with exponents accounting for metric

elasticity, is endowed with verifiable analytical properties that ensure global optima, and

is scalable to accommodate finitely many input parameters. The model is elastic, does not

suffer from curvature violations and, as the authors discovered, the standard PHI is a special

case of CDHS. Computed CDHS scores are fed to K-NN (K-Nearest Neighbour) classifica-

tion algorithm with probabilistic herding that facilitates the assignment of exoplanets to

appropriate classes via supervised feature learning methods, producing granular clusters of

habitability. The proposed work describes a decision-theoretical model using the power of

convex optimization and algorithmic machine learning. Saha et al. (2018) expanded previous

work by Bora et al. (2016) on using Machine Learning algorithm to construct and test plane-

tary habitability functions with exoplanet data. This time they analyzed the elasticity of their

Cobb-Douglas Habitability Score (CDHS) and compared its performance with other machine

learning algorithms. They demonstrate the robustness of their methods to identify potentially

habitable planets from exoplanet dataset. Given our little knowledge on exoplanets and hab-

itability, the results have limited value now. However, their methods provide one important

step toward automatically identifying objects of interest from large datasets by future ground

and space observatories. Therefore, our work provides a logical evolution from the previous

work by Bora et.al (2017). CDHS contributes to the Earth similarity concepts where the scores
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have been used to classify exoplanets based on their degree of similarity to Earth. However

Earth similarity is not equivalent to exoplanetary habitability. Therefore, Saha et. al. (2018)

adopted another approach where machine classification algorithms have been exploited to

classify exoplanets into three classes: nonhabitable, mesoplanets and psychroplanets (origi-

nally adopted by the Planetary Habitability Laboratory (PHL), http://phl.upr.edu). While this

classification was performed, CDHS was not used at all, rather discriminating features from

the PHL-EC were used. This is fundamentally different from CDHS-based Earth similarity

approach where explicit scores were computed. Therefore, it was pertinent and remarkable

that the outcome of these two fundamentally distinct exercises reconcile. This reconciliation

approach is the first of its kind and fortifies CDHS, more than anything else. Moreover, this

convergence between the two approaches is not accidental. Essentially, the ESI score gives

non-dynamic weights to all the different planetary (with no trade-off between the weights)

observables or calculated features considered, which in practice may not be the best ap-

proach, or at least, the only way of indicating habitability. It might be reasonable to say that

for different exoplanets, the various planetary observables may weigh each other out to create

a unique kind of favorable condition. For instance, in one planet, the mass may be optimal,

but the temperature may be higher than the average of the Earth, but still within permissible

limits (like Venus); in another planet, the temperature may be similar to that of the Earth, but

the mass may be much lower. By discovering the best combination of the weights (or, as we

call it,elasticities) to maximize the resultant score, to the different planetary observables, we

are creating the metric which presents the best case scenario for the habitability of a planet.

The essence of the CD-HPF, and consequently, that of the CDHS is indeed orthogonal to

the essence of the ESI or BCI. The argument is not in favor of the superiority of our metric,

but for the new approach that have been developed. There should actually be various metrics

arising from different schools of thought so that the habitability of an exoplanet may be

collectively determined from all these. Such a kind of adaptive modeling has not been used

in the context of planetary habitability prior to the CD-HPF.

The CD-HPF reconciles with the machine learning methods that have been used to

automatically classify exoplanets. It is not easy to propose two fundamentally different ap-

proaches (one of which is CDHS) that lead to a similar conclusion about an exoplanet. While

the CDHS provides a numerical indicator (in fact, the existence of one global optima shouldn’t

be a concern at all but rather a vantage point of the model that thus eliminates the possibility

of computing scores arbitrarily), the machine classification bolsters the proposition by telling

us automatically which class of habitability an exoplanet belongs to. Bora et al. explain that a

CDHS close to 1 indicates a greater chance of habitability. The performance of machine clas-
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sification is evaluated by class-wise accuracy. The accuracies achieved are remarkably high,

and at the same time, it is observed that the values of the CDHS for the sample of potentially

habitable exoplanets which are considered are also close to 1. Therefore, the computational

approaches map Earth similarity to habitability. This is remarkable and non-trivial.

Despite recent criticism of the whole idea of exoplanetary ranking, we are sure that

this field has to continue and evolve to use all available machinery of astroinformatics and

machine learning. It might actually develop into a sort of same scale as stellar types in

astronomy. It can be used as a quick tool of screening planets in important characteristics in

search for potentially habitable planets for the follow-up investigations.
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3 A COMPARATIVE STUDY IN CLASSIFICATION METHODS OF EX-

OPLANETS: MACHINE LEARNING EXPLORATION VIA MINING

AND AUTOMATIC LABELING OF THE HABITABILITY CATALOG

3.1 Introduction

For centuries, astronomers, philosophers and other scientists have considered possibilities of

the existence of other planets that could support life, as it is on Earth or in different forms. The

fundamental question that remains unanswered is: are other extrasolar planets (exoplanets)

or moons (exomoons) capable of supporting life? Exoplanet research is one of the newest

and most active areas in astrophysics and astroinformatics. In the last decade, thousands of

planets were discovered in our Galaxy alone. The inference is that stars with planets are a rule

rather than exception, with estimates of the actual number of planet exceeding the number

of stars in our Galaxy by orders of magnitude [Strigari et al.(2012)].

Led by the NASA Kepler Mission [Batalha 2014], more than 3500 planets have been

confirmed, and 4900+ celestial objects remain as candidates, yet to be confirmed as plan-

ets. The discovery and characterization of exoplanets requires both extremely accurate

instrumentation and sophisticated statistical methods to extract the weak planetary sig-

nals from the dominant starlight or from very large samples. Stars and galaxies can be

seen directly in telescopes, but exoplanets can be observed only after advanced statisti-

cal analysis of the data. Consequently, statistical methodology is at the heart of almost

every exoplanet science result. - from https://www.iau.org/science/events/1135/ - IAU Fo-

cus Meetings (GA) FM 8: Statistics and Exoplanets. Different exoplanet detection methods

[Fischer et al.2014] include radial velocity based detection, astrometry, transits, direct imag-

ing, and microlensing. Each of these methods possesses its own advantages and difficulties

[Danielski2014]. For example, detection through radial velocity cannot determine accurately

the mass of a distant object [Ridden-Harper et al.2016] but only estimate the minimum mass

of a planet, whereas mass is the primary criterion for exoplanet confirmation. Similarly, each

method entails its own disadvantages for detection, confirmations and analysis. This requires

a careful study and analysis of light curves.

Characterization of Kepler’s different planets is important to judge their habitability

[Swift et al.2013]. Detailed modeling of planetary signals to extract information of the orbital

or atmospheric properties is even more challenging. Moreover, there is also the challenge of

inferring the properties of the underlying planet population from incomplete and biased sam-

ples. In previous work, measurements have been performed in order to estimate habitability
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or earth similarity such as Earth Similarity Index (ESI) [Schulze-Makuch et al.2011], Biologi-

cal Complexity Index (BCI) [Irwin et al.2014], Planetary Habitability Index (PHI) [Schulze-Makuch et al.2011],

and Cobb-Douglas Habitability Score (CDHS) [Bora et al.2016]. The increased importance of

statistical methodology is a trend that extends across the domain of astronomy. Naturally,

a need for software to process complex astronomical data and collaborative engagement

among astronomers, astrostatisticians and computer scientists emerges. These problems

fall into the new field of astroinformatics: an interdisciplinary area of research where as-

tronomers, mathematicians and computer scientists collaborate to solve problems in astron-

omy through the application of techniques developed in data science. Classical problems in

astronomy now involve the accumulation of large volumes of complex data with different

formats and characteristics and cannot now be addressed using classical techniques. As

a result, machine learning algorithms and data analytic techniques have exploded in im-

portance, often without a mature understanding of the pitfalls in such studies (for example,

[Peng, Zhang & Zhao2013] reported remarkable accuracy but accomplished on unbalanced

data thereby handicapped by the inherent bias in the data, unfortunately)

Planetary Habitability Laboratory’s (University of Puerto Rico) Exoplanet Catalog (PHL-

EC) [Méndez2015, Méndez2016] contains several features which may be analyzed in the

process of detection and classification of exoplanets [Fischer et al.2014] based on habitability.

These include the composition of the planets (P. Composition Class), the climate of the

planets (P. Zone Class) and the surface pressure of the planets (P. Surf Press) among others.

The ecological conditions in any exoplanet must be suitable in order for life (like on Earth)

to exist. Hence, in the data set, the classes of planets broadly include planets which are

habitable, and planets which are not habitable. A typical data set is derived from either

photometry or spectroscopy, which is calibrated and analyzed in the form of light curves

[Soutter2012]. Classification of these light curves and identification of the source producing

dips in the light curve are essential for detection through the transit method. A dip in the light

curve represents the presence of an exoplanet but this phenomenon may also be due to the

presence of eclipsing binaries, pulsating stars, red giants etc. Similarly, significant challenges

to the process of classification is posed by varying intensities of light curves, presence of

noise, etc.

The purpose of this research is to understand the following: given the features of hab-

itable planets, whether it may be feasible to automate the task of determining the hab-

itability of a planet that has not previously been classified. The planet’s ecological con-

ditions such as presence of water, pressure, gravitational force, magnetic field etc have

to be studied in detail [Heller & Armstrong2014] in order to adequately determine the na-
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ture of habitability of a planet. For example, the presence of water may increase the like-

lihood for an exoplanet to be a potential habitable candidate [Irwin et al.2014], but this

cannot be affirmed until other parameters are considered. These factors not only explain

the existence of life on a planet, but also its evolution such that life can be sustained

[Irwin & Schulze-Makuch2011, Irwin et al.2014]. The goal of the current work is to classify

the exoplanets into the different categories of habitability on the basis of their atmospheric,

physical, and chemical conditions [Gonzalez, Brownlee & Ward2001], or more aptly, based

on whether the respective planet is located in the comfortable habitable zone (CHZ) of planet’s

parent star. If a planet resides in the CHZ of their parent star, it is considered to be a potential

candidate for being habitable as the atmospheric conditions in these zones are more likely to

support life [Kaltenegger et al.2011]. A planet’s atmosphere is the key to establishing its iden-

tity, allowing us to guess the formation, development and sustainability of life [Kasting1993].

Numerous features such as planet’s composition, habitable zone , atmosphere class, mass,

radius, density, orbital period, radial velocity, just to name a few, have to be considered for a

complete atmospheric study of an exoplanet.

Machine learning (ML) is a field of data analysis that evolved from studies of classical

pattern recognition techniques. Statistics is at the heart of ML algorithms, which is why it is

generally treated differently from related fields such as artificial intelligence (AI). The areas of

data analytics, pattern recognition, artificial intelligence and machine learning have a lot in

common; ML stems out as a convergence of statistical methods and computer science. The

phrase machine learning almost literally signifies its purpose: to enable machines to learn

trends and features in data. In the current study, existing machine learning techniques have

been used to explore solutions to the problem of habitability. ML techniques have proved

to be effective for the task of classification in important data sets and extracting necessary

information and interesting patterns from large amount of data. ML algorithms are classified

into supervised and unsupervised methods, also known as predictive and descriptive methods

respectively. According to [Ball & Brunner2010], supervised methods rely on a training set of

objects (with both features and labels) for which the target property is known with confidence.

An algorithm is trained on this set of objects; training refers to the process of discerning

between classes (for tasks of classification) of data based on the feature set (in astrophysics, a

feature should be considered the same as an observable). The mapping resulting from training

is applied to other objects for which the target property, or the class label is not available,

in order to estimate which class of data they belong to. In contrast, unsupervised methods

do not label data into classes; the task of an unsupervised ML technique is to generally find

underlying trends in data, which are not explicitly stated or mentioned in the respective data
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set. Unsupervised algorithms usually require an initial input to one or more of the adjustable

parameters and the solution obtained depends on this input [Waldmann & Tinetti2012].

In the atmosphere of exoplanets, the desired accuracy of flux is 10−4 to 10−5, which is

difficult to achieve. An improved version of independent component analysis (ICA) has been

proposed [Waldmann & Tinetti2012], where the noise due to instrumental, systematic and

other stellar sources was filtered using an unsupervised learning approach; a wavelet filter

was used to remove noise even in low signal-to-noise (SNR) conditions. This is achieved

for HD189733b spectrum obtained through Hubble/NICMOS. In another supervised ML

approach [Debray & Wu2013], stellar light curves were used to determine the existence of an

exoplanet; this was accomplished by representing light curves as time series data, which was

then combined with feature selection to obtain the appropriate outcome. Through a dynamic

time warping algorithm, each light curve was compared to a baseline light curve, elucidating

the similarity between the two. Other models which utilize alternate sequential minimal

optimization (SMO) and multi-layer perceptron (MLP) have been implemented with the

accuracy of 83% and 82.2% respectively. In [Abraham2014], a data set based on light curves,

obtained from Kepler observatory was used for classification of stars as potentially harboring

exoplanets or not. The pre-processing of the large data set of Kepler light curves removed

the initial noise from the light curves and strong peaks (most likely transiting planets) were

identified by calculating standard deviations and means for certain threshold values; these

thresholds were selected from the percentage change metric. Next, feature extraction was

performed to help capture the information regarding consistency of the peaks and transit

time, which are otherwise relatively short. Principal component analysis (PCA) on these

extracted features was used as a measure towards dimensionality reduction. Furthermore,

four different supervised learning algorithms: k-nearest neighbor classifier (K-NN), logistic

regression, softmax regression, and support vector machine (SVM) were applied. Softmax

regression produced the best result for the training data set. The overall accuracy was boosted

by applying k-means clustering and further application of softmax regression and PCA to

85% on the test data. NASA’s catalog provides recent information about the planetary data,

where certain celestial bodies are considered as Kepler’s Object of Interest (KOI). Analysis

and classification of KOIs is done in [McCauliff et al.2014], via a supervised machine learning

approach that automates the categorization of the raw threshold crossing events (TCE) into a

set of three classes namely planet candidate (PC), astrophysical false positive (AFP) and non-

transiting phenomena (NTP), otherwise carried out manually by NASA’s Kepler TCE Review

(TCERT) team. Random forest classifier was proposed and the classification function was

decided based on the statistical distribution of the attributes of each TCE like SNR, angular
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offset, etc. The labels of training data were obtained by matching ephemeris contained

in KOI to TCE catalog. Data imputation was carried out by using sentinel values to fill in

missing attribute values; sensitivity analysis was carried out for the same operations. The

precision of 95% for PC, 93% for AFP and 99% for NTP was observed. Further analysis with

different classification algorithms (naïve Bayes, K-NN) was carried out, which proves greater

effectiveness of Random forests.

In the process of conducting experiments, the authors developed a software called Exo-

Planet [Theophilus, Reddy & Basak2016]. ExoPlanet served as a platform for conducting the

experiments and is an open source software. In all future works, the authors will use it as a

platform for analyzing data and testing algorithms.

3.2 Motivation

Today, many observatories all over the world survey and catalog astronomical data. For any

newly discovered exoplanet, or a planet for which data is more recently collected, many

attributes must be carefully considered before it may be appropriately classified. Manu-

ally completing this task is extremely cumbersome. Recently, the Kepler Habitable Zone

Working Group submitted their Catalog of Kepler Habitable Zone Exoplanet Candidates for

publication. Notably absent from this initial list are any true Earth twins: Earth-size planets

with Earth-like orbits around Sun-like stars. While the search for Earth-twins continues as

increasingly sophisticated software searches through Kepler’s huge database, extrapolations

from earlier statistical studies suggest that maybe one-in-ten Sun-like stars have Earth-size

rocky planets orbiting inside the Habitable Zone [Dayal et al.2015]. Several Earth-twins could

still be awaiting discovery in Kepler’s data. A method that could rapidly find Earth-twins from

Kepler’s database is desirable. There are some salient features of the PHL-EC data set which

make it an attractive option for machine learning based analysis. Eccentricity is assumed to

be 0 when unknown; the attributes of equilibrium and surface temperature for non-gaseous

planets show a linear relationship: this makes PHL-EC remarkably different from other data

sets. Further, the data set exhibits a huge bias towards one of the classes (the non-habitable

class of exoplanets: this poses significant challenges which needed to be properly addressed

by using appropriate machine learning approaches, in order to prevent over-fitting and to

avoid the problem of false positives.

ML techniques for analyzing data have become popular over the past two decades due

to an increase in computational power. Despite this, ML techniques are not known to be

applied to automate the task of classifying exoplanets. This prompted the authors to explore
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the data set with various ML algorithms. Several mathematical techniques were explored

and improvisations are proposed and implemented to check reliability of the classification

methods. Much later in the manuscript, the effectiveness of the algorithms to accurately

classify the exoplanets considered as most likely habitable in the optimistic and conservative

lists of habitable planets of PHL-EC have been verified. The authors were keen to test the

goodness of different classification algorithms and reconcile the data driven approach with

the discovery and subsequent physics based inferences about habitability. This has been

a very strong motivation and helped the authors go through painstaking and elaborate

experimentation. Later in the paper, the results of classification performed on artificially

augmented data (based on the samples naturally present in the catalog) have been presented

to demonstrate that ML can be effectively used to handle large volumes of data. The authors

believe that using machine learning as a black box should be strongly discouraged and instead,

its treatment should be rigorous. The word exploration in the title indicates a thorough

surveying of appropriate methods to solve the problem of exoplanet classification. This paper

presents the results of SVM, K-NN, LDA, Gaussian naïve Bayes, decision trees, random forests

and XGBoost. The performance of each classifier is examined and is correlated with the

nature of the data.

3.3 Methods

The advancement of technology and sophisticated data acquisition methods generates a

plethora of moderately complex to very complex data exist in the field of astronomy. Statistical

analysis of this data is hence a very challenging and important task [Saha et al.2016]. Machine

learning based approaches can carry out this analysis effectively [Ball & Brunner2010]. ML

based approaches are broadly categorized into two main types: supervised and unsupervised

techniques. The authors studied some of the most important work which used ML techniques

on astronomical data. This motivated them to revisit important machine learning techniques

and to discover their potential in the field of astronomical data analysis. The goal of the cur-

rent work is to determine whether a given exoplanet can be classified as potentially habitable

or not. These will be elaborated in detail later. Different algorithms were investigated in this

context using data obtained from PHL-EC.

Classification techniques may also be classified into metric and non-metric classifiers,

based on their working principles. Metric classifiers generally apply measures of geometric

similarity and distances of feature vectors, whereas non-metric classifiers should be applied

in scenarios where there are no definitive notions of similarity between feature vectors.
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The results from metric and non-metric methods of classification have been enunciated

separately for better understanding of suitability of these approaches in the context of the

given data set. The classifier whose performance is considered as a threshold is naïve Bayes,

considered as the gold standard in data analytics.

3.3.1 Naïve Bayes

Naïve Bayes classifier is based on Bayes’ theorem. It can perform the classification of an

arbitrary number of independent variables and is generally used when data has many at-

tributes. Consequently, this method is of interest since the data set used, PHL-EC, has a large

number of attributes. The data to be classified may be either categorical, such as P.Zone Class

or P.Mass Class, or numerical, such as P.Gravity or P.Density. A small amount of training data

is sufficient to estimate necessary parameters [Rish2001]. The method assumes independent

distribution for attributes and thus estimates class conditional probability as in Equation.

P (X | Yi ) = P (X1 | Yi )×P (X2 | Yi )× ...×P (Xn | Yi ) (1)

As an example from the data set used in this work, consider two attributes: P. Sem Major Axis

and P. Esc Vel. Assuming independent distribution between these attributes implies that the

distribution of P. Sem Major Axis does not depend on the distribution of P. Esc Vel, and vice

versa (albeit this assumption is often violated in practice; regardless, this algorithm is used

and is known to produce good results). The naïve Bayes algorithm can be expressed as:

Step 1: Let X = {x1, x2, ..., xd } and C = {c1,c2, ...,cd } be the set of feature vectors correspond-

ing to each entity in the data set, and the set of corresponding class labels (each class

label can have one of three unique values here: mesoplanet, psychroplanet, and non-

habitable planets, discussed) respectively. Reiterating, the attributes in the PHL-EC

data set are mass of the planet, surface temperature, pressure etc., of each cataloged

planet.

Step 2: Using Bayes’ rule and applying naïve Bayes’ assumption of class conditional inde-

pendence, the likelihood that a given feature vector x belongs to a class c j to a product

of terms as in Equation.

p(x | c j ) =
d∏

k=1
p(xk | c j ) (2)

Class conditional independence in this context means that the output of the classifiers

are independent of the classes. For example, if a data set has two classes ca and cb , then
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for a feature vector x, the outcomes p(ca |x) and p(cb |x) are independent of each other,

that is, there is no relationship between the classes.

Step 3: Recompute the posterior probability as shown in Equation .

p(c j | x) = p(c j )
d∏

k=1
p(xk | c j ) (3)

The posterior probability is the conditional probability that a given feature vector x

belongs to the class c j .

Step 4: Using Bayes’ rule, the class label c j which achieves highest probability is assigned

to a new pattern x. Since the pattern in this context refers to the feature vector of a

planet, the class labels mesoplanet, psychroplanet, or non-habitable will be assigned

as the class label of the sample being classified based on whichever class has highest

probability score for a particular planet.

3.3.2 Metric Classifiers

1. Linear Discriminant Analysis (LDA): The LDA classifier attempts to find a linear bound-

ary that best separates the different classes in the data. This yields the optimal Bayes’

classification (i.e. under the rule of assigning the class having highest a posteriori prob-

ability) under the assumption that the covariance is the same for all classes. The au-

thors implemented an enhanced version of LDA (often called regularized discriminant

analysis). This involves eigen decomposition of the sample covariance matrices and

transformation of the data and class centroid. Finally, the classification is performed

using the nearest centroid in the transformed space considering prior probabilities

into account [Welling2005]. The algorithm is expressed as:

Step 1: Compute mean vectors, µi for i = 1,2, ...,c classes from the data set, where

each mean vector is d-dimensional; d is the number of attributes in the data. This

aspect is similar to what has been stated in the subsection on Naïve Bayes’. Hence,

µi is the mean vector of class i , where an element at position j in µi is the average

of all the values of the j th attribute for the class i .

Step 2: Compute scatter matrices between classes and within class as shown in Equa-

tions .
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SB =
c∑

i=1
Mi (µi −m)(µi −m)T (4)

where SB represents scatter matrix between classes, Mi is size of the respective

class, m is the overall mean, considering values from all the classes for each

attribute, and µi is the sample mean.

Sw =
c∑

i=1
Si (5)

where Sw is the scatter matrix within class w , and Si is the scatter matrix for the

i th class and is given as

Si =
n∑

x∈Di

(xi −µi )(xi −µi )t (6)

Step 3: Compute eigen vectors and eigen values corresponding to scatter matrices.

Step 4: Select k eigen vectors that corresponds to largest eigen values and frame a

matrix M whose dimensions are d ×k.

Step 5: Apply transformation X ×M , where the dimensions of X are n×d , and i th row

is the i th sample. Every row in the matrix X corresponds to an entity in the data

set.

This method is found to be unsuitable for the classification problem. The reasons are

explained in nezt section.

2. Support Vector Machine (SVM): SVM classifiers are effective for binary class discrimi-

nation [Hsu, Chang & Lin2016]. The basic formulation is designed for the linear classi-

fication problem; the algorithm yields an optimal hyperplane i.e. one that maintains

the largest minimum distance from all the training data; it is defined as the margin for

separating entities from different classes. For instance, if the two classes are the ones

belonging to habitable and non-habitable planets respectively, the problem is a binary

classification problem and the hyper-plane must maintain the largest possible distance

from the data-points of either class. It can also perform non-linear classification by

using kernels, which involves the computation of inner products of all pairs of data

in the feature space. This implicitly transforms the data into a different space where
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a separating hyperplane may be found. The algorithm for classification using SVM,

stated briefly, is as follows:

Step 1: Create a support vector set S using a pair of points from different classes.

Step 2: Add the points to S using Kuhn-Tucker conditions, while there are violating

points, add every violating point V to S.

S = S ∪V (7)

If any of the coefficients, ap is negative due to addition of V to S then prune all

such points.

3. K-Nearest Neighbor (K-NN): K-nearest neighbors is an instance-based classifier that

compares new incoming instance with the data stored in memory [Cai, Duo & Cai2010].

K-NN uses a suitable distance or similarity function and relates new problem instances

to the existing ones in the memory. K neighbors are located and majority vote outcome

decides the class. For example, let us assume K to be 7. Suppose the test entity has 4

out of the nearest 7 entities belonging to class habitable and the remaining 3 out of the

7 nearest entities belonging to class non-habitable. In such a scenario, the test entity

is classified as habitable. However, if the choice of K is 9 and the number of nearest

neighbors belonging to class non-habitable is 5, instead of 3, then the test entity will be

classified as non-habitable. Occasionally, the high degree of local sensitivity makes the

method susceptible to noise in the training data. If K = 1, then the object is assigned to

the class of that single nearest neighbor. A shortcoming of the K-NN algorithm is its

sensitivity to the local structure of the data. K-NN can be understood in an algorithmic

way as:

Step 1: Let X is the set of training data, Y be the set of class labels for X , and x be the

new pattern to be classified.

Step 2: Compute the Euclidean distance between x and all other points in X .

Step 3: Create a set S containing K smallest distances.

Step 4: Return majority label for Yi , where i ∈ S.

Surveying various machine learning algorithms was a key motivation even though some

methods and algorithms could easily suffice. This explains the reason for describing methods

such as SVM, K-NN or LDA even though the results are not very promising for obvious
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reasons explained. We reiterate that any learning method is as good as the data and without

a balanced data set, there could not exist any reasonable scrutiny of the efficiency of the

methods used in the manuscript or elsewhere. In the next subsection, non-metric classifiers

which include decision trees, random forests, and extreme gradient boosted trees (XGBoost),

would bolster the logic behind discouraging black box approaches in data analytics in the

context of this problem or otherwise. Readers are advised to pay special attention to the

following section.

3.3.3 Non-Metric Classifiers

1. Decision Tree: A decision tree constructs a tree data structure that can be used for

classification or regression [Quinlan1986]. Each of the nodes in the tree splits the

training set based on a feature; the first node is called the root node, which is based

on the feature considered to be the best predictor. Every other node of the tree is

then split into child nodes based on a certain splitting criteria or decision rule which

determines the allegiance of the particular object (data) to the feature class. A node

is said to be more pure if the likelihood to classify a given feature vector belonging

to class ci in comparison with any other class c j , for i 6= j is greater. The leaf nodes

must be pure nodes, i.e., whenever any data sample that is to be classified reaches a

leaf node, it should be classified into one of the classes of the data with a very high

accuracy. Typically, an impurity measure is defined for each node and the criterion for

splitting a node is based on the increase in the purity of child nodes as compared to

the parent node. In other words, splits that produce child nodes having significantly

less impurity as compared to the parent node are favored. The Gini index and entropy

are two popular impurity measures. Gini index interprets the reduction of error at

each node, whereas entropy is used to interpret the information gained at a node. One

significant advantage of decision trees is that both categorical and numerical data can

be dealt with. However, decision trees tend to over-fit the training data. The algorithm

used to explain the working of decision trees is as follows:

Step 1: Begin tree construction by creating a node T . Since this is the first node of the

tree, it is the root node. Classification is of interest only in cases with multiple

classes and a root node may not be sufficient for the task of classification. At the

root node, all the entities in the training set are considered and a single attribute

which results in the least error when used to discern between classes is utilized to

split the entity set into subsets.
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Step 2: Before the node is split, the number of child nodes needs be determined. Let us

considering a binary valued attribute such as P. Habitable, the resulting number of

child nodes after a split will simply be two. In the case of discrete valued attributes,

if the number of possible values is more than two, then the number of child

nodes may be more than two depending on the DT algorithm used. In the case

of continuous valued attributes, a threshold needs to be determined such that

minimum error in classification is effected.

Step 3: In each of the child nodes, the steps 1 and 2 should be repeated, and the tree

should be subsequently grown, until it provides for a satisfactory classification

accuracy. An impurity measure such as the Gini impurity index or entropy must be

used to determine the best attribute on which the split should be based between

any two subsequent levels in the decision tree.

Step 4: Pruning may be done, while constructing the tree or after the tree is con-

structed, in order to prevent over-fitting.

Step 5: For the task of classification, a test entity is traced to an appropriate leaf node

from the root node of the tree.

It is important to observe here and in the later part of the manuscript that DT and other

tree based algorithms yield significantly better results for balanced as well as biased

data.

2. Random Forest: A random forest is an ensemble of multiple decision trees. Each tree is

constructed by selecting a random subset of attributes from the data set. Each tree in

turn performs a regression or a classification and a decision is taken based on mean

prediction (regression) or majority voting (classification) [Breiman2001]. The task of

classifying a new object from the data set is accomplished using randomly constructed

trees. Classification requires a tree voting for a class i.e. the test entity is classified as

class ci if a majority of the decision trees in the forest classified the entity into class

ci . For example, if a random forest consists of ten decision trees, out of which six

trees classified a feature vector x as belonging to the class of psychroplanets, and the

remaining four trees classified x as being non-habitable, then we may conclude that

the random forest classified x as a psychroplanet.

Random forests work efficiently with large data sets. The training algorithm for random

forests applies the general technique of bootstrap aggregation or bagging to tree learn-
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ers. Given a training set X = {x1, x2, ..., xn} with class labels Y = {y1, y2, ..., yn}, bagging

selects random samples from the training set with iterative replacement and fits trees

to these samples subsequently. The algorithm for classification may be described as:

Step 1: For a = 1, ..., N and for b = 1,2, ..., M sample with replacement, n training

samples from X with the corresponding set of Ym features from Y ; let this subset

of samples be denoted as Xa , Yb .

Step 2: Next, the i th decision tree is trained: fi on Xa , Yb . Steps 1 and 2 are repeated

for as many trees as desired in the random forest.

Step 3: After training, predictions for unseen samples x ′ can be made by considering

the majority votes from all the decision trees in the forest.

The brief primer on non-metric classifiers is terminated by including a recently devel-

oped boosted-tree machine learning algorithm, XGBoost.

3. XGBoost: XGBoost [Chen & Guestrin2016] is another method of classification that is

similar to random forests: it uses an ensemble of decision trees. The major departure

from random forest lies in how the trees in XGBoost are trained. XGBoost uses gradient

boosting. Unlike random forests, an objective function is minimized and each leaf

has an associated score which determines the class membership of any test entity.

Subsequent trees constructed in a forest of XGBoosted trees must minimize the chosen

objective function so that there is measured improvement in classification accuracy as

more trees are constructed. The steps in XGBoosted trees are as follows:

Step 1: For a = 1, ..., N and for b = 1,2, ..., M sample with replacement, n training

samples from X with the corresponding set of Ym features from Y ; let this subset

of samples be denoted as Xa , Yb .

Step 2: Next, the i th decision tree is trained: fi on Xa , Yb . Steps 1 and 2 are repeated

for as many trees as desired in the random forest.

Step 3: Steps 1 and 2 are repeated by considering more trees. Subsequent trees must

be chosen carefully so as to minimize the value of a chosen objective function.

The results from each tree are added, that is each tree then contributes to the

decision.

Step 4: Once the model is trained, the prediction can be done in a way similar to

random forests, but by making use of structure scores.
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For more details on the working principles of XGBoost and a brief illustrative example,

the reader should refer to Appendix.

3.4 Framework and Experimental Set Up

3.4.1 Data Acquisition: Web Scraping

The data is retrieved from Planetary Habitability Laboratory, University of Puerto Rico which

is regularly updated with new data and discovery. Therefore, web scraping helps to easily

update any local repository on a remote computer. Web scraping is a method of extracting

data from web pages, given the structure of the web page is known a prior. The positioning of

HTML tags and meta-data in a web page may be used for developing a scraper.

Figure 1 presents the outline of the scraper used to retrieve data from the website of

the Planetary Habitability Laboratory. Modern web browsers are equipped with utilities for

exploring structures of web pages. By using such inspection tools to understand the structure

of web pages, scrapers may be developed to retrieve data present in HTML pages already. The

steps in developing a scraper are explained below:

1. Explore Website Structure

The first step in the process of developing a scraper is to understand the structure of the

web pages. The position of HTML tags is carefully studied and patterns are discovered

that may help define the placement of desired data.

2. Create Scraping Template

Based on the knowledge gained in the first step, a template is designed that allows a

program to extract data from a web page. In essence, a web page is a long string of

characters. A set of web pages which display similar data may have similar characteristic

structure and hence a single template may be used to extract data from similar web

pages.

3. Automate Navigation and Extraction

Once a template is developed, a scraper may be deployed to automatically collect data

from web pages. It may be scheduled to update a local catalog or may be run as and

when required. The authors did not schedule the scraper to run at regular intervals

since that was not needed. The necessity may arise in future and scheduling may be

acted upon.
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Figure 1: Steps in scraper

Figure 2: Overview of the steps in the analysis of data.
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4. Update Data Catalog

As a good practice, most scrapers update a local catalog. As the scraping process pro-

gresses, newly added or altered data should be updated thus avoiding redundant data

handling. As and when a new or altered element is discovered, it should be immediately

updated in the local catalog before retrieving the next element in sequence.

3.4.2 Classification of Data

PHL-EC has been derived from the Hipparcose catalog which contains 118,219 stars. PHL-

EC was created from the Hipparcose Catalog by examining the information on distances,

stellar variability, multiplicity, kinematics, and spectral classification for the stars contained

therein. In this study, PHL-EC has been used because it provides an expanded target list

for use in the search for extraterrestrial intelligence by Project Phoenix of the SETI Institute.

PHL-EC data set consists of a total of 68 features and about 3500 confirmed exoplanets (at

the time of writing of this paper). The reason behind selecting PHL-EC as the source of

data is that it combines measures and modeled parameters from various sources. Hence,

it provides a good metric for visualization and statistical analysis [Méndez2011]. Statistical

machine learning approaches have not been applied on this data set, to the best of the

authors’ knowledge, providing good reasons to explore and exploit accuracy of different

machine learning algorithms.

The PHL-EC data set possesses 13 categorical features and 55 continuous features. There

are three classes in the data set, namely non-habitable, mesoplanets, and psychroplanets on

which the ML methods have been tried (there do exist other classes in the data set on which

the methods cannot be tried the reasons for which has been explained in Section 3.6.1. These

three labels or classes or types of planets (for the purpose of classification) can be defined on

the basis of their thermal properties as follows:

1. Mesoplanets [Asimov1989]: The planetary bodies whose sizes lie between Mercury and

Ceres falls under this category (smaller than Mercury and larger than Ceres). These are

also referred to as M-planets [Méndez2011]. These planets have mean global surface

temperature between 0◦C to 50◦C, a necessary condition for complex terrestrial life.

These are generally referred as Earth-like planets.

2. Psychroplanets [Méndez2011]: These planets have mean global surface temperature

between -50◦C to 0◦C. Hence, the temperature is colder than optimal for sustenance of

terrestrial life.
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3. Non-Habitable: Planets other than mesoplanets and psychroplanets do not have ther-

mal properties required to sustain life.

The catalog includes features like atmospheric type, mass, radius, surface temperature,

escape velocity, earth’s similarity index, flux, orbital velocity etc. Online data source for the cur-

rent work is available at http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database.

The data flow diagram of the entire system is depicted in Figure 2. As a first step, data

from PHL-EC is pre-processed (the authors have tried to tackle the missing values by taking

mean for continuous valued attribute and mode for categorical attributes). Certain attributes

from the database namely P.NameKepler (planet’s name), Sname HD and Sname Hid (name

of parent star), S.constellation (name of constellation), Stype (type of parent star), P.SPH

(planet standard primary habitability), P.interior ESI (interior earth similarity index), P.surface

ESI (surface earth similarity index), P.disc method (method of discovery of planet), P.disc

year (year of discovery of planet), P. Max Mass, P. Min Mass, P.inclination and P.Hab Moon

(flag indicating planet’s potential as a habitable exomoons) were removed as these attributes

do not contribute to the nature of classification of habitability of a planet. Interior ESI

and surface ESI, however, together contribute to habitability, but since the data set directly

provides P.ESI, these two features were neglected. Following this, classification algorithms

were applied on the processed data set. In all, 51 features are used.

Initially, a ten-fold cross-validation procedure was carried out, that is, the entire data

set was divided into ten bins in which one of the bins was considered as test-bin while the

remaining 9 bins were taken as training data. In this method the data is sampled without

replacement. Later, upon careful exploration of the data, more robust artificial balancing

methods were used. The details are enunciated in Sections 3.5.2 and 3.5.3.

Scikit-learn [Pedregosa et al.2011] was used to perform these experiments. A brief overview

of the classifiers used and their respective settings (in Scikit-learn) are provided below:

1. Gaussian Naïve Bayes evaluates the classification labels based on class conditional

probabilities with class apriori probabilities, class count, mean and variance set to

default values.

2. The k-nearest neighbor classifier was used with the k value being set to 3 while the

weights are assigned uniform values and the algorithm was set to auto.

3. Support vector machines, a binary classifier was used with a penalty parameter C of

the error term, initialized to default 1.0 while the kernel used was that of a radial

basis function (RBF) [Powell1977] and the gamma parameter (kernel coefficient) was

assigned to 0.0 and coefficient of the kernel was set to 0.0 as well.
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4. The parameters setup for linear discriminant analysis classifier was implemented by

the decomposition strategy similar to SVM [Eckart & Young1936, Hestenes1958]. No

shrinkage metric was specified and no class prior probabilities were assigned.

5. Decision trees build tree based structures by using a split criterion namely Gini impurity,

with measure of split being selected as best split and no max-depth and min-depth

were specified whereas a random forest is an ensemble of decision trees with estimator

value set up to 100 trees; the remaining parameters were set to the same as the decision

tree.

6. XGBoost is a recent ensemble tree-based method which optimizes the tree being built.

For this algorithm, the maximum number of estimators chosen to develop a classifier

was 1000 and the maximum permissible depth of each tree bound at 8. The objective

function used was that of a multinomial softmax.

3.5 Complexity of the data set used and Results

3.5.1 Classification performed on an unbalanced and smaller Data Set

Initially, 664 planets were considered, as their surface temperature was known out of which

9 planets were mesoplanets and 7 planets were psychroplanets, from the data set scraped

in June 2015 [Méndez2015]. These planets selected for classification at this stage were rocky

planets, deemed more habitable than planets of other terrain. The accuracy of all classifiers

are documented in Table 1.

The PHL-EC data set is too complex for an immediate application of classifiers. The cause

of the initial high accuracy is due to the data bias of a single class: The non-habitable class

dominates over all the other classes. The sensitivity and specificity using this method were

both very close to 1, for all classifiers.

Table 1: Accuracy of each algorithm executed on unbalanced PHL-EC data set

Algorithm Accuracy (%)
Naïve Bayes 98.7

Decision Tree 98.61
LDA 93.23

K-NN 97.84
Random Forest 98.7

SVM 97.84
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3.5.2 Classification performed on a balanced and smaller data set

Unbelievably high accuracy for all methods, metric and non-metric in the unbalanced data set

and unreasonable sensitivity and specificity values were recorded. Bias towards a particular

class, as evident from the number of samples across the different classes in the data set,

was responsible for this. The efficacy of ML algorithms can not be judged when such a bias

is present. Therefore, the data set needed to be balanced artificially so that dominance of

one particular class samples is removed from the and the real picture emerges regarding the

appropriateness of a particular machine learning algorithm, metric or otherwise.

To counter the problems faced in the first phase of research with regard to data bias,

smaller data sets were constructed by selecting all planets belonging to mesoplanet and

psycroplanet classes and selecting 10 planets which belonged to the non-habitable class at

random, resulting in 26 planets in a smaller, artificially balanced data set. Classification and

testing was then performed on each artificially balanced data set. In every iteration of testing

on a smaller data set, the test data was formed by selecting one entity from mesoplanet, one

from psychroplanet and two from non-habitable; the remaining entities from all classes were

used as training data for that respective training-testing cycle. All possible combinations of

training and test data were used, resulting in
(8

1

)× (7
1

)× (10
2

)= 2835 training and testing cycles

for each smaller data set. Five hundred iterations, or artificially balanced data sets, were

formed and tested for each classifier. The data set used by the authors can be obtained by

clicking on the link: ht t ps : //g i thub.com/Sur yod ayB asak/exopl anet s_d at a. It should

be noted that this method is not the same as that of blatant undersampling to counter the

effects of bias. Rather, after the artificial balancing is done, a large number of iterations of the

experiments are performed. As the process of selecting random non-habitable samples is

stochastic in nature, by increasing the number of training-testing iterations and averaging

the classification accuracy, the test results become more reliable and representative of the

performance of the ML classifiers.

Table 2: Accuracy of each algorithm executed on pre-processed and artificially balanced PHL-EC data
set.

Algorithm Curve Color Accuracy(%)
Random Forest Green 96.667
Decision Tree Red 96.697
Naïve Bayes Cyan 91.037

LDA Magenta 84.251
K-NN Blue 72.191
SVM Yellow 79.055
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Figure 3: Convex hull shown across two dimensions.

Figure 4: ROC curves for each method used on artificially balanced data sets.
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A separability test was also performed on the data in order to determine if the data set is

linearly separable or not. If the different classes in data are not linearly separable, certain

classifiers may not work well or may not be appropriate for the respective application. The

convex hull of different classes in the data provides us with an indication of separability:

the convex hull of a given set of points is the smallest n dimensional polygon which can

adequately envelop all the points in the respective set, where n is the number of attributes

of the points. If the convex hull of any two or more classes intersect or overlap, then it may

be concluded that the classes of data are not linearly separable. Figure 3 depicts the convex

hull of data across two dimensions (P. Mass vs P. Radius). Although only the convex hull

test considering all the dimensions of the data is completely representative of separability, a

graph across two dimensions is depicted for simplicity as it is difficult to plot the convex hull

for all pairs of features for a data set with many dimensions. The data points in blue represent

the entities belonging to the non-habitable class, red represents mesoplanets and yellow

represents psychroplanets. It is observed that the data belonging to the classes of mesoplanet

and psychroplanet are present within the convex hull of the class non-habitable. Thus, the

three classes in the data set are linearly inseparable.

The accuracy and ROC curves of the different classifiers after artificially balancing the data

set are shown in Table 2 and Figure 4 respectively. The receiver operating characteristics (ROC)

curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR).

The ROC curve is a useful tool for visualizing and analyzing the performance of a classifier

and selecting the classifier with the best performance for a given data set. Simply stated, the

closer the points in a curve are towards the top left corner, the better the performance of a

classifier is, and vice-versa.

3.5.3 Classification performed on a balanced and larger data set

An updated version of the data set was scraped on 20th May 2016. This data set had 3411 en-

tries: 24 mesoplanets, 13 psychroplanets, and 3374 non-habitable planets. At this stage, after

the preliminary explorations described in Sections 3.5.1 and 3.5.2, the authors decided not to

leave out any of the planets from the ML analysis: all of the 3411 entities were considered

for determining the habitability. The number of items in this data set was significantly more

than the older data set used to have. Hence, the artificial balancing method was modified.

In the new balancing method, all 13 psychroplanets were considered in a smaller data set

and 13 random and unique entities from each of the other two classes were also considered.

Thus, in this case, the number of entities in a smaller, artificially balanced data set was 39.

Following this, each smaller data set was divided in the ratio of 9:4 (training:testing) and 500
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Table 3: Accuracy of each algorithm executed on pre-processed, artificially balanced and updated
PHL-EC data set without seven attributes

Algorithm Accuracy(%)
Random Forest 96.466
Decision Tree 95.1376
Naïve Bayes’ 91.3

LDA 84.251
K-NN 59.581
SVM 39.7792

iterations of training and testing were performed on each such data set. 500 such data sets

were framed for analysis. To sum it up, 2,50,000 iterations of training-testing were performed

for each classifier.

1. First Iteration of the Experiment

Initial analysis using the updated data set did not include the attributes such as P.SFlux

Min, P.SFlux Max, P.Teq Min, P.Teq Max, P.Ts Min, P.Ts Max, and P.Omega. For tem-

perature and flux, the corresponding average values were considered as the authors

tried to make do with a lesser number of attributes by considering just the mean of the

equilibrium and surface temperatures. The accuracy observed at this phase is recorded

in Table 3.

2. Second Iteration of the Experiment

In the next step, all the seven attributes initially not considered were included in the

data set for analysis. This is considered to be a complete analysis and the accuracy

achieved at this stage is reported in three separate sub-subsections.

(a) Naïve Bayes

The accuracy achieved using the Gaussian naïve Bayes Classifier is 92.583%. The

ROC curve for this is given in Figure 5. The results of naïve Bayes is given in Table

4.

(b) Metric Classifiers

The accuracy using metric classifiers is given in Table 5. The corresponding color

of curves in the ROC is present as a column. The ROC curve for all the metric

classifiers is given in Figure 6.

Page 40 of 316



Table 4: Sensitivity, accuracy, precision, and specificity achieved using naïve Bayes

Class Sensitivity Accuracy Precision Specificity
Non-Habitable 0.9999 0.9883 0.9999 0.9649
Psychroplanet 0.8981 0.9173 0.8243 0.9558

Mesoplanet 0.9691 0.9173 0.9295 0.8136

Table 5: Accuracy and ROC curve colors for metric classifiers

Algorithm Curve Color Accuracy(%)
SVM Blue 36.489

K-NN Green 68.607
LDA Red 77.396

(c) Non-Metric Classifiers The accuracy using non metric classifiers is given in Table

9. The corresponding color of curves in the ROC is present as a column. The ROC

curve for all the non metric classifiers is given in Figure ??.

Figure 5: ROC for Gaussian naïve Bayes Classifier

As the data is linearly inseparable, classifiers utilizing the separability of data naturally

performed less efficiently. Such classifiers are metric classifiers and include SVM, LDA,

and K-NN as discussed before. SVM and LDA both work by constructing a hyperplane

between classes of data: LDA constructs a hyper-plane by assuming the data from each
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Figure 6: ROC curves for metric classifiers

Table 6: Sensitivity, accuracy, precision, and specificity achieved using SVM classifier

Class Sensitivity Accuracy Precision Specificity
Non-Habitable 0.8216 0.6151 0.3617 0.2022
Psychroplanet 0.7517 0.6268 0.4316 0.3771

Mesoplanet 0.4869 0.5050 0.3453 0.5412

Table 7: Sensitivity, accuracy, precision, and specificity achieved using K-NN classifier

Class Sensitivity Accuracy Precision Specificity
Non-Habitable 0.9998 0.9585 0.9996 0.8759
Psychroplanet 0.7200 0.6962 0.5366 0.6486

Mesoplanet 0.7797 0.6779 0.5184 0.4744

Table 8: Sensitivity, accuracy, precision, and specificity achieved using LDA classifier

Class Sensitivity Accuracy Precision Specificity
Non-Habitable 0.9935 0.9417 0.9847 0.8382
Psychroplanet 0.8520 0.8030 0.7042 0.7050

Mesoplanet 0.8155 0.8032 0.6785 0.7787
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Table 9: Accuracy and ROC curve colors for non-metric classifiers

Algorithm Curve Color Accuracy(%)
Decision Tree Blue 94.542

Random Forests Green 96.311
XGBoost Red 93.960

Table 10: Sensitivity, accuracy, precision, and specificity achieved using decision tree classifier

Class Sensitivity Accuracy Precision Specificity
Non-Habitable 0.9926 0.9691 0.9843 0.9220
Psychroplanet 0.9610 0.9578 0.9242 0.9512

Mesoplanet 0.9479 0.9419 0.8993 0.9299

class to be normally distributed with the parameters of mean and co-variance for the

respective classes; SVM is a relatively recent kernel based method. Considering binary

classification, in both cases, the hyperplane defines a threshold and the classes are

assigned based on the response of a function g (x), which may be higher or lower than

the threshold. For example, if the output of g (x) is greater than the corresponding

threshold for any data point x1, then the associated class may be Class-1 and if it is lower

than the threshold, then the associated class may be Class-0. For tasks involving multi-

class classification, an appropriate set of thresholds is defined (based on the number

of required hyperplanes) and the function g (x) then has to find the class to which the

data corresponds best by considering appropriate conditions for membership to each

class. If data is linearly inseparable, it becomes nearly impossible to appropriately

define a hyperplane which may adequately separate the different classes of data in a

vector space. The K-NN classifier works on the basis of similarity to nearest neighbors.

Even in this case, chances of error increases as the method works based on geometric

similarity to singular regions in a vector space corresponding to each class.

Decision trees, random forests, and XGBoost, on the other hand, are non-metric classi-

fiers. These classifiers do not work by constructing hyperplanes or consider kernels.

These classifiers are able to divide the feature space into multiple regions corresponding

Table 11: Sensitivity, accuracy, precision, and specificity achieved using random forest classifier

Class Sensitivity Accuracy Precision Specificity
Non-Habitable 0.9990 0.9811 0.9978 0.9452
Psychroplanet 0.9617 0.9681 0.9276 0.9809

Mesoplanet 0.9757 0.9661 0.9513 0.9468
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Table 12: Sensitivity, accuracy, precision, and specificity achieved using XGBoost classifier

Class Sensitivity Accuracy Precision Specificity
Non-Habitable 0.9993 0.9677 0.9984 0.9046
Psychroplanet 0.9613 0.9599 0.9252 0.9572

Mesoplanet 0.9489 0.9515 0.9034 0.9569

to a single class and the same is done for all the classes. This is a measure to overcome

the limitation of the requirement of separability among classes of data in a classifier.

Hence, the results from these classifiers are the best. A probabilistic classifier, Gaussian

naïve Bayes performs better than the metric classifiers due to the strong independence

assumptions between the features.

Different specificity and sensitivity values, along with the precision are given in Tables

4, 6, 7, 8, 10, 11 and 12 for the classification algorithms.

3.6 Discussion

3.6.1 Note on new classes in PHL-EC

Two new classes appeared in the augmented data set scraped on 28th May 2016. These two

new classes are:

1. Thermoplanet: A class of planets, which has a temperature in the range of 50◦C-100◦C.

This is warmer than the temperature range suited for most terrestrial life [Méndez2011].

2. Hypopsychroplanets: A class of planets whose temperature is below −50◦C. Plan-

ets belonging to this category are too cold for the survival of most terrestrial life

[Méndez2011].

The above two classes have two data entities each in the augmented data set used. This

number is inadequate for the task of classification, and hence the total of four entities

were excluded from the experiment.

3.6.2 Missing attributes

It can be expected in any data set for feature values to be missing. The PHL-EC too has

attributes with missing values.

1. The attributes of P. Max Mass and P. SPH were dropped as they had too few values for

some algorithms to consider them as strong features.
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2. All other named attributes such as the name of the parent star, planet name, the name

in Kepler’s database, etc. were not included as they do not have much relevance in a

data analytic sense.

3. For the remaining, if a data sample had a missing value for a continuous valued at-

tribute, then the mean of the values of all the available attributes for the corresponding

class was substituted. In the case of discrete valued attributes, the same was done, but

using the mode of the values.

After the said features were dropped, about 1% of all the values of the the data set used for

analysis were missing. Most algorithms require the optimization of an objective function.

Tree based algorithms also need to determine the importance of features as they have to

optimally split every node till the leaf nodes are reached. Hence, ML algorithms are equipped

with mechanisms to deal with important and non-important attributes.

3.6.3 Reason for extremely high accuracy of classifiers before artificial balancing of data

set

Since the data set is dominated by the non-habitable planets class, it is essential that the

training sets used for training the algorithms be artificially balanced. The initial set of results

achieved were not based on artificial balancing and are described in Table 1. Most of the

classifiers resulted in an accuracy between 97% and 99%.

In the data set, the number of entities in the non-habitable class is greater than 1000

times the number of entities in both the other classes put together. In such a case, voting for

the dominating class naturally increases as the number of entities belonging to this class is

greater: the number test entities classified as non-habitable are far greater than the number

of test entities classified into the other two classes. The extremely high accuracies depicted in

Table 1 is because of the dominance of one class and not because the classes are correctly

identified. In such a case, the sensitivity and specificity are also close to 1. Artificial balancing

is thus a necessity unless a learning method is designed specifically which auto corrects the

imbalance in the data set. Performing classification on the given data set straightaway is not

an appropriate methodology and artificial balancing is a must. Artificial balancing was done

by selecting 13 entities from each class. This number corresponds to the number of total

entities in the class of psychroplanets.
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Figure 7: ROC for SVM without artificial balancing

3.6.4 Demonstration of the necessity for artificial balancing

Predominantly in the case of metric classifiers, an imbalanced training set can lead to misclas-

sifications. The classes which are underrepresented in the training set might not be classified

as well as the dominating class. This can be easily analyzed by considering the area under

the curve (AUC) of the ROC of the metric classifiers in the case of balanced and imbalanced

training sets. As an illustration: the AUC of SVM for the unbalanced training set (tested

using a a balanced test set) is 0%, but after artificial balancing, it comes up to approximately

37%. The ROC for the unbalanced case is shown in Figure 7. The marker at (0,0) shows the

only point in the plot; the FPR and TPR are observed to be constantly zero for SVM without

artificial balancing. Similarly, in the case of other metric classifiers, classification biases can

be eliminated using artificial balancing.

3.6.5 Order of importance of features

In any large data set, it is natural for certain features to contribute more towards defining

the characteristics of the entities in that set. In other words, certain features contribute

more towards class belongingness than certain others. As a part of the experiments, the

authors wanted to observe which features are more important. The ranks of features and the

percentage importance for random forests and for XGBoosted trees are presented in Tables
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13 and 14 respectively. Every classifier uses the features in a data set in different ways. That is

why the ranks and percentage importances observed using random forests and XGBoosted

trees are different. The feature importances were determined using artificially balanced data

sets.

3.6.6 Why are the results from SVM, K-NN and LDA relatively poor?

As the data set has been improving since the first iteration of the classification experiments,

the authors were able to understand the nature of the data set better with time. With the

continuous augmentation of the data set, it is easier to understand why some methods work

poorer compared to others.

As mentioned in Section 3.5.2, the data entities from different classes are not linearly

separable. This is proved by finding the data points from the classes of mesoplanets and

psychroplanets within the convex hull of the non-habitable class. Classifiers such as SVM

and LDA rely on data to be separable in order to optimally classify test entities. Since this

condition is not satisfied by the data set, SVM and LDA have not performed as well as other

classifiers such as random forest or decision trees.

SVM with radial basis kernels performed poorly as well. The poor performance of LDA

and SVM may be attributed to the similar trends that entities from all the classes follow as

observed from Figure 3. Apart from a few outliers, most of the data points follow a logarithmic

trend and classes are geometrically difficult to discern.

K-NN also classifies based on geometric similarity and has a similar reason for poor perfor-

mance: the nearest entities to a test entity may not be from same class as the test class. K-NN

is observed to perform best when the value of k is between 7 and 11 [Hassanat et al.2014].

In our data set, these numbers almost correspond to the number of entities present in the

classes of mesoplanets and psychroplanets; the number of entities belonging to mesoplanets

and psychroplanets are inadequate for the best performance.

3.6.7 Reason for better performance of decision trees

A decision tree algorithm can detect the most relevant features for splitting the feature space.

A decision tree may consequently be pruned while growing or after it is fully grown. This

prevents over-fitting of the data and yields good classification results.

In decision trees, an n-dimensional space is partitioned into multiple parts corresponding

to a single class. Unlike SVM or LDA, there isn’t a single portion of the n-dimensional space

corresponding to a single class. The advantage of this is that this can handle non-linear trends.

Page 47 of 316



Table 13: Ranks of features based on random forests

Rank Attribute Percent Importance
1 P. Ts Mean (K) 6.731
2 P. Ts Min (K) 6.662
3 P. Teq Min (K) 6.628
4 P. Teq Max (K) 6.548
5 P. Ts Max (K) 6.49
6 S. Mag from Planet 6.399
7 P. Teq Mean (K) 6.393
8 P. SFlux Mean (EU) 6.366
9 P. SFlux Max (EU) 6.292
10 P. SFlux Min (EU) 6.264
11 P. Mag 4.216
12 P. HZD 3.822
13 P. Inclination (deg) 3.732
14 P. Min Mass (EU) 3.571
15 P. ESI 3.177
16 S. No. Planets HZ 3.014
17 P. Habitable 3.005
18 P. Zone Class 2.82
19 P. HZI 1.627
20 S. Size from Planet (deg) 1.376
21 P. Period (days) 1.034
22 S. Distance (pc) 0.54
23 S. [Fe/H] 0.42
24 P. Mean Distance (AU) 0.379
25 S. Teff (K) 0.251
26 P. Sem Major Axis (AU) 0.227
27 S. Age (Gyrs) 0.17
28 S. Luminosity (SU) 0.156
29 S. Appar Mag 0.145
30 S. Mass (SU) 0.134
31 S. Hab Zone Max (AU) 0.128
32 P. Appar Size (deg) 0.12
33 S. Hab Zone Min (AU) 0.118
34 S. Radius (SU) 0.097
35 P. Radius (EU) 0.095
36 P. Eccentricity 0.089
37 P. HZC 0.088
38 P. Density (EU) 0.083
39 S. No. Planets 0.08
40 P. Gravity (EU) 0.078
41 P. Mass (EU) 0.076
42 P. HZA 0.074
43 S. DEC (deg) 0.066
44 P. Surf Press (EU) 0.065
45 P. Mass Class 0.055
46 P. Esc Vel (EU) 0.049
47 S. RA (hrs) 0.045
48 P. Omega (deg) 0.018
49 P. Composition Class 0.005
50 P. Atmosphere Class 0.004
51 S. HabCat 0.0
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Table 14: Ranks of features based on XGBoost

Rank Attribute Percent Importance
1 S. HabCat 25.0
2 P. Ts Mean (K) 25.0
3 P. Mass (EU) 25.0
4 P. SFlux Mean (EU) 25.0

Figure 8: Decrease in OOB error with increase in number of trees in RF

This kind of an approach is appropriate for the PHL-EC data set as the trends in the data are

not linear and classes are difficult to discern. Hence, multiple partitions of the feature space

can greatly improve classification accuracy.

3.6.8 Explanation of OOB error visualization

Figure 8 shows the decrease in error rate as the number of tree estimators increase. After a

point, the error rate fluctuates between approximately 0% and 6%. The decrease in the error

rate with an increase in the number of trees to a smaller range of error testifies convergence

in random forests.
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3.6.9 What is remarkable about random forests?

Decision trees are often encountered with the problem of over-fitting i.e. ignorance of

a variable in case of small sample size and large p-value (however, in the context of the

work presented in this paper, this is not observed since unnecessary predictor variables are

pruned). In contrast, random forests bootstrap aggregation or bagging [Breiman2001] which

is particularly well-suited to problems with small sample size and large p-value. The PHL-EC

data set is not large by any means. Random forest, unlike decision trees, do not require split

sampling method to assess accuracy of the model. Self-testing is possible even if all the data

is used for training as 2/3r d of available training data is used to grow any one tree and the

remaining one-third portion of the training data is used to calculate out-of-bag error. This

helps assess model performance.

3.6.10 Random forest: mathematical representation of binomial distribution and an ex-

ample

In random forests, approximately 2/3r d of the total training data is used for growing each tree,

and the remaining 1/3r d of the cases are left out and not used in the construction of trees.

Each tree returns a classification result or a vote for a class corresponding to each sample

to be classified. The forest chooses the classification having the majority votes over all the

trees in the forest. For a binary dependent variable, the vote will be yes or no; the number

of affirmative votes is counted: this is the RF score and the percentage of affirmative votes

received is the predicted probability of the outcome being correct. In the case of regression,

it is the average of the responses from each tree.

In any DT which is a part of a random forest, an attribute xa may or may not be included.

The inclusion of an attribute in a Decision Tree is of the yes/no form. The binary nature

of dependent variables is easily associated with binomial distribution. This implies that

the probability of inclusion of xa is binomially distributed. As an example, consider that

a random forest consists of 10 trees, and the probability of correct classification due to an

attribute xa is 0.6. The probability mass function of the binomial distribution is given by

Equation (8).

Pr (X = k) =
(

n

k

)
pk (1−p)n−k (8)

It is easy to note that n = 10 and p = 0.6. The value of k indicates the number of times an

attribute xa is included in a DT in the forest. Since n = 10, the values of k may be 0,1,2, ...,10.

Page 50 of 316



k = 0 implies that the attribute is never accounted for in the forest, and k = 10 implies that xa

is considered in all the trees.

The cumulative distribution function (CDF) for the binomial distribution is given by

Equation (9).

Pr (X ≤ m +1) =
n∑

k=0

(
n

i

)
p i (1−p)n−k (9)

For n = 10, p = 0.6 and m = 10, the probability for success in Equation (10):

Pr (X ≤ m +1) =
10∑

k=0

(
10

k

)
(0.6)k (0.4)n−k = 1.0 (10)

As k assumes a larger value, the value of the Cumulative Distribution approaches 1. This

indicates a greater probability of success or correct classification. It follows that, increasing

the number of decision trees consequently reduces the effect of noise and if the features are

generally robust, the classification accuracy gets reinforced.

3.7 Binomial distribution based confidence splitting criteria

The binomially distributed probability of correct classification of an entity may be used

as a node-splitting criteria in the constituent DT of an RF. From the cumulative binomial

distribution function, the probability of k or more entities of class i occurring in a partition A

of n observations with probability greater than or equal to p is given by the binomial random

variable as in Equation (11).

X (n, p) = P [X (n, pi ) ≥ k] = 1−B(k;n, pi ) (11)

As the value of X (n, p) tends to zero, the probability of the partition A being a pure

node, with entities belonging to only class i , increases. However, an extremely low value

of X (n, p) may lead to an over-fitting of of data, in turn reducing classification accuracy. A

way to prevent this is to use a confidence threshold: the corresponding partition or node is

considered to be a pure node if the value of X (n, p) exceeds a certain threshold.

Let c be the number of classes in the data and N be the number of outputs, or branches

from a particular node j . If n j is the number of entities in the respective node, ki the number

of entities of class i , and pi the minimum probability of occurrence of ki entities in a child

node, then the model for the confidence based node splitting criteria as used by the authors

may be formulated as Equation (12).
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Figure 9: OOB error rate as the number of trees increases (Confidence Split)

var =
N∏

j=1
mi n{1−B(ki j ;n j , p j )}

I =


0, if var < confidence threshold

var, otherwise

(12)

subject to the conditions, c ≥ 1, p = [0,1], confidence threshold = [0,1), ki j ≤ n j , i =
{1,2, ...,c}, j = {1,2, ..., N }. Here, the i subscript represents the class of data, and the j subscript

represents the output branch. So, ki j represents the number of expected entities of class i in

the child node j .

From the OOB error plot (Figure 9), it is observed that the classification error decreases

as the number of trees increases. This is akin to the OOB plot of random forests using Gini

split (Figure 8), which validates our confidence-based approach as a splitting criteria. For

the current data set, the results obtained by using this criteria is comparable to the results

obtained by using Gini impurity splitting criteria (the results are analyzed in Section 3.5.3).

In the current data set, balanced data sets with 39 entities equally distributed among three
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classes were used. A closer look at this method, however, reveals that it could be a difficult

function to deal with as the number of samples in the data sets go on increasing, as it is in the

multiplicative form. Nonetheless, it is a method worth exploring and can be considered a

good method for small data sets. Hence, this method is of interest for the PHL-EC dataset. This

is observed later, in the case of Proxima b (Table 23). Even otherwise, the results presented in

Tables 19 and 20 indicate a comparable performance to the other tree-based classification

algorithms. In the future, further work on this this method may enable it to scale up and work

on large data sets.

3.7.1 Margins and convergence in random forests

The margin in a random forest measures the extent to which the average number of votes

for X,Y for the right class exceeds the average vote for any other class. A larger margin thus

implies a greater accuracy in classification [Breiman2001].

The generalization error in random forests converges almost surely as the number of trees

increases. A convergence in the generalization error is important. It shows that the increase

in the number of tree classifiers we tends to move the accuracy of classification towards near

perfect (refer to Section ?? of Appendix ??).

3.7.2 Upper bound of error and Chebyshev inequality

Accuracy is an important measure for any classification or approximation function. It is

indeed an important question to be asked: what is the error incurred by a certain classifier? In

the case of a classifier, the lower the error, the greater the probability of correct classification.

It is critical that the upper bound of error be at least finite. Chebyshev Inequality can be

related to the error bound of the random forest learner. The generalization error is bounded

above by the inequality as defined by Equation 13 (refer to Section ?? of Appendix ??).

Er r or ≤ var (mar g i nRF (x, y))

s2
(13)

3.7.3 Gradient tree boosting and XGBoosted trees

Boosting refers to the method of combining the results from a set of weak learners to produce

a strong prediction. Generally, a weak learner’s performance is only slightly better than that of

a random guess. The idea is to divide the job of a single predictor across many weak predictor

functions and to optimally combine the votes from all the smaller predictors. This helps

enhance the overall prediction accuracy.
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XGBoost [Chen & Guestrin2016] is a tool developed by utilizing these boosting principles.

The word XGBoost stands for eXtreme Gradient Boosting as coined by the authors. XGBoost

combines a large number of regression trees with a small learning rate. Subsequent trees

in the forest of XGBoosted trees are grown by minimizing an objective function. Here, the

word regression may refer to logistic or soft-max regression for the task of classification, albeit

these trees may be used to solve linear regression problems as well. The boosting method

used in XGBoost considers trees added early to be significant and trees added later to be

inconsequential (refer to Section ??).

XGBoosted trees [Chen & Guestrin2016] may be understood by considering four central

concepts.

7.15.1: Additive Learning

For additive learning, functions fi must be learned which contain the tree structure

and leaf scores [Chen & Guestrin2016]. This is more difficult compared to traditional

optimization problems as there are multiple functions to be considered, and it is not

sufficient to optimize every tree by considering its gradient. Another overhead is with

respect to implementation in a computer: it is difficult to train all the trees all at once.

Thus, the training phase is divided into a sequence of steps. For t steps, the prediction

value from each step, ŷ (t )
i are added as:

ŷ (0)
i = 0

ŷ (1)
i = f1(xi ) = ŷ (0)

i + f1(xi )

ŷ (2)
i = f1(xi )+ f2(xi ) = ŷ (1)

i + f2(xi )

. . .

ŷ (t )
i =

t∑
k=1

fk (xi ) = ŷ (t−1)
i + ft (xi )

(14)

Central to any optimization method is an objective function which needs to be opti-

mized. In each step. the selected tree is the one that optimizes the objective function of

the learning algorithm. The objective function is formulated as:

obj(t ) =
n∑

i=1
l (yi , ŷ (t )

i )+
t∑

i=1
Ω( fi )

=
n∑

i=1
l (yi , ŷ (t−1)

i + ft (xi ))+Ω( ft )+ const ant

(15)
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Mean squared error (MSE) is used as its mathematical formulation is convenient.

Logistic loss, for example, has a more complicated form. Since error needs to be

minimized, the gradient of the error must be calculated: for MSE, calculating the

gradient and finding a minima is not difficult, but in the case of logistic loss, the process

becomes more cumbersome. In the general case, the Taylor expansion of the loss

function is considered up to the term of second order.

obj(t ) =
n∑

i=1
[l (yi , ŷ (t−1)

i )+ gi ft (xi )+ 1

2
hi f 2

t (xi )]+Ω( ft )+ const ant (16)

where gi and hi are defined as:

gi = ∂ŷ (t−1)
i

l (yi , ŷ (t−1)
i )

hi = ∂2
ŷ (t−1)

i

l (yi , ŷ (t−1)
i )

(17)

By removing the lower order terms from Equation (16), the objective function becomes:

n∑
i=1

[gi ft (xi )+ 1

2
hi f 2

t (xi )]+Ω( ft ) (18)

which is the optimization equation of XGBoost.

7.15.2: Model Complexity and Regularized Learning Objective

The definition of the tree f (x) may be refined as:

ft (x) = wq(x), w ∈ RT , q : Rd → {1,2, · · · ,T }. (19)

where w is the vector of scores on leaves, q is a function assigning each data point to the

corresponding leaf and T is the number of leaves. In XGBoost, the model complexity

may be given as:

Ω( f ) = γT + 1

2
λ

T∑
j=1

w 2
j (20)

A regularized objective is minimized for the algorithm to learn the set of functions given

in the model. It is given by:
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L (φ) =∑
i

l (ŷi , yi )+∑
k
Ω( fk ) (21)

7.15.3: Structure Score

After the objective value has been re-formalized, the objective value of the t th tree may

be calculated as:

Ob j (t ) ≈
n∑

i=1
[gi wq(xi ) + 1

2
hi w 2

q(xi )]+γT + 1

2
λ

T∑
j=1

w 2
j

=
T∑

j=1
[(

∑
i∈I j

gi )w j + 1

2
(
∑

i∈I j

hi +λ)w 2
j ]+γT

(22)

where I j = {i |q(xi ) = j } is the set of indices of data points assigned to the j th leaf. In

the second line of the Equation (22), the index of the summation has been changed

because all the data points in the same leaf must have the same score. Let G j =∑
i∈I j

gi

and H j =∑
i∈I j

hi . The equation can hence be further by substituting for G and H as:

obj(t ) =
T∑

j=1
[G j w j + 1

2
(H j +λ)w 2

j ]+γT (23)

In Equation (23), every w j is independent of each other. The form G j w j + 1
2 (H j +λ)w 2

j

is quadratic and the best w j for a given structure q(x) and the best objective reduction

which measures goodness of tree is:

w∗
j =− G j

H j +λ
obj∗ =−1

2

T∑
j=1

G2
j

H j +λ
+γT (24)

7.15.4: Learning Structure Score

XGBoost learns tree the tree level during learning based on the equation:

Gai n = 1

2

[
G2

L

HL +λ
+ G2

R

HR +λ − (GL +GR )2

HL +HR +λ

]
−γ (25)

The equation comprises of four main parts:

• The score on the new left leaf

Page 56 of 316



• The score on the new right leaf

• The score on the original leaf

• Regularization on the additional leaf

The value of Gai n should as high as possible for learning to take place effectively.

Hence, if the value of gain is greater than γ, the corresponding branch should not be

added.

A working principle of XGBoost in the context of the problem is illustrated using Figure ??,

Figure ?? and Table ?? of Appendix ??.

3.7.4 Classification of conservative and optimistic samples of potentially habitable plan-

ets

The end objective of any machine learning pursuit is to be able to correctly analyze data as it

increases with time. In the case of classifying exoplanets, the number of exoplanets in the

catalog increase with time. In February 2015, the PHL-EC had about 1800 samples, whereas

in January 2017, it has more than 3500 samples! This is twice the number of exoplanets as the

time the authors started the current work.

The project home page of the Exoplanets Catalog of PHL (http://phl.upr.edu/projects/habitable-

exoplanets-catalog) provides two lists of potentially habitable planets: the conservative list

and the optimistic list. The conservative list contains those exoplanets that are more likely to

have a rocky composition and maintain surface liquid water i.e. planets with 0.5 < Planet

Radius ≤ 1.5 Earth radii or 0.1 < Planet Minimum Mass ≤ 5 Earth masses, and the planet is

orbiting within the conservative habitable zone. The optimistic list contains those exoplanets

that are less likely to have a rocky composition or maintain surface liquid water i.e. planets

with 1.5 < Planet Radius ≤ 2.5 Earth radii or 5 < Planet Minimum Mass ≤ 10 Earth masses,

or the planet is orbiting within the optimistic habitable zone. The tree based classification

algorithms were tested on the planets in both the conservative samples’ list as well as the

optimistic samples’ list. Out of the planets listed, Kepler-186 f is a hypopsychroplanet and

was not included in the test sample (refer to Section 3.6.1). The experiment was conducted

on the listed planets (except Kepler-186 f). The samples were individually isolated from the

data set and were treated as the test set. The remainder of the data set was treated as the

training set. The test results are presented in tables 15, 16, 21, 22, 17, 18, 19 and 20.
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3.8 Habitability Classification System applied to Proxima b

On 24th August 2016, [Anglada-EscudÃl’2016] published the discovery of an apparently

rocky planet( or believed to be one) orbiting Proxima Centauri, the nearest star to the Sun,

named Proxima b. The discovery was made by Guillem Anglada-Escude, an astronomer at

Queen Mary University of London along with a team. Proxima b is 1.3 times heavier than

Earth. According to the PHL-EC, its radius is 1.12 EU, density is 0.9 EU, surface tempera-

ture is 262.1 K and escape velocity is 1.06 EU. These attributes are close to those of Earth.

Hence, there are plausible reasons to believe that Proxima b may be a habitable planet (refer

to row #3389 in the data set, Confirmed Exoplanets: phl_hec_all_confirmed.csv hosted at

http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database).

In the PHL-EC data set, Proxima b is classified as a psychroplanet. The classification

models which earlier resulted in high classification accuracy were used to classify Proxima

b separately. The results are enunciated in Table 23. The results provide evidence of the

strength of the system to automatically label and classify newly discovered exoplanets.

3.9 Data Synthesis and Artificial Augmentation

As mentioned earlier, the focus of the manuscript is to track the performance of the classifiers

to scale. The reliability of the semi-automatic process depends on the efficacy of the classifiers

if the data set grew rapidly with many entities. Since the required data is not naturally

available, the authors have simulated a data generation process, albeit briefly, and performed

classification experiments on the artificially generated data. The strategy has a two-fold

objective: to devise a preemptive measure to check scalability of the classifiers, and to tackle

classes of exoplanets with insufficient data. We elaborate the concept, theory, and model in

this section and establish the equivalence of both premises.

Different kinds of simulations are seen in astrophysics. [Sale2015] modeled the extinction

of stars by placing them into spatial bins and applying the Poisson point process to estimate

the posterior probability of various 3D extinction maps; in this specific example, the assertion

is that photometric catalogs are subject to bright and faint magnitude limits based on the

instruments used for observations. This work, however, is more focused on the method of

Poisson point processes instead of the specific application of it. [Sale2015] mentions that one

of the assumptions is that the number of objects in a region of space (a statistical bin) follows

a Poisson distribution. However, there are no quantitative metrics provided in support of

this claim, such as a goodness-of-fit test, etc. But as the purpose of this work is to estimate

point extinctions in a catalog that largely conforms to the actual physical extinctions, the
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assumption that the data conforms to a Poisson distribution might be a reasonable one.

[Green et al.2015] used a Markov Chain Monte Carlo (MCMC) method to create a dust map

along sightlines (bins or discrete columns). In this work, they have assumed a Gaussian

prior probability to model the dust distribution in every column. The idea of dividing the

field of observations into bins is common in [Sale2015] and [Green et al.2015], however, the

fundamental difference is that the posterior probability in [Sale2015] is modeled using an

assumed distribution, whereas the prior probability in [Green et al.2015] is taken as Gaussian,

possibly allowing the nature of the analysis to be more empirical. Thus, two methods of

synthetic oversampling are explored:

1. By assuming a Poisson distribution in the data.

2. By estimating an empirical distribution from the data.

The strengths and weaknesses of each of these methods are mentioned in their respective

subsections, albeit the authors would insist on the usage of empirical distribution estimation

over the assumption of a distribution. Nonetheless, the first method paved way to the next,

more robust method.

26 planets (data samples) belonged to the mesoplanet class and 16 samples belonged to

the psychroplanet class, as of the day the analysis was done; these samples have been used for

the classification experiments described in Sections 3.5 and 3.6. The naturally occurring data

points are relatively less in order to describe the distribution of data by a known distribution

(such as Poisson, or Gaussian). If a known distribution is estimated using this data, chances

are that the distribution thus determined is not representative of the actual density of the

data. As this fact is almost impossible to establish at this point in time, two separate methods

of synthesizing data have been developed and implemented to gauge the efficacy of ML

algorithms.

3.9.1 Generating Data by Assuming a Distribution

3.9.2 Artificially Augmenting Data in a Bounded Manner

The challenge with artificially oversampling data in PHL-EC is that the original data available

is too less to estimate a reliable probability distribution which is satisfactorily representative

of the probability density of the naturally occurring data. For this, a bounding mechanism

should be used so that while augmenting the data set artificially, the values of each feature or

observable does not exceed the physical limits of the respective observable, and the physical

limits are analyzed from the naturally occurring data.
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Table 15: Results of using decision trees (Gini impurity) to classify the planets in the conservative
sample

Name True Class Classification Accuracy non-habitable psychroplanet mesoplanet
Proxima Cen b psychroplanet 84.5 0.1 84.5 15.4

GJ 667 C c mesoplanet 91.7 0.0 8.3 91.7
Kepler-442 b psychroplanet 56.9 0.1 56.9 43.0

GJ 667 C f psychroplanet 100.0 0.0 100.0 0.0
Wolf 1061 c psychroplanet 100.0 0.0 100.0 0.0

Kepler-1229 b psychroplanet 100.0 0.0 100.0 0.0
Kapteyn b psychroplanet 100.0 0.0 100.0 0.0
Kepler-62 f psychroplanet 100.0 0.0 100.0 0.0
GJ 667 C e psychroplanet 100.0 0.0 100.0 0.0

For this purpose, we use a hybrid of SVM and K-NN to set the limits for the observables.

The steps in the SVM-KNN algorithm are summarized below:

Step 1: The best boundary between the psychroplanets and mesoplanets are found using

SVM with a linear kernel.

Step 2: By analyzing the distribution of either class, data points are artificially created.

Step 3: Using the boundary determined in Step 1, an artificial data point is analyzed to

determine if it satisfies the boundary conditions: if a data point generated for one class

falls within the boundary of the respective class, the data point is kept in it’s labeled

class in the artificial data set.

Step 4: If a data point crosses the boundary of its respective class, then a K-NN based

verification is applied. If 3 out of the nearest 5 neighbors belongs to the class to which

the data point is supposed to belong, then the data point is kept in the artificially

augmented data set.

Step 5: If the conditions in Steps 3 and 4 both fail, then the respective data point’s class label

is changed so that it belongs to the class whose properties it corresponds to better.

Step 6: Steps 3, 4 and 5 are repeated for all the artificial data points generated, in sequence.

It is important to note that in Section ??, the K-NN and SVM algorithms have been

explained as classification algorithms; however, they are not used as classifiers in this over-

sampling simulation. Rather, they are used, along with density estimation, to rectify the

class-belongingness (class labels) of artificially generated random samples. If an artificially
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Table 16: Results of using decision trees (Gini impurity) to classify the planets in the optimistic sample

Name True Class Classification Accuracy non-habitable psychroplanet mesoplanet
Kepler-438 b mesoplanet 92.5 0.2 7.3 92.5
Kepler-296 e mesoplanet 99.8 0.2 0.0 99.8
Kepler-62 e mesoplanet 100.0 0.0 0.0 100.0

Kepler-452 b mesoplanet 99.6 0.4 0.0 99.6
K2-72 e mesoplanet 99.7 0.3 0.0 99.7
GJ 832 c mesoplanet 99.0 0.0 1.0 99.0
K2-3 d non-habitable 0.8 0.8 0.0 99.2

Kepler-1544 b mesoplanet 99.9 0.1 0.0 99.9
Kepler-283 c mesoplanet 100.0 0.0 0.0 100.0

Kepler-1410 b mesoplanet 99.9 0.1 0.0 99.9
GJ 180 c mesoplanet 79.7 0.0 20.3 79.7

Kepler-1638 b mesoplanet 99.4 0.6 0.0 99.4
Kepler-440 b mesoplanet 94.8 5.2 0.0 94.8

GJ 180 b mesoplanet 99.7 0.3 0.0 99.7
Kepler-705 b mesoplanet 100.0 0.0 0.0 100.0
HD 40307 g psychroplanet 87.7 0.0 87.7 12.3

GJ 163 c psychroplanet 100.0 0.0 100.0 0.0
Kepler-61 b mesoplanet 96.9 3.1 0.0 96.9

K2-18 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-1090 b mesoplanet 99.7 0.3 0.0 99.7
Kepler-443 b mesoplanet 99.5 0.3 0.2 99.5
Kepler-22 b mesoplanet 98.4 1.6 0.0 98.4

GJ 422 b mesoplanet 17.1 0.9 82.0 17.1
Kepler-1552 b mesoplanet 97.3 2.7 0.0 97.3

GJ 3293 c psychroplanet 100.0 0.0 100.0 0.0
Kepler-1540 b mesoplanet 98.5 1.5 0.0 98.5
Kepler-298 d mesoplanet 95.6 4.4 0.0 95.6
Kepler-174 d psychroplanet 99.9 0.1 99.9 0.0
Kepler-296 f psychroplanet 100.0 0.0 100.0 0.0

GJ 682 c psychroplanet 99.2 0.8 99.2 0.0
tau Cet e mesoplanet 99.4 0.6 0.0 99.4
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Table 17: Results of using random forests (Gini impurity) to classify the planets in the conservative
sample

Name True Class Classification Accuracy non-habitable psychroplanet mesoplanet
Proxima Cen b psychroplanet 100.0 0.0 100.0 0.0

GJ 667 C c mesoplanet 100.0 0.0 0.0 100.0
Kepler-442 b psychroplanet 94.1 0.0 94.1 5.9

GJ 667 C f psychroplanet 100.0 0.0 100.0 0.0
Wolf 1061 c psychroplanet 100.0 0.0 100.0 0.0

Kepler-1229 b psychroplanet 100.0 0.0 100.0 0.0
Kapteyn b psychroplanet 100.0 0.0 100.0 0.0
Kepler-62 f psychroplanet 100.0 0.0 100.0 0.0
GJ 667 C e psychroplanet 100.0 0.0 100.0 0.0

generated random sample is generated such that it does not conform to the general properties

of the respective class (which can be either mesoplanets or psychroplanets), the class label of

the respective sample is simply changed such that it may belong to the class of habitability

whose properties it exhibits better. The strength of using this as a rectification mechanism lies

in the fact that artificially generated points which are near the boundary of the classes stand

a chance to be rectified so that they might belong to the class they better represent. Moreover,

due to the density estimation, points can be generated over an entire region of the feature

space, rather than augmenting based on individual samples. This aspect of the simulation

is the cornerstone of the novelty of this approach: in comparison to existing approaches as

SMOTE (Synthetic Minority Oversampling Technique) [Chawla et al.2002], the oversampling

does not depend on individual samples in the data. In simple terms, SMOTE augments data

by geometrically inserting samples between existing samples; this is suitable for experiments

for which there is already exist an appreciable amount of data in a data set, but reiterating,

as PHL-EC has less data already (for the classes of mesoplanets and psychroplanets), an

oversampling based on individual samples is not a good way to proceed. Here, it is best to

estimate the probability density of the data and proceed with the oversampling in a bounded

manner. For large-scale simulation tasks similar in nature to this, thus, ML-based approaches

can go a long way to save time and automate the process of discovery of knowledge.

3.9.3 Fitting a Distribution to the Data Points

In this method, the mean surface temperature was selected as the core discriminating feature

since it emerged as the most important feature amongst the classes in the catalog (Tables

13 and 14). The mean surface temperature for different classes of planets falls in different

Page 62 of 316



Table 18: Results of using random forests (Gini impurity) to classify the planets in the optimistic
sample

Name True Class Classification Accuracy non-habitable psychroplanet mesoplanet
Kepler-438 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-296 e mesoplanet 100.0 0.0 0.0 100.0
Kepler-62 e mesoplanet 100.0 0.0 0.0 100.0

Kepler-452 b mesoplanet 99.9 0.1 0.0 99.9
K2-72 e mesoplanet 100.0 0.0 0.0 100.0
GJ 832 c mesoplanet 100.0 0.0 0.0 100.0
K2-3 d non-habitable 0.0 0.0 0.0 100.0

Kepler-1544 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-283 c mesoplanet 100.0 0.0 0.0 100.0

Kepler-1410 b mesoplanet 100.0 0.0 0.0 100.0
GJ 180 c mesoplanet 96.2 0.0 3.8 96.2

Kepler-1638 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-440 b mesoplanet 100.0 0.0 0.0 100.0

GJ 180 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-705 b mesoplanet 100.0 0.0 0.0 100.0
HD 40307 g psychroplanet 100.0 0.0 100.0 0.0

GJ 163 c psychroplanet 100.0 0.0 100.0 0.0
Kepler-61 b mesoplanet 100.0 0.0 0.0 100.0

K2-18 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-1090 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-443 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-22 b mesoplanet 100.0 0.0 0.0 100.0

GJ 422 b mesoplanet 0.0 0.0 100.0 0.0
Kepler-1552 b mesoplanet 99.9 0.1 0.0 99.9

GJ 3293 c psychroplanet 100.0 0.0 100.0 0.0
Kepler-1540 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-298 d mesoplanet 100.0 0.0 0.0 100.0
Kepler-174 d psychroplanet 100.0 0.0 100.0 0.0
Kepler-296 f psychroplanet 100.0 0.0 100.0 0.0

GJ 682 c psychroplanet 100.0 0.0 100.0 0.0
tau Cet e mesoplanet 100.0 0.0 0.0 100.0
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Table 19: Results of using random forests (binomial confidence split) to classify the planets in the
conservative sample

Name True Class Classification Accuracy non-habitable psychroplanet mesoplanet
Proxima Cen b psychroplanet 99.8 0.0 99.8 0.2

GJ 667 C c mesoplanet 88.1 0.0 11.9 88.1
Kepler-442 b psychroplanet 98.5 0.0 98.5 1.5

GJ 667 C f psychroplanet 100.0 0.0 100.0 0.0
Wolf 1061 c psychroplanet 100.0 0.0 100.0 0.0

Kepler-1229 b psychroplanet 100.0 0.0 100.0 0.0
Kapteyn b psychroplanet 100.0 0.0 100.0 0.0
Kepler-62 f psychroplanet 100.0 0.0 100.0 0.0
GJ 667 C e psychroplanet 100.0 0.0 100.0 0.0

ranges [Méndez2011]. The mean surface temperature was fit to a Poisson distribution; the

vector of remaining features was randomly mapped to these randomly generated values

of S. Temp. The resulting vectors of artificial samples may be considered to be a vector

S = (TempSur f ace , X ), where X is any naturally occurring sample in the PHL-EC data set

without its corresponding value of the S. Temp feature. The set of the pairs (S,c) thus becomes

an entire artificial catalog, where c is the class label. The following are the steps to generate

artificial data set for the mesoplanet class:

Step 1: For the original set of values pertinent to the mean surface temperature of meso-

planets, a Poisson distribution is fit. The surface temperature of the planets assumed

to be randomly distributed, following a Poisson distribution. Here, an approximation

may be made that the surface temperatures occur in discrete bins or intervals, without

a loss of generality. As the number of samples is naturally less, a Poisson distribution

may be fit to the S. Temp features after rounding off the values to the nearest decimal.

Step 2: Then, using the average value of the mesoplanets’ S. Temp data, 1000 new values are

generated, using the Poisson distribution:

Pr (X ) = e−λλx

x!
(26)

where λ is the mean of the values of the S. Temp feature of the mesoplanet class.

Step 3: For every planet in the original data set, duplicate the data sample 40 times and

replace the surface temperature value of these (total of 1000 samples) with new values

of the mean surface temperature randomly, as generated in Step 2.
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Table 20: Results of using random forests (binomial confidence split) to classify the planets in the
optimistic sample

Name True Class Classification Accuracy non-habitable psychroplanet mesoplanet
Kepler-438 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-296 e mesoplanet 100.0 0.0 0.0 100.0
Kepler-62 e mesoplanet 100.0 0.0 0.0 100.0

Kepler-452 b mesoplanet 100.0 0.0 0.0 100.0
K2-72 e mesoplanet 100.0 0.0 0.0 100.0
GJ 832 c mesoplanet 99.9 0.0 0.1 99.9
K2-3 d non-habitable 0.1 0.1 0.0 99.9

Kepler-1544 b mesoplanet 99.7 0.0 0.3 99.7
Kepler-283 c mesoplanet 99.8 0.0 0.2 99.8

Kepler-1410 b mesoplanet 100.0 0.0 0.0 100.0
GJ 180 c mesoplanet 65.10 0.0 34.9 65.1

Kepler-1638 b mesoplanet 99.1 0.9 0.0 99.1
Kepler-440 b mesoplanet 100.0 0.0 0.0 100.0

GJ 180 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-705 b mesoplanet 98.6 0.0 1.4 98.6
HD 40307 g psychroplanet 96.39 0.0 96.4 3.6

GJ 163 c psychroplanet 100.0 0.0 100.0 0.0
Kepler-61 b mesoplanet 100.0 0.0 0.0 100.0

K2-18 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-1090 b mesoplanet 99.9 0.1 0.0 99.9
Kepler-443 b mesoplanet 99.9 0.0 0.1 99.9
Kepler-22 b mesoplanet 100.0 0.0 0.0 100.0

GJ 422 b mesoplanet 0.0 0.0 100.0 0.0
Kepler-1552 b mesoplanet 99.8 0.2 0.0 99.8

GJ 3293 c psychroplanet 100.0 0.0 100.0 0.0
Kepler-1540 b mesoplanet 100.0 0.0 0.0 100.0
Kepler-298 d mesoplanet 99.7 0.3 0.0 99.7
Kepler-174 d psychroplanet 100.0 0.0 100.0 0.0
Kepler-296 f psychroplanet 100.0 0.0 100.0 0.0

GJ 682 c psychroplanet 100.0 0.0 100.0 0.0
tau Cet e mesoplanet 99.9 0.1 0.0 99.9
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Table 21: Results of using XGBoost to classify the planets in the conservative sample

Name True Class Classification Accuracy non-habitable psychroplanet mesoplanet
Proxima Cen b psychroplanet 100.0 0.0 100.0 0.0

GJ 667 C c mesoplanet 100.0 0.0 0.0 100.0
Kepler-442 b psychroplanet 6.8 0.2 6.8 93.0

GJ 667 C f psychroplanet 100.0 0.0 100.0 0.0
Wolf 1061 c psychroplanet 100.0 0.0 100.0 0.0

Kepler-1229 b psychroplanet 100.0 0.0 100.0 0.0
Kapteyn b psychroplanet 100.0 0.0 100.0 0.0
Kepler-62 f psychroplanet 100.0 0.0 100.0 0.0
GJ 667 C e psychroplanet 100.0 0.0 100.0 0.0

This exercise is repeated for the psychroplanet class separately. Once the probability

densities of both the classes were developed, the rectification mechanism using the algorithm

described in Section 3.9.2 was used to retain only those samples in either class which con-

formed to the properties of the respective class. Using this method, 1000 artificial samples

were generated for the mesoplanet and psychroplanet classes.

In order to generate 1000 samples for the classes with less number of samples (mesoplan-

ets and psychroplanets), the hybrid SVM-KNN algorithm as described in Section 3.9.2 is used

to rectify the class-belongingness of any non-conforming random samples. Only the top four

features of the data sets from Table 13, i.e. P. Ts Mean, P. Ts Min, P. Teq Min, and P. Teq Max

are considered in this rectification mechanism. This method of acceptance-rectification is

self-contained in itself: the artificially generated data set is iteratively split into training and

testing sets (in a ratio of 70:30). If any artificially generated sample in any iteration fails to

be accepted by the SVM-KNN algorithm, its class-belongingness in the data set is changed;

as this simulation is done only on two classes in the data, non-conformance to one class

could only indicate the belongingness to the other class. The process of artificially generating

and labeling data is illustrated using Figure 10. In Figure 10(a), a new set of data points

generated randomly from the estimated Poisson distributions of both classes are plotted.

The points in red depict artificial points belonging to the class of psychroplanets and the

points in blue depict artificial points belonging to the class of mesoplanets. The physical

limits as per the Planetary Habitability Catalog are incorporated into the data synthesis

scheme and hence, in general, the number of non-conforming points generated are less.

Figure 10(b) depicts three points (encircled) that should belong to the psychroplanet class

but belongs to the mesoplanet class: note that these three points cross the boundary between

the two classes as set by an SVM. The blue portion may contain points which belong to only
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Table 22: Results of using XGBoost to classify the planets in the optimistic sample

Name True Class Classification Accuracy non-habitable psychroplanet mesoplanet
Kepler-438 b mesoplanet 99.9 0.1 0 99.9
Kepler-296 e mesoplanet 100 0 0 100
Kepler-62 e mesoplanet 100 0 0 100

Kepler-452 b mesoplanet 100 0 0 100
K2-72 e mesoplanet 99.2 0.8 0 99.2
GJ 832 c mesoplanet 98.1 0 1.9 98.1
K2-3 d non-habitable 1.2 1.2 0 98.8

Kepler-1544 b mesoplanet 100 0 0 100
Kepler-283 c mesoplanet 100 0 0 100

Kepler-1410 b mesoplanet 99.6 0.4 0 99.6
GJ 180 c mesoplanet 74 0 26 74

Kepler-1638 b mesoplanet 99.2 0.8 0 99.2
Kepler-440 b mesoplanet 97.9 2.1 0 97.9

GJ 180 b mesoplanet 100 0 0 100
Kepler-705 b mesoplanet 100 0 0 100
HD 40307 g psychroplanet 99 0 99 1

GJ 163 c psychroplanet 100 0 100 0
Kepler-61 b mesoplanet 99 1 0 99

K2-18 b mesoplanet 100 0 0 100
Kepler-1090 b mesoplanet 100 0 0 100
Kepler-443 b mesoplanet 99.9 0 0.1 99.9
Kepler-22 b mesoplanet 99.9 0.1 0 99.9

GJ 422 b mesoplanet 57.2 1.3 41.5 57.2
Kepler-1552 b mesoplanet 99.9 0.1 0 99.9

GJ 3293 c psychroplanet 100 0 100 0
Kepler-1540 b mesoplanet 99.7 0.3 0 99.7
Kepler-298 d mesoplanet 99 1 0 99
Kepler-174 d psychroplanet 100 0 100 0
Kepler-296 f psychroplanet 100 0 100 0

GJ 682 c psychroplanet 99.7 0.3 99.7 0
tau Cet e mesoplanet 99.9 0.1 0 99.9

Table 23: Accuracy of algorithms used to classify Proxima b

Algorithm Accuracy(%)
Decision Tree 84.5

Random Forest (Gini Split) 100.0
Random Forest (Conf. Split) 100.0

XGBoost 100.0
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(a) Scatter plot of newly generated artificial data points in two dimensions.

(b) Best boundaries between two classes set using SVM. Here, there are three non-conforming data
points (encircled) belonging to the mesoplanets’ class.

(c) The three non-conforming data points’ class belongingness rectified using K-NN. Now they belong
to the class of psychroplanets, as their properties better reflect those of psychroplanets.

(d) In the successive iteration, the boundary between the two classes has been adjusted to accommo-
date the three rectified points better. Now it is evident that the regions of the two classes (blue for
mesoplanets and yellow for psychroplanets) comprise wholly of points that reflect the properties of
the classes they truly belong to.

Figure 10: A new set of artificial data points being processed and their class-belongingness corrected
in successive iterations of the SVM-KNN hybrid algorithm as a method of bounding and ensuring the
purity of synthetic data samples.
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the mesoplanet class and the yellow portion may contain points which belong only to the

psychroplanet class, but these three points are non-conforming according to the boundary

imposed. Hence, in order to ascertain the correct labels, these three points are subjected to a

K-NN based rectification. In Figure 10(c), the points in the data set are plotted after being

subjected to K-NN with k = 5 and class labels are modified as required. The three previously

non-conforming points are determined to actually belong to the class of psychroplanets, and

hence their class-belongingness is changed. Figure 10(d) shows that the boundary between

the two classes is altered by incorporating the rectified class-belongingness of the previously

non-conforming points. In this figure, it is to be noted that all the points are conforming, and

there are no points which belong to the region of the wrong class. This procedure was run

many times on the artificially generated data to estimate the number of iterations and the

time required for each iteration until the resulting data set was devoid of any non-conforming

data points. As the process is inherently stochastic, each new run of the SVM-KNN algorithm

might result in a different number of iterations (and different amounts of execution time for

each iteration) required until zero non-conforming samples are achieved. However, a general

trend may be analyzed for the purpose of ascertaining that the algorithm will complete in a

finite amount of time. Figure 11 is a plot of the i th iteration against the time required for the

algorithm to execute the respective iteration (to rectify the points in the synthesized data set).

From this figure, it should be noted that each successive iteration requires a smaller amount

of time to complete: the red curve (a quadratic fit of the points) represents a decline in the

time required for the SVM-KNN method to complete execution in successive iterations of a

run. The number of iterations required for the complete execution of the SVM-KNN method

ranges from one to six, with a generally declining execution time of successive iterations,

proving the stability of the hybrid algorithm. Any algorithm is required to converge: a point

beyond which the execution of the algorithm ceases. In this case, convergence must ensure

that every artificially generated data point conforms to the general properties of the class to

which it is labeled to belong.

The advantage of this method is that there is enough evidence of work done previously

that makes use of standard probability distributions to model the occurrence of various stellar

objects. This current simulation only has the added dimension of class-label rectification

by using the hybrid SVM-KNN method. The method is easy to interpret. However, as the

amount of data in the PHL-EC catalog are less, fitting a distribution to the data may lead

to an over-fitting of the probability density estimate. To counter this point, an empirical

multivariate distribution estimation was performed as a follow-through to this piece of work.
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Figure 11: A quadratic curve has been fit to the execution times of successive iterations in a run of the
SVM-KNN method. The time required to converge to the perfect labeling of class-belongingness of the
synthetic data points reduces with each successive iteration resulting in the dip exhibited in successive
iterations. This fortifies the efficiency of the proposed hybrid SVM-KNN algorithm. Accuracy is not
traded with the speed of convergence.
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3.9.4 Generating Data by Analyzing the Distribution of Existing Data Empirically: Win-

dow Estimation Approach

In this method of synthesizing data samples, the density of the data distribution is approx-

imated by a numeric mathematical model, instead of relying on an established analytical

model (such as Poisson, or Gaussian distributions). As the sample distribution here is spo-

radic, the density function itself should be approximated. The process outlined for this esti-

mation of the population density function was described independently by [Roesnblatt1956]

and [Parzen1962] and is termed Kernel Density Estimation (KDE). KDE, as a non-parametric

technique, requires no assumptions on the structure of the data and further, with slight

alterations to the kernel function, may also be extended to multivariate random variables.

3.9.5 Estimating Density

Let X = x1, x2, . . . , xn be a sequence of independent and identically distributed multivariate

random variables having d dimensions. The window function used is a variation of the

uniform kernel defined on the set Rd as follows:

φ(u) =
1 u j ≤ 1

2 ∀ j ∈ {1,2, . . . ,d}

0 other wi se
(27)

Additionally, another parameter, the edge length vector h = {h1,h2, . . .hd }, is defined, where

each component of h is set on a heuristic that considers the values of the corresponding

feature in the original data. If f j is the column vector representing some feature j ∈ X and

l j = mi n{(a −b)2 ∀ a,b ∈ f j }

u j = max{(a −b)2 ∀ a,b ∈ f j },
(28)

the edge length h j is given by,

h j = c

(
u j +2l j

3

)
(29)

where c is a scale factor.

Let x ′ ∈ Rd be a random variable at which the density needs to be estimated. For the

estimate, another vector u is generated whose elements are given by:

u j =
x j

′−xi j

h j
∀ j ∈ {1,2, . . . ,d} (30)

Page 71 of 316



The density estimate is then given by the following equation:

p(x ′) = 1

n
∏d

i=1 hi

n∑
i=1

φ(u) (31)

3.9.6 Generating Synthetic Samples

Traditionally, random numbers are generated from an analytic density function by inversion

sampling. However, this would not work on a numeric density function unless the quantile

function is numerically approximated by the density function. In order to avoid this, a form

of rejection sampling has been used.

Let r be a d-dimensional random vector with each component drawn from a uniform

distribution between the minimum and maximum value of that component in the original

data. Once the density, p(r ) is estimated by Equation (31), the probability is approximated to:

Pr (r ) = p(r )
d∏

j=1
h j (32)

To either accept or reject the sample r , another random number is generated from a

uniform distribution within the range [0,1). If this number is greater than the probability

estimated by Equation (32), then the sample is accepted. Otherwise, it is rejected.

Data synthesis using KDE and rejection sampling (refer to Appendix ?? for visual details)

was used to generate a synthetic data set. For the PHL-EC data set, synthetic data was

generated for the mesoplanet and psychroplanet classes by estimating their density by

Equation (31) taking c = 4 for mesoplanets and c = 3 for psychroplanets. 1000 samples

were then generated for each class using rejection sampling on the density estimate. In this

method, the bounding mechanism was not used and the samples were drawn out of the

estimated density. Here, the top 16 features (top 85% of the features by importance, Table 13)

were considered to estimate the probability density, and hence the boundary between the

two classes using SVM was not constructed. The values of the remaining features were copied

from the naturally occurring data points and shuffled between the artificially augmented

data points in the same way as in the method described in Section 3.9.3). The advantage of

using this method is that it may be used to estimate a distribution which resembles more

closely the actual distribution of the data. However, this process is more complex and takes a

longer time to execute. Nonetheless, the authors would assert this as a method of synthetic

oversampling than the method described in Section 3.9.2 as it is inherently unassuming and

can accommodate distributions in data which are otherwise difficult to describe using the
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Table 24: Results on artificially augmented data sets by assuming a distribution and augmenting in a
bounded manner.

Algorithm Class Sensitivity Specificity Precision Accuracy

Decision Trees
Non-Habitable 0.9977333333 1 1 0.9992735043

Mesoplanet 1 0.9994227809 0.9988474837 0.9996152531
Psychroplanet 1 0.9994768164 0.9990133202 0.9996579881

Random Forests
Non-Habitable 0.9997333333 1 1 0.9999145299

Mesoplanet 1 0.9998717949 0.9997436555 0.9999145299
Psychroplanet 1 1 1 1

XGBoost
Non-Habitable 0.9989333333 1 1 0.9996581197

Mesoplanet 1 1 1 1
Psychroplanet 1 0.9994771242 0.9990133202 0.9996581197

commonly used methods for describing the density of data.

3.10 Results of Classification on Artificially Augmented Data Sets

The results of classification experimented on the data sets generated by the methods de-

scribed in Sections 3.9.1 and 3.9.4 are shown in Tables 24 and 25 respectively.

In both methods, 1000 samples were then generated for mesoplanet and psychroplanet

classes; in each iteration of testing the classifiers, 1000 samples were randomly drawn from the

non-habitable class. The original mesoplanet and psychroplanet data, the synthetic samples,

and the samples drawn from the non-habitable class together form an augmented data set.

This data set was then subjected to the non-metric classifiers to test their performance. For

each iteration applied to evaluating classification accuracy, the augmented data set was split

into a training and test set by randomly sampling the records of each class into the two sets

at a ratio of 7:3. The classifiers were trained and their accuracy of classification estimated

through the test set. The training and test sets were then re-sampled for the next iteration.

This was 100 times, following which, a new set of 1000 samples were drawn from the non-

habitable class to replace the previous samples. The whole process of drawing non-habitable

samples and subjecting the augmented data set to 100 iterations of testing has been repeated

20 times with the averaged results presented in Tables 24 and 25. The commonly available

methods available in most open source toolkits have been tried to classify the artificially

augmented samples. These results indicate that the classifiers are capable of handling large

data sets without any signs of diminishing performance.

The whole exercise of artificially augmenting the data set may be considered to be noth-

ing but a simulation of the natural increase of the data points in the catalog. The methods
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Table 25: Results on artificially augmented data sets by empirical analysis.

Algorithm Class Sensitivity Specificity Precision Accuracy

Decision Trees
Non-Habitable 0.9977333333 1 1 0.9992552026

Mesoplanet 1 0.9992102665 0.9984287024 0.9994741455
Psychroplanet 1 0.999669159 0.9993510707 0.9997808267

Random Forests
Non-Habitable 0.9992 1 1 0.9997371188

Mesoplanet 1 0.9999341845 0.9998688697 0.9999561769
0.9998701299 0.9996033058 0.9992212849 0.9996933187

XGBoost
Non-Habitable 0.9986666667 1 1 0.9995618839

Mesoplanet 1 0.9998025406 0.9996067121 0.9998685248
Psychroplanet 1 0.9995370983 0.9990917348 0.9996932784

described are a combination of data synthesis by density estimation as well as oversampling

with replacement: the most important features were modeled using probability distributions

and the values of the less important features were sampled by replacement. By incorporat-

ing the physical limits, bounding the nature of growing data points (representing planets),

fitting probability densities and classifying, the authors have emulated the application of

classification algorithms to the data set with a considerable growth in the number of points.

Exoplanets are being discovered at a fast rate, with recent hypes on Proxima b and the

TRAPPIST-1 systems. This simulation shows that even with the growing number of discovered

exoplanets, machine learning classifiers can do well to segregate planets into the correct

classes of habitability.

The synthetic datasets which were generated and on which classification algorithms were

tried can be found at: https://github.com/SuryodayBasak/ExoplanetsSyntheticData.

3.11 Conclusion

This paper has presented statistical techniques used on the PHL-EC data set in order to

explore the capability of Machine learning algorithms in determining the habitability of

an exoplanet. The potential of many algorithms, namely naïve Bayes, LDA, SVM, K-NN,

decision trees, random forests, and XGBoost was explored to classify exoplanets based on

their habitability. Naturally, questions are bound to arise regarding the choice and use of

so many classifiers. Machine learning as an emerging area has its limitations and it’s not

surprising that scores of manuscripts are available in the public domain. However, many

of these papers have applied different machine learning algorithms without adequately

justifying the motivation and limitations of these algorithms. A method is as good as the

data! The authors, throughout the manuscript, wanted to highlight this and endeavored to
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construct and present their work as a primer in machine learning with respect to the data set

used. The goal was to discover intrinsic limitations of each learning method and document

those for the benefit of readers and young researchers who wish to apply machine learning

in astronomy. The performance of a classifier depends on the nature of data, the size of

data etc; however, there is no guarantee that a classifier which works well on one data set

will work equally well on another data set, even if both data sets are from the same domain

of astronomy. The separability of data is a major factor in deciding kind of appropriate

classifiers for the corresponding data set. This fact is validated in the work presented. Hence,

it is imperative for any exploratory data analysis to present a comparative study of different

methods used.

The novelty of the current work lies in the selection of an appropriate data set, HEC

(PHL-EC catalog) that was hitherto not investigated in the existing literature. The most

important difference between NASA’s catalog and PHL-EC is that the former makes data

available for only those planets which are Kepler’s Objects of interest whereas the latter

contains data for all discovered planets, KOI or not, confirmed or unconfirmed. NASA’s

catalog for exoplanets has around 25 features whereas PHL-EC has 68 features, including but

not limited to planet’s mass, radius, orbital period, planet type, flux, density, distance from

star, habitable zone, Earth similarity index (ESI) [Schulze-Makuch et al.2011], habitable class,

composition class, eccentricity, etc. The website of the University of Puerto Rico, Planetary

Habitability Laboratory lists the number of potentially habitable exoplanets: the results of our

classification correlate remarkably well with what PHL has already stated in the conservative

and optimistic samples of habitable planets.

It is important to point out that the PHL-EC [Méndez2016] data set assumes circular

orbits (zero eccentricity) for planets with unknown eccentricities. This could raise questions

if our predictions are accurate enough to describe real systems given the initial data set.

Similarly, the equilibrium temperature is measured for Earth-like planets or mainly non-

gaseous planets by considering the albedo of Earth (0.367), which again may not be close to

their actual equilibrium temperature. In other words, the selected data set contains several

estimated stellar and planetary parameters and they have also claimed many corrections

[Méndez2016] which make them different from other exoplanet databases. This is the main

reason we have selected PHL-EC: since it poses such challenges. Notwithstanding these

limitations in the data set, the methods and improvisations as enunciated in Section 3.6.9,

have worked remarkably well and the theoretical justifications of the efficacy of those methods

have been well understood and documented by the authors.

In the process of exploring the data set and the various classifiers, a software called Ex-
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oPlanet [Theophilus, Reddy & Basak2016] was developed (refer to Appendix ??). This is a

follow-up to the ASTROMLS KIT [Saha et al.2015]. The goal of the software is to reduce pro-

gramming overheads in research involving data analytics. The software provides a graphical

user interface (GUI) to select a data set, and then a method (classification, regression, and

clustering) of choice can be selected by a point-and-click mechanism. The results (accuracy,

sensitivity, specificity, etc) and all necessary graphs (ROC, etc.) are displayed in the same

window. The software is currently in its infancy. However, the authors plan to extend the

functionality by including more analysis, pre-processing and post-processing methods. A

cloud-based web application is on the anvil.

The accuracy of various machine learning algorithms used on the PHL-EC data set has

been computed and tabulated. Random forest, decision trees, and XGBoost rank best with the

highest accuracy closely followed by naïve Bayes. A separate section has been dedicated to the

classification of the recently discovered exoplanet Proxima b, where the current classification

system has achieved accuracy as high as 100%. However, a lot of data is not available in

the PHL-EC catalog: there exists a tremendously high bias towards the non-habitable class

of planets, where the number of entities is 1000 times more than that of the other classes.

The number of entities available in the psychroplanet and mesoplanet classes might be

deemed as insufficient for an effective classification. Despite this bias, we were able to

achieve remarkable accuracy with ML algorithms by performing artificial balancing on the

data. This also goes to show that deep learning (which has unfortunately grown to become a

cottage industry) is not necessary for every difficult classification scenario. A careful study of

the nature of the data and trends is a must and simple solutions may often suffice.

In another effort to counter the effects of bias in the data set, the underrepresented

classes of mesoplanets and psychroplanets were artificially augmented using assumptions of

distributions as well as empirical analysis. Though many different methods of data synthesis

may be adopted, the two most common and reasonable paradigms were tried. The accuracies

achieved for this were near perfect (Tables 24 and 25). From this simulation exercise, it may be

expected that with the natural extension of the data set in the future, the learning algorithms

will continue to infer the data better and the accuracy will remain very high.

Exoplanets are frequently discovered and categorizing them manually is an arduous task.

However, the work presented here may be translated into a simple automated system. A

crawler, simple enough to design, may target the major databases and can append the catalog

with discovered but non-categorized exoplanets. The suite of machine learning algorithms

could then perform the task of classification, as demonstrated earlier, with reasonably accept-

able accuracy. A significant portion of time, otherwise invested in studying parameters and
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manual labeling, could thus be saved. In future, a continuation of the present work would be

directed towards achieving a sustainable and automated discrimination system for efficient

and accurate analysis of different exoplanet databases.

Coupled with web scraping methods and the suite of learning algorithms, automatic

labeling of newly discovered exoplanets could thus be facilitated in a fairly easy and accurate

manner. In summary, the work is a detailed primer on exploratory data analysis involving

algorithmic improvisations and machine learning methods applied to a very complex data

set, bolstered by a comprehensive understanding of these methods as documented in the

appendices. The inferences drawn fortify these methods and the effort and time invested.

The software ExoPlanet is designed to achieve the ultimate goal of classifying exoplanets with

the aid of a limited manual or human intervention.
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4 CD-HPF: NEW HABITABILITY SCORE VIA DATA ANALYTIC

MODELING

4.1 Introduction

In the last decade, thousands of planets are discovered in our Galaxy alone. The inference

is that stars with planets are a rule rather than exception [Cassan et al.2012], with estimates

of the actual number of planet exceeding the number of stars in our Galaxy by orders of

magnitude [Strigari et al.(2012)]. The same line of reasoning suggests a staggering number

of at least 1024 planets in the observable Universe. The biggest question posed therefore is

whether there are other life-harbouring planets. The most fundamental interest is in finding

the Earth’s twin. In fact, Kepler space telescope (http://kepler.nasa.gov/) was designed

specifically to look for Earth’s analogs – Earth-size planets in the habitable zones (HZ) of G-

type stars [Batalha 2014]. More and more evidence accumulated in the last few years suggests

that, in astrophysical context, Earth is an average planet, with average chemistry, existing in

many other places in the Galaxy, average mass and size. Moreover, recent discovery of the rich

organic content in the protoplanetary disk of newly formed star MWC 480 [Öberg et al.2015]

has shown that neither is our Solar System unique in the abundance of the key components

for life. Yet the only habitable planet in the Universe known to us is our Earth.

The question of habitability is of such interest and importance that the theoretical work

has expanded from just the stellar HZ concept to the Galactic HZ (Gonzales et al. 2001) and,

recently, to the Universe HZ — asking a question which galaxies are more habitable than

others (Dayal et al. 2015). However, the simpler question — which of thousands detected

planets are, or can be, habitable is still not answered. Life on other planets, if exists, may

be similar to what we have on our planet, or may be in some other unknown form. The

answer to this question may depend on understanding how different physical planetary

parameters, such as planet’s orbital properties, its chemical composition, mass, radius,

density, surface and interior temperature, distance from it’s parent star, even parent star’s

temperature or mass, combine to provide habitable conditions. With currently more than

1800 confirmed and more than 4000 unconfirmed discoveries1, there is already enormous

amount of accumulated data, where the challenge lies in the selection of how much to study

about each planet, and which parameters are of the higher priority to evaluate.

Several important characteristics were introduced to address the habitability question.

[Schulze-Makuch et al.2011] first addressed this issue through two indices, the Planetary

1Extrasolar Planets Encyclopedia, http://exoplanet.eu/catalog/
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Habitability Index (PHI) and the Earth Similarity Index (ESI), where maximum, by definition,

is set as 1 for the Earth, PHI=ESI=1.

ESI represents a quantitative measure with which to assess the similarity of a planet

with the Earth on the basis of mass, size and temperature. But ESI alone is insufficient to

conclude about the habitability, as planets like Mars have ESI close to 0.8 but we cannot

still categorize it as habitable. There is also a possibility that a planet with ESI value slightly

less than 1 may harbor life in some form which is not there on Earth, i.e. unknown to

us. PHI was quantitatively defined as a measure of the ability of a planet to develop and

sustain life. However, evaluating PHI values for large number of planets is not an easy

task. In [Irwin et al.2014], another parameter was introduced to account for the chemical

composition of exoplanets and some biology-related features such as substrate, energy,

geophysics, temperature and age of the planet — the Biological Complexity Index (BCI). Here,

we briefly describe the mathematical forms of these parameters.

Earth Similarity Index (ESI) ESI was designed to indicate how Earth-like an exoplanet

might be [Schulze-Makuch et al.2011] and is an important factor to initially assess the habit-

ability measure. Its value lies between 0 (no similarity) and 1, where 1 is the reference value,

i.e. the ESI value of the Earth, and a general rule is that any planetary body with an ESI over

0.8 can be considered an Earth-like. It was proposed in the form

ESIx =
(
1−

∣∣∣∣x −x0

x +x0

∣∣∣∣)w

, (33)

where ESIx is the ESI value of a planet for x property, and x0 is the Earth’s value for that

property. The final ESI value of the planet is obtained by combining the geometric means of

individual values, where w is the weighting component through which the sensitivity of scale

is adjusted. Four parameters: surface temperature Ts , density D , escape velocity Ve and radius

R, are used in ESI calculation. This index is split into interior ESIi (calculated from radius

and density), and surface ESIs (calculated from escape velocity and surface temperature).

Their geometric means are taken to represent the final ESI of a planet. However, ESI in the

form (69) was not introduced to define habitability, it only describes the similarity to the

Earth in regard to some planetary parameters. For example, it is relatively high for the Moon.

Planetary Habitability Index (PHI) To actually address the habitability of a planet, [Schulze-Makuch et al.2011]

defined the PHI as

PH I = (S ·E ·C ·L)1/4 , (34)
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where S defines a substrate, E – the available energy, C – the appropriate chemistry and L

– the liquid medium; all the variables here are in general vectors, while the corresponding

scalars represent the norms of these vectors. For each of these categories, the PHI value

is divided by the maximum PHI to provide the normalized PHI in the scale between 0 to

1. However, PHI in the form (34) lacks some other properties of a planet which may be

necessary for determining its present habitability. For example, in Shchekinov et al. (2013) it

was suggested to complement the original PHI with the explicit inclusion of the age of the

planet (see their Eq. 6).

4.1.0.1 Biological Complexity Index (BCI) To come even closer to defining habitability,

yet another index was introduced, comprising the above mentioned four parameters of the

PHI and three extra parameters, such as geophysical complexity G , appropriate temperature

T and age A [Irwin et al.2014]. Therefore, the total of seven parameters were initially con-

sidered to be important for the BCI. However, due to the lack of information on chemical

composition and the existence of liquid water on exoplanets, only five were retained in the

final formulation,

BC I = (S ·E ·T ·G · A)1/5 . (35)

It was found in [Irwin et al.2014] that for 5 exoplanets the BCI value is higher than for Mars,

and that planets with high BCI values may have low values of ESI.

All previous indicators for habitability assume a planet to reside within in a classical HZ

of a star, which is conservatively defined as a region where a planet can support liquid water

on the surface [Huang1959, Kasting1993]. The concept of an HZ is, however, a constantly

evolving one, and it has have been since suggested that a planet may exist beyond the

classical HZ and still be a good candidate for habitability [Irwin & Schulze-Makuch2011,

Heller & Armstrong2014]. Though presently all efforts are in search for the Earth’s twin where

the ESI is an essential parameter, it never tells that a planet with ESI close to 1 is habitable.

Much advertised recent hype in press about finding the best bet for life-supporting planet

– Gliese 832c with ESI = 0.81 [Wittenmyer et al.2014], was thwarted by the realization that

the planet is more likely to be a super-Venus, with large thick atmosphere, hot surface and

probably tidally locked with its star.

We present here the novel approach to determine the habitability score of all confirmed

exoplanets analytically. Our goal is to determine the likelihood of an exoplanet to be habitable

using the newly defined habitability score (CDHS) based on Cobb-Douglas habitability

production function (CD-HPF), which computes the habitability score by using measured
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and calculated planetary input parameters. Here, the PHI in its original form turned out to

be a special case. We are looking for a feasible solution that maximizes habitability scores

using CD-HPF with some defined constraints. In the following sections, the proposed model

and motivations behind our work are discussed along with the results and applicability of the

method. We conclude by listing key takeaways and robustness of the method. The related

derivations and proofs are included in the appendices.

4.2 CD-HPF: Cobb-Douglas Habitability Production Function

We first present key definitions and terminologies that are utilized in this paper. These terms

play critical roles in understanding the method and the algorithm adopted to accomplish our

goal of validating the habitability score, CDHS, by using CD-HPF eventually.

Key Definitions

• Mathematical Optimization

Optimization is one of the procedures to select the best element from a set of available

alternatives in the field of mathematics, computer science, economics, or manage-

ment science [Hájková & Hurnik2007]. An optimization problem can be represented

in various ways. Below is the representation of an optimization problem. Given a

function f : A → R from a set A to the real numbers R. If an element x0 in A is such

that f (x0) ≤ f (x) for all x in A, this ensures minimization. The case f (x0) ≥ f (x) for all

x in A is the specific case of maximization. The optimization technique is particularly

useful for modeling the habitability score in our case. In the above formulation, the

domain A is called a search space of the function f , CD-HPF in our case, and elements

of A are called the candidate solutions, or feasible solutions. The function as defined

by us is a utility function, yielding the habitability score CDHS. It is a feasible solution

that maximizes the objective function, and is called an optimal solution under the

constraints known as Returns to scale.

• Returns to scale measure the extent of an additional output obtained when all input

factors change proportionally. There are three types of returns to scale:

1. Increasing returns to scale (IRS). In this case, the output increases by a larger

proportion than the increase in inputs during the production process. For exam-

ple, when we multiply the amount of every input by the number N , the factor by

which output increases is more than N . This change occurs as

[(i)]
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(a) Greater application of the variable factor ensures better utilization of the

fixed factor.

(b) Better division of the variable factor.

(c) It improves coordination between the factors.

The 3-D plots obtained in this case are neither concave nor convex.

2. Decreasing returns to scale (DRS). Here, the proportion of increase in input

increases the output, but in lower ratio, during the production process. For

example, when we multiply the amount of every input by the number N , the

factor by which output increases is less than N . This happens because:

[(i)]

(a) As more and more units of a variable factor are combined with the fixed

factor, the latter gets over-utilized. Hence, the rate of corresponding growth

of output goes on diminishing.

(b) Factors of production are imperfect substitutes of each other. The divisibility

of their units is not comparable.

(c) The coordination between factors get distorted so that marginal product of

the variable factor declines.

The 3-D plots obtained in this case are concave.

3. Constant returns to scale (CRS). Here, the proportion of increase in input in-

creases output in the same ratio, during the production process. For example,

when we multiply the amount of every input by a number N , the resulting output

is multiplied by N . This phase happens for a negligible period of time and can be

considered as a passing phase between IRS and DRS. The 3-D plots obtained in

this case are concave.

• Computational Techniques in Optimization. There exist several well-known tech-

niques including Simplex, Newton-like and Interior point-based techniques [Nemirovski & Todd2008].

One such technique is implemented via MATLAB’s optimization toolbox using the func-

tion fmincon. This function helps find the global optima of a constrained optimization

problem which is relevant to the model proposed and implemented by the authors.

Illustration of the function and its syntax are provided in Appendix D.

• Concavity. Concavity ensures global maxima. The implication of this fact in our case is

that if CD-HPF is proved to be concave under some constraints (this will be elaborated
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later in the paper), we are guaranteed to have maximum habitability score for each

exoplanet in the global search space.

• Machine Learning. Classification of patterns based on data is a prominent and critical

component of machine learning and will be highlighted in subsequent part of our work

where we made use of a standard K-NN algorithm. The algorithm is modified to tailor

to the complexity and efficacy of the proposed solution. Optimization, as mentioned

above, is the art of finding maximum and minimum of surfaces that arise in models

utilized in science and engineering. More often than not, the optimum has to be found

in an efficient manner, i.e. both the speed of convergence and the order of accuracy

should be appreciably good. Machines are trained to do this job as, most of the times,

the learning process is iterative. Machine learning is a set of methods and techniques

that are intertwined with optimization techniques. The learning rate could be acceler-

ated as well, making optimization problems deeply relevant and complementary to

machine learning.

4.3 Cobb-Douglas Habitability Production Function CD-HPF

The general form of the Cobb-Douglas production function CD-PF is

Y = k · (x1)α · (x2)β , (36)

where k is a constant that can be set arbitrarily according to the requirement, Y is the total

production, i.e. output, which is homogeneous with the degree 1; x1 and x2 are the input

parameters (or factors); α and β are the real fixed factors, called the elasticity coefficients.

The sum of elasticities determines returns to scale conditions in the CDPF. This value can be

less than 1, equal to 1, or greater than 1.

What motivates us to use the Cobb-Douglas production function is its properties. Cobb-

Douglas production function (Cobb & Douglas, 1928) was originally introduced for modeling

the growth of the American economy during the period of 1899–1922, and is currently widely

used in economics and industry to optimize the production while minimizing the costs

[Wu2001, Hossain et al.2012, Hassani2012, Saha et al.2016]. Cobb-Douglas production func-

tion is concave if the sum of the elasticities is not greater than one (see the proof in Bergstrom

2010). This gives global extremum in a closed interval which is handled by constraints in

elasticity (Felipe & Adams, 2005). The physical parameters used in the Cobb-Douglas model

may change over time and, as such, may be modeled as continuous entities. A functional
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representation, i.e response, Y , is thus a continuous function, and may increase or decrease

in maximum or minimum value as these parameters change (Hossain et al., 2012). Our

formulation serves this purpose, where elasticities may be adjusted via fmincon or fitting

algorithms, in conjunction with the intrinsic property of the CD-HPF that ensures global

maxima for concavity. Our simulations, that include animation and graphs, support this

trend (see Figures 1 and 2 in Section 3). As the physical parameters change in value, so do

the function values and its maximum for all the exoplanets in the catalog, and this might

rearrange the CDHS pattern with possible changes in the parameters, while maintaining

consistency with the database.

The most important properties of this function that make it flexible to be used in various

applications are:

• It can be transformed to the log-linear form from its multiplicative form (non-linear)

which makes it simple to handle, and hence, linear regression techniques can be used

for estimation of missing data.

• Any proportional change in any input parameter can be represented easily as the

change in the output.

• The ratio of relative inputs x1 and x2 to the total output Y is represented by the elastici-

ties α and β.

The analytical properties of the CDPF motivated us to check the applicability in our problem,

where the four parameters considered to estimate the habitability score are surface tempera-

ture, escape velocity, radius and density. Here, the production function Y is the habitability

score of the exoplanet, where the aim is to maximize Y , subject to the constraint that the sum

of all elasticity coefficients shall be less than or equal to 1. Computational optimization is

relevant for elasticity computation in our problem. Elasticity is the percentage change in the

output Y (Eq. 4), given one percent change in the input parameter, x1 or x2. We assume k is

constant. In other words, we compute the rate of change of output Y , the CDPF, with respect

to one unit of change in input, such as x1 or x2. As the quantity of x1 or x2 increases by one

percent, output increases by α or β percent. This is known as the elasticity of output with

respect to an input parameter. As it is, values of the elasticity, α and β are not ad-hoc and

need to be approximated for optimization purpose by some computational technique. The

method, fmincon with interior point search, is used to compute the elasticity values for CRS,

DRS and IRS. The outcome is quick and accurate. We elaborate the significance of the scales

and elasticity in the context of CDPF and CDHS below.
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• Increasing returns to scale (IRS): In Cobb-Douglas model, if α+β > 1, the case is

called an IRS. It improves the coordination among the factors. This is indicative of

boosting the habitability score following the model with one unit of change in respective

predictor variables.

• Decreasing returns to scale (DRS): In Cobb-Douglas model, if α+β < 1, the case is

called a DRS, where the deployment of an additional input may affect the output with

diminishing rate. This implies the habitability score following the model may decrease

with the one unit of change in respective predictor variables.

• Constant returns to scale (CRS): In Cobb-Douglas model, if α+β = 1, this case is

called a CRS, where increase in α or/and β increases the output in the same proportion.

The habitability score, i.e the response variable in the Cobb-Douglas model, grows

proportionately with changes in input or predictor variables.

The range of elasticity constants is between 0 and 1 for DRS and CRS. This will be exploited

during the simulation phase (Section 3). It is proved in Appendices B and C that the habitabil-

ity score (CDHS) maximization is accomplished in this phase for DRS and CRS, respectively.

The impact of change in the habitability score according to each of the above constraints

will be elaborated in Sections 4 and 5. Our aim is to optimize elasticity coefficients to

maximize the habitability score of the confirmed exoplanets using the CD-HPF .

4.4 Cobb-Douglas Habitability Score estimation

We have considered the same four parameters used in the ESI metric (Eq. 69), i.e. surface

temperature, escape velocity, radius and density, to calculate the Cobb-Douglas Habitability

Score (CDHS). Analogous to the method used in ESI, two types of Cobb-Douglas Habitability

Scores are calculated – the interior CDHSi and the surface CDHSi . The final score is computed

by a linear convex combination of these two, since it is well known that a convex combination

of convex/concave function is also convex/concave. The interior CDHSi , denoted by Y 1, is

calculated using radius R and density D ,

Y 1 =C D HSi = (D)α · (R)β . (37)

The surface CDHSs , denoted by Y 2, is calculated using surface temperature Ts and escape

velocity Ve ,

Y 2 =C D HSs = (Ts)γ · (Ve )δ . (38)
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The final CDHS Y , which is a convex combination of Y 1 and Y 2, is determined by

Y = w ′ ·Y 1+w ′′ ·Y 2, (39)

where the sum of w ′ and w ′′ equals 1. The values of w ′ and w ′′ are the weights of the

interior CDHSi and surface CDHSs , respectively. These weights depend on the importance

of individual parameters of each exoplanet. The Y 1 and Y 2 are obtained by applying CDPF

(Eq. 36) with k = 1. Finally, the Cobb-Douglas habitability production function (CD-HPF) can

be formally written as

Y= f (R,D,Ts ,Ve ) = (R)α · (D)β · (Ts)γ · (Ve )δ . (40)

For a 3-D interpretation of the CDPF model with elasticities α and β, Appendix A contains

brief discussion on manipulating α and β algebraically. The goal is to maximize Y , iff α+β+
γ+δ< 1. It is possible to calculate the CDHS by using both Eqs. (39) and (50), however there

is hardly any difference in the final value. Equation (50) is impossible to visualize since it is a

5-dimensional entity. Whereas, Eq. (39) has 3-dimensional structure.The ease of visualization

is the reason CDHS is computed by splitting into two parts Y 1 and Y 2 and combining by

using the weights w ′ and w ′′. Individually, each of Y 1 and Y 2 are sample 3-D models and,

as such, are easily comprehensible via surface plots as demonstrated later (see Figs. 1 and 2

in Section 3). The authors would like to emphasize that instead of splitting and computing

CDHS as a convex combination of Y 1 and Y 2, a direct calculation of CDHS through Eq. (50)

is possible, which does not alter the final outcome. It is avoided here, since using the product

of all four parameters with corresponding elasticities α,β,γ and δ would make rendering the

plots impossible for the simple reason of dimensionality being too high, 5 instead of 3. We

reiterate that the scalability of the model from α,β to α,β,γ and δ does not suffer due to this

scheme. The proof presented in Appendix B bears testimony to our claim.

4.5 The Theorem for Maximization of Cobb-Douglas habitability produc-

tion function

Statement: CD-HPF attains global maxima in the phase of DRS or CRS [Saha et al.2016].

Sketch of proof: Generally profit of a firm can be defined as

profit = revenue−cost = (
price of output×output

)− (
price of input× input

)
.
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Let p1, p2, . . . , pn be a vector of prices for outputs, or products, and w1, w2, . . . , wm be a

vector of prices for inputs of the firm, which are always constants; and let the input levels be

x1, x2, . . . , xm , and the output levels be y1, y2, . . . , yn . The profit, generated by the production

plan, (x1, . . . , xm , y1, . . . , yn) is

π= (
p1 · y1 + . . .+pn · yn −w1 ·x1 − . . .−wm ·xm

)
.

Suppose the production function for m inputs is

Y = f (x1, x2, ..., xm) ,

and its profit function is

π= p ·Y −w1 · x1 − . . .−wm · xm .

A single output function needs p as the price, while multiple output functions will require mul-

tiple prices p1, p2, . . . , pn . The profit function in our case, which is a single-output multiple-

inputs case, is given by

π= p f (R,D,Ts ,Ve )−w1R −w2D −w3Ts −w4Ve , (41)

where w1,w2,w3,w4 are the weights chosen according to the importance for habitability for

each planet. Maximization of CD-HPF is achieved when

(1) p
∂ f

∂R
= w1 , (2) p

∂ f

∂D
= w2 , (3) p

∂ f

∂Ts
= w3 , (4) p

∂ f

∂Ve
= w4 . (42)

The habitability score is conceptualized as a profit function where the cost component

is introduced as a penalty function to check unbridled growth of CD-HPF. This bounding

framework is elaborated in the proofs of concavity, the global maxima and computational

optimization technique, and function fmincon in Appendices B, C and D, respectively.

Remark: If we consider the case of CRS, where all the elasticities of different cost com-

ponents are equal, the output is Y =∏n
i=1 xαi

i , where all αi are equal and
∑
αi = 1. In such

scenario, Y ≡G .M . (Geometric Mean) of the cost inputs. Further scrutiny reveals that the

geometric mean formalization is nothing but the representation of the PHI, thus establishing

our framework of CD-HPF as a broader model, with the PHI being a corollary for the CRS

case.

Once we compute the habitability score, Y , the next step is to perform clustering of the Y
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values. We have used K-nearest neighbor (K-NN) classification algorithm and introduced

probabilistic herding and thresholding to group the exoplanets according to their Y values.

The algorithm finds the exoplanets for which Y values are very close to each other and keeps

them in the same group, or cluster. Each CDHS value is compared with its K (specified by

the user) nearest exoplanet’s (closer Y values) CDHS value, and the class which contains

maximum nearest to the new one is allotted as a class for it.

4.6 Implementation of the Model

We applied the CD-HPF to calculate the Cobb-Douglas habitability score (CDHS) of exoplan-

ets. A total of 664 confirmed exoplanets are taken from the Planetary Habitability Laboratory

Exoplanets Catalog (PHL-EC)2. The catalog contains observed and estimated stellar and

planetary parameters for a total of 3415 (July 2016) currently confirmed exoplanets, where

the estimates of the surface temperature are given for 1586 planets. However, there are only

586 rocky planets where the surface temperature is estimated, using the correction factor of

30-33 K added to the calculated equilibrium temperature, based on the Earth’s greenhouse

effect (Schulze-Makuch et al. 2011a; Volokin & ReLlez 2016). For our dataset, we have taken

all rocky planets plus several non-rocky samples to check the algorithm. In machine learning,

such random samples are usually used to check for the robustness of the designed algorithm

and to add variations in the training and test samples. Otherwise, the train and test samples

would become heavily biased towards one particular trend. As mentioned above, the CDHS

of exoplanets are computed from the interior CDHSi and the surface CDHSs . The input

parameters radius R and density D are used to compute the values of the elasticities α and β.

Similarly, the input parameters surface temperature TS and escape velocity Ve are used to

compute the elasticities γ and δ. These parameters, except the surface temperature, are given

in Earth Units (EU) in the PHL-EC catalog. We have normalized the surface temperatures Ts

of exoplanets to the EU, by dividing each of them with Earth’s mean surface temperature, 288

K.

The Cobb-Douglas function is applied on varying elasticities to find the CDHS close to

Earth’s value, which is considered as 1. As all the input parameters are represented in EU, we

are looking for the exoplanets whose CDHS is closer to Earth’s CDHS. For each exoplanet, we

obtain the optimal elasticity and the maximum CDHS value. The results are demonstrated

graphically using 3-D plot. All simulations were conducted using the MATLAB software for

the cases of DRS and CRS. From Eq. (B.38), we can see that for CRS Y will grow asymptotically,

2provided by the Planetary Habitability Laboratory @ UPR Arecibo, accessible at
http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database
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if

α+β+γ+δ= 1. (43)

Let us set

α=β= γ= δ= 1/4. (44)

In general, the values of elasticities may not be equal but the sum may still be 1. As we know

already, this is CRS. A special case of CRS, where the elasticity values are made to be equal to

each other in Eq. (12), turns out to be structurally analogous to the PHI and BCI formulations.

Simply stated, the CD-HPF function satisfying this special condition may be written as

Y = f = k (R ·D ·Ts ·Ve )1/4 . (45)

The function is concave for CRS and DRS (Appendices B and C).

4.7 Computation of CDHS in DRS phase

We have computed elasticities separately for interior CDHSi and surface CDHSs in the DRS

phase. These values were obtained using function fmincon, a computational optimization

technique explained in Appendix D. Tables 1 through 3 show a sample of computed values.

Table 26 shows the computed elasticities α,β and CDHSi . The optimal interior CDHSi for

most exoplanets are obtained at α= 0.8 and β= 0.1. Table 2 shows the computed elasticities

γ,δ and CDHSs . The optimal surface CDHS are obtained at γ= 0.8 and δ= 0.1. Using these

results, 3-D graphs are generated and are shown in Figure 1. The X and Y axes represent

elasticities and Z -axis represents CDHS of exoplanets. The final CDHS, Y , calculated using

Eq. (7) with w ′ = 0.99 and w ′′ = 0.01, is presented in Table 3.

4.8 Computation of CDHS in CRS phase

The same calculations were carried out for the CRS phase. Tables 4, 5 and 6 show the sample

of computed elasticities and habitability scores in CRS. The convex combination of CDHSi

and CDHSs gives the final CDHS (Eq. 7) with w ′ = 0.99 and w ′′ = 0.01. The optimal interior

CDHSi for most exoplanets were obtained at α= 0.9 and β= 0.1, and the optimal surface

CDHSs were obtained at γ= 0.9 and δ= 0.1. Using these results, 3-D graphs were generated

and are shown in Figure 2.

Tables 1, 2 and 3 represent CDHS for DRS, where the corresponding values of elasticities

were found by fmincon to be 0.8 and 0.1, and the sum= 0.9 < 1 (The theoretical proof is
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Figure 12: Plot of interior CDHSi (Left) and surface CDHSs (Right) for DRS

given in Appendix B). Tables 4, 5 and 6 show results for CRS, where the sum of the elasticities

= 1 (The theoretical proof is given in Appendix C). The approximation algorithm fmincon

initiates the search for the optima by starting from a random initial guess, and then it applies

a step increment or decrements based on the gradient of the function based on which our

modeling is done. It terminates when it cannot find elasticities any better for the maximum

Table 26: Sample simulation output of interior CDHSi of exoplanets calculated from radius and
density for DRS

Exoplanet Radius Density Elasticity(α) Elasticity (β) CDHSi

GJ 163 c 1.83 1.19 0.8 0.1 1.65012
GJ 176 b 1.9 1.23 0.8 0.1 1.706056

GJ 667C b 1.71 1.12 0.8 0.1 1.553527
GJ 667C c 1.54 1.05 0.8 0.1 1.4195
GJ 667C d 1.67 1.1 0.8 0.1 1.521642
GJ 667C e 1.4 0.99 0.8 0.1 1.307573
GJ 667C f 1.4 0.99 0.8 0.1 1.307573
GJ 3634 b 1.81 1.18 0.8 0.1 1.634297

Kepler-186 f 1.11 0.9 0.8 0.1 1.075679
Gl 15 A b 1.69 1.11 0.8 0.1 1.537594

HD 20794 c 1.35 0.98 0.8 0.1 1.26879
HD 40307 e 1.5 1.03 0.8 0.1 1.387256
HD 40307 f 1.68 1.11 0.8 0.1 1.530311
HD 40307 g 1.82 1.18 0.8 0.1 1.641517
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Table 27: Sample simulation output of surface CDHS of exoplanets calculated from escape velocity
and surface temperature for DRS

Exoplanet Escape Velocity Surface temperature Elasticity (γ) Elasticity (δ) CDHSs

GJ 163 c 1.99 1.11146 0.8 0.1 1.752555
GJ 176 b 2.11 1.67986 0.8 0.1 1.91405

GJ 667C b 1.81 1.49063 0.8 0.1 1.672937
GJ 667C c 1.57 0.994 0.8 0.1 1.433764
GJ 667C d 1.75 0.71979 0.8 0.1 1.51409
GJ 667C e 1.39 0.78854 0.8 0.1 1.27085
GJ 667C f 1.39 0.898958 0.8 0.1 1.287614
GJ 3634 b 1.97 2.1125 0.8 0.1 1.946633

Kepler-186 f 1.05 0.7871 0.8 0.1 1.015213
Gl 15 A b 1.78 1.412153 0.8 0.1 1.641815

HD 40307 e 1.53 1.550694 0.8 0.1 1.482143
HD 40307 f 1.76 1.38125 0.8 0.1 1.623444
HD 40307 g 1.98 0.939236 0.8 0.1 1.716365
HD 20794 c 1.34 1.89791667 0.8 0.1 1.719223

Table 28: Sample simulation output of CDHS with w ′ = 0.99 and w ′′ = 0.01 for DRS

Exoplanet CDHSi CDHSs CDHS

GJ 163 c 1.65012 1.752555 1.651144
GJ 176 b 1.706056 1.91405 1.708136

GJ 667C b 1.553527 1.672937 1.554721
GJ 667C c 1.4195 1.433764 1.419643
GJ 667C d 1.521642 1.514088 1.521566
GJ 667C e 1.307573 1.27085 1.307206
GJ 667C f 1.307573 1.287614 1.307373
GJ 3634 b 1.634297 1.946633 1.63742
Gl 15 A b 1.537594 1.641815 1.538636

Kepler-186 f 1.075679 1.015213 1.075074
HD 20794 c 1.26879 1.719223 1.273294
HD 40307 e 1.387256 1.482143 1.388205
HD 40307 f 1.530311 1.623444 1.531242
HD 40307 g 1.641517 7 1.716365 1.642265

CDHS. The plots in Figures 1 and 2 show all the elasticities for which fmincon searches for the

global maximum in CDHS, indicated by a black circle. Those values are read off from the code

(given in Appendix E) and printed as 0.8 and 0.1, or whichever the case may be. A minimalist

web page is designed to host all relevant data and results: sets, figures, animation video and a

graphical abstract. It is available at https://habitabilitypes.wordpress.com/.
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Table 29: Sample simulation output of interior CDHSi of exoplanets calculated from radius and
density for CRS

Exoplanet Radius Density Elasticity(α) Elasticity (β) C D HSi

GJ 163 c 1.83 1.19 0.9 0.1 1.752914
GJ 176 b 1.9 1.23 0.9 0.1 1.819151

GJ 667C b 1.71 1.12 0.9 0.1 1.639149
GJ 667C c 1.54 1.05 0.9 0.1 1.482134
GJ 667C d 1.67 1.1 0.9 0.1 1.601711
GJ 667C e 1.4 0.99 0.9 0.1 1.352318
GJ 667C f 1.4 0.99 0.9 0.1 1.352318
GJ 3634 b 1.81 1.18 0.9 0.1 1.734199

Kepler-186 f 1.11 0.9 0.9 0.1 1.086963
Gl 15 A b 1.69 1.11 0.9 0.1 1.62043

HD 20794 c 1.35 0.98 0.9 0.1 1.307444
HD 40307 e 1.5 1.03 0.9 0.1 1.444661
HD 40307 f 1.68 1.11 0.9 0.1 1.611798
HD 40307 g 1.82 1.18 0.9 0.1 1.74282

Table 30: Sample simulation output of surface CDHS of exoplanets calculated from escape velocity
and surface temperature for CRS

Exoplanet Escape Velocity Surface temperature Elasticity (γ) Elasticity (δ) CDHSs

GJ 163 c 1.99 1.11146 0.9 0.1 1.877401
GJ 176 b 2.11 1.67986 0.9 0.1 2.062441

GJ 667C b 1.81 1.49063 0.9 0.1 1.775201
GJ 667C c 1.57 0.994 0.9 0.1 1.499919
GJ 667C d 1.75 0.71979 0.9 0.1 1.601234
GJ 667C e 1.39 0.78854 0.9 0.1 1.313396
GJ 667C f 1.39 0.898958 0.9 0.1 1.330722
GJ 3634 b 1.97 2.1125 0.9 0.1 2.097798

Kepler-186 f 1.05 0.7871 0.9 0.1 1.020179
Gl 15 A b 1.78 1.412153 0.9 0.1 1.739267

HD 40307 e 1.53 1.550694 0.9 0.1 1.548612
HD 40307 f 1.76 1.38125 0.9 0.1 1.717863
HD 40307 g 1.98 0 .939236 0.9 0.1 1.837706
HD 20794 c 1.34 1.89791667 0.9 0.1 1.832989

The animation video, available at the website, demonstrates the concavity property of

CD-HPF and CDHS. The animation comprises 664 frames (each frame is a surface plot

essentially), corresponding to 664 exoplanets under consideration. Each frame is a visual

representation of the outcome of CD-HPF and CDHS applied to each exoplanet. The X and

Y axes of the 3-D plots represent elasticity constants and Z -axis represents the CDHS. Simply
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Table 31: Sample simulation output of CDHS with w ′ = 0.99 and w ′′ = 0.01 for CRS

Exoplanet CDHSi CDHSs CDHS

GJ 163 c 1.752914 1.877401 1.754159
GJ 176 b 1.819151 2.062441 1.821584

GJ 667C b 1.639149 1.775201 1.64051
GJ 667C c 1.482134 1.499919 1.482312
GJ 667C d 1.601711 1.601234 1.601706
GJ 667C e 1.352318 1.313396 1.351929
GJ 667C f 1.352318 1.330722 1.352102
GJ 3634 b 1.734199 2.097798 1.737835

Kepler-186 f 1.086963 1.020179 1.086295
GI 15 A b 1.62043 1.739267 1.621618

HD 40307 e 1.444661 1.548612 1.445701
HD 40307 f 1.611798 1.717863 1.612859
HD 40307 g 1.74282 1.837706 1.743769
HD 20794 c 1.307444 1.832989 1.312699

stated, each frame, demonstrated as snapshots of the animation in Figs. 1 and 2, is endowed

with a maximum CDHS and the cumulative effect of all such frames is elegantly captured in

the animation.

Figure 13: Plot of interior CDHSi (Left) and surface CDHSs (Right) for CRS
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4.9 Attribute Enhanced K-NN Algorithm: A Machine learning approach

K-NN, or K-nearest neighbor, is a well-known machine learning algorithm. Attribute-enhanced

K-NN algorithm is used to classify the exoplanets into different classes based on the com-

puted CDHS values. 80% of data from the Habitable Exoplanets Catalog (HEC)3) are used

for training, and remaining 20% for testing. Training–testing process is integral to machine

learning, where the machine is trained to recognize patterns by assimilating a lot of data

and, upon applying the learned patterns, identifies new data with a reasonable degree of

accuracy. The efficacy of a learning algorithm is reflected in the accuracy with which the test

data is identified. The training data set is uniformly distributed between 5 classes, known as

balancing the data, so that bias in the training sample is eliminated. The algorithm produces

6 classes, wherein each class carries exoplanets with CDHS values close to each other, a

first condition for being called as "neighbours". Initially, each class holds one fifth of the

training data and a new class, i.e. Class 6, defined as Earth’s Class (or "Earth-League"), is

derived by the proposed algorithm from first 5 classes where it contains data based on the

two conditions.

The two conditions that our algorithm uses to select exoplanets into Class 6 are defined as:

1. Thresholding: Exoplanets with their CDHS minus Earth’s CDHS being less than or equal

to the specified boundary value, called threshold. We have set a threshold in such a way

that the exoplanets with CDHS values within the threshold of 1 (closer to Earth) fall in

Earth’s class. The threshold is chosen to capture proximal planets as the CDHS of all

exoplanets considered vary greatly However, this proximity alone does not determine

habitability.

2. Probabilistic Herding: if exoplanet is in the HZ of its star, it implies probability of

membership to the Earth-League, Class 6, to be high; probability is low otherwise.

Elements in each class in K-NN get re-assigned during the run time. This automatic re-

assignment of exoplanets to different classes is based on a weighted likelihood concept

applied on the members of the initial class assignment.

Consider K as the desired number of nearest neighbors and let S := p1, . . . , pn be the set

of training samples in the form pi = (xi ,ci ), where xi is the d-dimensional feature vector

of the point pi and ci is the class that pi belongs to. In our case, dimension, d = 1. We fix

S′ := p1′ , . . . , pm′ to be the set of testing samples. For every sample, the difference in CDHS

3The Habitable Exoplanets Catalog (HEC) is an online database of potentially habitable planets, total 32
as on January 16, 2016; maintained by the Planetary Habitability LaboratoryUPR Arecibo, and available at
http://phl.upr.edu/projects/habitable-exoplanets-catalog
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between Earth and the sample is computed by looping through the entire dataset containing

the 5 classes. Class 6 is the offspring of these 5 classes and is created by the algorithmic

logic to store the selected exoplanets which satisfy the conditions of the K-NN and the two

conditions – thresholding and probabilistic herding defined above. We train the system

for 80% of the data-points based on the two constraints, prob(habi t abi l i t yi ) = ‘high’ and

CDHS(pi )−CDHS(Earth)≤ threshold. These attributes enhance the standard K-NN and help

the re-organization of exopl aneti to Class 6.

If CDHS of exopl aneti falls with a certain range, K-NN classifies it accordingly into one

of the remaining 5 classes. For each p ′ = (x ′,c ′), we compute the distance d(x ′, xi ) between

p ′ and all pi for the dataset of 664 exoplanets from the PHL-EC, S. Next, the algorithm

selects the K nearest points to p ′ from the list computed above. The classification algorithm,

K-NN, assigns a class c ′ to p ′ based on the condition prob(habi t abi l i t yi ) = ‘high’ plus the

thresholding condition mentioned above. Otherwise, K-NN assigns p ′ to the class according

to the range set for each class. Once the "Earth-League" class is created after the algorithm

has finished its run, the list is cross-validated with the habitable exoplanet catalog HEC. It

must be noted that Class 6 not only contains exoplanets that are similar to Earth, but also

the ones which are most likely to be habitable. The algorithmic representation of K-NN is

presented in Appendix E.

4.10 Results and Discussion

The K-NN classification method has resulted in "Earth-league", Class 6, having 14 and 12

potentially habitable exoplanets by DRS and CRS computations, respectively. The outcome

of the classification algorithm is shown in Tables 7 and 8.

There are 12 common exoplanets in Tables 7 and 8. We have cross-checked these planets

with the Habitable Exoplanets Catalog and found that they are indeed listed as potentially

habitable planets. Class 6 includes all the exoplanets whose CDHS is proximal to Earth.

As explained above, classes 1 to 6 are generated by the machine learning technique and

classification method. Class 5 includes the exoplanets which are likely to be habitable, and

planets in Classes 1, 2, 3 & 4 are less likely to be habitable, with Class 1 being the least likely to

be habitable. Accuracy achieved here is 92% for K = 1, implying 1-nearest neighbor, and is

94% for K = 7, indicating 7 nearest neighbors.

In Figure 3 we show the plots of K-NN algorithm applied on the results in DRS (top

plot) and CRS (bottom plot) cases. The X -axis represents CDHS and Y -axis – the 6 dif-
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Table 32: Potentially habitable exoplanets in
Earth’s class using DRS: Outcome of CDHS
and K-NN

Exoplanet CDH Score

GJ 667C e 1.307206
GJ 667C f 1.307373
GJ 832 c 1.539553

HD 40307 g 1.642265
Kapteyn’s b 1.498503
Kepler-61 b 1.908765
Kepler-62 e 1.475502
Kepler-62 f 1.316121

Kepler-174 d 1.933823
Kepler-186 f 1.07507
Kepler-283 c 1.63517
Kepler-296 f 1.619423

GJ 667C c 1.419643
GJ 163 c 1.651144

Table 33: Potentially habitable exoplanets in
Earth’s class using CRS: Outcome of CDHS and
K-NN

Exoplanet CDH Score

GJ 667C e 1.351929
GJ 667C f 1.352102
GJ 832 c 1.622592

HD 40307 g 1.743769
Kapteyn’s b 1.574564
Kepler-62 e 1.547538
Kepler-62 f 1.362128

Kepler-186 f 1.086295
Kepler-283 c 1.735285
Kepler-296 f 1.716655

GJ 667C c 1.482312
GJ 163 c 1.754159

ferent classes assigned to each exoplanet. The figure is a schematic representation of the

outcome of our algorithm. The color points, shown in circles and boxes to indicate the

membership in respective classes, are representative of membership only and do not indicate

a quantitative equivalence. The numerical data on the number of the exoplanets in each

class is provided in Appendix F. A quantitative representation of the figures may be found at

https://habitabilitypes.wordpress.com/.

We also normalized CDHS of each exoplanet, dividing by the maximum score in each

category, for both CRS and DRS cases (with Earth’s normalized score for CRS = 0.003176 and

DRS = 0.005993). This resulted in CDHS of all 664 exoplanets ranging from 0 to 1. Analogous

to the case of non-normalized CDHS, these exoplanets have been assigned equally to 5

classes. K-NN algorithm was then applied to all the exoplanets’ CDHS for both CRS and

DRS cases. Similar to the method followed in non-normalized CDHS for CRS and DRS, K-

NN has been applied to "dump" exoplanets which satisfy the criteria of being members of

Class 6. Table 9 shows the potentially habitable exoplanets obtained from classification on

normalized data for both CRS and DRS. This result is illustrated in Figs. 3c and 3d. In this

figure, Class 6 contains 16 exoplanets generated by K-NN and which are considered to be

potentially habitable according to the PHL-EC. The description of the remaining classes is
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the same as in Figs. 3a and 3b.

Table 34: The outcome of K-NN on normalized dataset: potentially habitable exoplanets in Class 6
(Earth-League).

Exoplanet DRSnormCDHS CRSnormCDHS

GJ 667C e 0.007833698 0.004294092
GJ 667C f 0.007834698 0.004294642
GJ 832 c 0.009226084 0.005153791

HD 40307 g 0.009841607 0.005538682
Kapteyn’s b 0.008980084 0.00500124
Kepler-22 b 0.01243731 0.007181929
Kepler-61 b 0.011438662 0.006546287
Kepler-62 e 0.008842245 0.004915399
Kepler-62 f 0.007887122 0.004326487

Kepler-174 d 0.011588827 0.006641471
Kepler-186 f 0.006442599 0.003450367
Kepler-283 c 0.009799112 0.005511735
Kepler-296 f 0.009704721 0.005452561
Kepler-298 d 0.013193284 0.007666263

GJ 667C c 0.007028218 0.00775173
GJ 163 c 0.022843579 0.005571684

As observed, the results of classification are almost similar for non-normalized (Figs. 3a

& 3b) and normalized (Figs. 3c & 3d) CDHS. Both methods have identified the exoplanets

that were previously assumed as potentially habitable (listed in the HEC database) with com-

parable accuracy. However, after normalization, the accuracy increases from 94% for K = 1

to above 99% for K = 7. All our results for confirmed exoplanets from PHL-EC, including

DRS and CRS habitability CDHS scores and classes assignations, are presented in the catalog

at https://habitabilitypes.wordpress.com/. CRS gave better results compared to DRS

case in the non-normalized dataset, therefore, the final habitability score is considered to be

the CDHS obtained in the CRS phase.

Remark: Normalized and non-normalized CDHS are obtained by two different methods.

After applying the K-NN on the non-normalized CDHS, the method produced 12 and 14

habitable exoplanets in CRS and DRS cases, respectively, from a list of 664 exoplanets. The

"Earth-League", Class 6, is the class where the algorithm "dumps" those exoplanets which

satisfy the conditions of K-NN and threshold and probabilistic herding as explained in

Sections 3.1, 3.2 and 3.3. We applied this algorithm again to the normalized CDHS of 664

exoplanets under the same conditions. It is observed that the output was 16 exoplanets that
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(a) for DRS on non-normalized data set

(b) for CRS on non-normalized data set

(c) for DRS on normalized data set

(d) for CRS on normalized data set

Figure 14: Results of attribute enhanced K-NN algorithm. The X -axis represents the Cobb-Douglas
habitability score and Y -axis – the 6 classes: schematic representation of the outcome of our algorithm.
The points in circles and boxes indicate membership in respective classes. These points are represen-
tative of membership only and do not indicate a quantitative equivalence of the exact representation.
Full catalog is available at our website https://habitabilitypes.wordpress.com/
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satisfied the conditions of being in Class 6, the "Earth-league", irrespective of CRS or DRS

conditions. The reason is that the normalized scores are tighter and much closer to each

other compared to the non-normalized CDHS, and that yielded a few more exoplanets in

Class 6.

ESI is a metric that tells us whether an exoplanet is similar to Earth in some parameters.

However, it may have nothing to do with habitability, and a planet with an ESI of 0.5 can be as

habitable as a planet with an ESI of 0.99, since essentially only three Earth comparison points

enter the ESI index: mass, radius and surface temperature (both density and escape velocity

are calculated from mass and radius). Another metric, PHI, also cannot be used as a single

benchmark for habitability since many other physical conditions have to be checked before a

conclusion is drawn, such as existence of a magnetic field as a protector of all known forms

of life, or stellar host variability, among others. Our proposed novel method of computing

habitability by CD-HPF and CDHS, coupled with K-NN with probabilistic herding, estimates

the habitability index of exoplanets in a statistically robust way, where optimization method

is used for calculation. K-NN algorithm has been modified as an attribute-enhanced voting

scheme, and the probabilistic proximity is used as a checkpoint for final class distribution. For

large enough data samples, there are theoretical guarantees that the algorithm will converge

to a finite number of discriminating classes. The members of the “Earth-League" are cross-

validated with the list of potentially habitable exoplanets in the HEC database. The results

(Table 9) render the proposed metric CDHS to behave with a reasonable degree of reliability.

Currently existing habitability indices ESI and PHI are restricted to only few parameters.

At any rate, any one single benchmark for habitability may sound ambitious at present state

of the field, given also the perpetual complexity of the problem. It is possible that developing

the metric flexible enough to include any finite number of other planetary parameters, such

as, e.g. orbital period, eccentricity, planetary rotation, magnetic field etc. may help in

singling out the planets with large enough probability of potential habitability to concentrate

the observational efforts. This is where the CD-HPF model has an advantage. The model

generates 12 potentially habitable exoplanets in Class 6, which is considered to be a class

where Earth-like planets reside. We have added several non-rocky samples to the dataset so

that we could validate the algorithm. In machine learning, such random samples are usually

used to check for the robustness of the designed algorithm. For example, if a non-rocky

planet were classified by our algorithm as a member of the Earth-class, it would mean that

the algorithm (and model) is wrong. However, it has not happened, and all the results of the

Earth-league were verified to be rocky and potentially habitable. All these 12 exoplanets are

identified as potentially habitable by the PHL.
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The score generated by our model is a single metric which could be used to classify

habitability of exoplanets as members of the "Earth League", unlike ESI and PHI. Attribute-

enhanced K-NN algorithm, implemented in the paper, helps achieve this goal and the assign-

ment of exoplanets to different classes of habitability may change as the input parameters of

Cobb-Douglas model change values.

We would like to note that throughout the paper we equate habitability with Earth-

likeness. We are searching for life as we know it (as we do not know any other), hence, the

concept of an HZ and the “follow the water" directive. It is quite possible that this concept

of habitability is too anthropocentric, and can be challenged, but not at present when we

have not yet found any extraterrestrial life. At least, being anthropocentric allows us to know

exactly what we can expect as habitable conditions, to know what we are looking for (e.g.

biomarkers). In this process, we certainly will come across “exotic” and unexpected finds, but

the start has to be anthropocentric.

4.11 Conclusion and Future Work

CD-HPF is a novel metric of defining habitability score for exoplanets. It needs to be noted

that the authors perceive habitability as a probabilistic measure, or a measure with varying

degrees of certainty. Therefore, the construction of different classes of habitability 1 to 6

is contemplated, corresponding to measures as “most likely to be habitable" as Class 6, to

“least likely to be habitable" as Class 1. As a further illustration, classes 6 and 5 seem to

represent the identical patterns in habitability, but they do not! Class 6 – the "Earth-League",

is different from Class 5 in the sense that it satisfies the additional conditions of thresholding

and probabilistic herding and, therefore, ranks higher on the habitability score. This is in

stark contrast to the binary definition of exoplanets being “habitable or non-habitable", and

a deterministic perception of the problem itself. The approach therefore required classifi-

cation methods that are part of machine learning techniques and convex optimization — a

sub-domain, strongly coupled with machine learning. Cobb-Douglas function and CDHS are

used to determine habitability and the maximum habitability score of all exoplanets with

confirmed surface temperatures in the PHL-EC. Global maxima is calculated theoretically

and algorithmically for each exoplanet, exploiting intrinsic concavity of CD-HPF and en-

suring "no curvature violation". Computed scores are fed to the attribute enhanced K-NN

algorithm — a novel classification method, used to classify the planets into different classes

to determine how similar an exoplanet is to Earth. The authors would like to emphasize

that, by using classical K-NN algorithm and not exploiting the probability of habitability
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criteria, the results obtained were pretty good, having 12 confirmed potentially habitable

exoplanets in the "Earth-League". We have created a web page for this project to host all

relevant data and results: sets, figures, animation video and a graphical abstract. It is available

at https://habitabilitypes.wordpress.com/. This page contains the full customized

catalog of all confirmed exoplanets with class annotations and computed habitability scores.

This catalog is built with the intention of further use in designing statistical experiments

for the analysis of the correlation between habitability and the abundance of elements (this

work is briefly outlined in Safonova et al., 2016). It is a very important observation that our

algorithm and method give rise to a score metric, CDHS, which is structurally similar to the

PHI as a corollary in the CRS case (when the elasticities are assumed to be equal to each

other). Both are the geometric means of the input parameters considered for the respective

models.

CD-HPF uses four parameters (radius, density, escape velocity and surface temperature)

to compute habitability score, which by themselves are not sufficient to determine habitabil-

ity of exoplanets. Other parameters, such as e.g. orbital period, stellar flux, distance of the

planet from host star, etc. may be equally important to determine the habitability. Since our

model is scalable, additional parameters can be added to achieve better and granular habit-

ability score. In addition, out of all confirmed exoplanets in PHL-EC, only about half have

their surface temperatures estimated. For many expolanets, the surface temperature, which

is an important parameter in this problem, is not known or not defined. The unknown surface

temperatures can be estimated using various statistical models. Future work may include

incorporating more input parameters, such as orbital velocity, orbital eccentricity, etc. to the

Cobb-Douglas function, coupled with tweaking the attribute enhanced K-NN algorithm by

checking an additional condition such as, e.g. distance to the host star. Cobb-Douglas, as

proved, is a scalable model and doesn’t violate curvature with additional predictor variables.

However, it is pertinent to check for the dominant parameters that contribute more towards

the habitability score. This can be accomplished by computing percentage contributions to

the response variable – the habitability score. We would like to conclude by stressing on the

efficacy of the method of using a few of the parameters rather than sweeping through a host

of properties listed in the catalogs, effectively reducing the dimensionality of the problem. To

sum up, CD-HPF and CDHS turn out to be self-contained metrics for habitability.
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5 THEORETICAL VALIDATION OF POTENTIAL HABITABILITY VIA

ANALYTICAL AND BOOSTED TREE METHODS: AN OPTIMISTIC

STUDY ON RECENTLY DISCOVERED EXOPLANETS

5.1 Introduction

With discoveries of exoplanets pouring in hundreds, it is becoming necessary to develop some

sort of a quick screening tool – a ranking scale – for evaluating habitability perspectives for the

follow-up targets. One such scheme was proposed recently by us – the Cobb-Douglas Habit-

ability Score (CDHS; [Bora et al.2016]). While our paper "CD-HPF: New Habitability Score Via

Data Analytic Modeling" was in production, the discovery of an exoplanet Proxima b orbiting

the nearest star (Proxima Centauri) to the Sun was announced [Anglada-EscudÃl’2016]. This

planet generated a lot of stir in the news [Witze2016] because it is located in the habitable

zone and its mass is in the Earth’s mass range: 1.27−3 M⊕, making it a potentially habit-

able planet (PHP) and an immediate destination for the Breakthrough Starshot initiative

[Starshot].

This work is motivated by testing the efficacy of the suggested model, CDHS, in deter-

mining the habitability score of Proxima b. The habitability score model has been found

to work well in classifying exoplanets in terms of potential habitability. Therefore it was

natural to test whether the model can also classify Proxima b as potentially habitable by

computing its habitability score. This could indicate whether the model may be extended for

a quick check of the potential habitability of newly discovered exoplanets in general. As we

discover in Section VI , this is indeed the case with the newly announced TRAPPIST-1 system

[Trappist-1].

CDHS does encounter problems commonly found in convex functional modeling, such

as scalability and curvature violation. Scalability is defined as the condition on the global

maximum of the function; the global maximum is adjusted as the number of parameters en-

tering the function (elasticity) increases, i.e if a global maximum is ensured for n parameters,

it will continue to hold for n+1 parameters. The flowchart in Fig. 1 summarizes our approach

to the habitability investigation of Proxima b. A novel inductive approach inspired by the

Cobb-Douglas model from production economics [cobb-douglas] was proposed to verify

theoretical conditions of global optima of the functional form used to model and compute the

habitability score of exoplanets in [1]. The outcome of classification of exoplanets based on

the score (Method 1) is then tallied with another classification method which discriminates

samples (exoplanets) into classes based on the features/attributes of the samples (Method 2).
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Figure 15: The convergence of two different approaches in investigation of the potential habitability
of Proxima b. The outcome of the explicit scoring scheme for Proxima b places it in the “Earth-League",
which is synonymous to being classified as potentially habitable.
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The similar outcome from both approaches (the exoplanets are classified in the same habit-

ability class), markedly different in structure and methodology, fortifies the growing advocacy

of using machine learning in astronomy.

The habitability score model considers four parameters/features, namely mass, radius,

density and surface temperature of a planet, extracted from the PHL-EC (Exoplanet Catalog

hosted by the Planetary Habitability Laboratory (PHL); http://phl.upr.edu/projects). Though

the catalog contains 68 observed and derived stellar and planetary parameters, we have

currently considered only four for the CDHS model. However, we show here that the CDHS

model is scalable, i.e. capable of accommodating more parameters (see Section IV on model

scalability, and Appendix I for the proof of the theorem). Therefore, we may use more

parameters in future to compute the CDHS. The problem of curvature violation in tackled in

Sec. II.A later in the paper.

PHL classifies all discovered exoplanets into five categories based on their thermal charac-

teristics: non-habitable, and potentially habitable: psychroplanet, mesoplanet, thermoplanet

and hypopsychroplanet. Proxima b is one of the recent additions to the catalog with recorded

features. Here, we employ a non-metric classifier to predict the class label of Proxima b. We

compute the accuracy of our classification method, and aim to reconcile the result with the

habitabilty score of Proxima b, which may suggest its proximity to "Earth-League". We call

this an investigation in the optimistic determination of habitabilty. The hypothesis is the

following: a machine learning-based classification method, known as boosted trees, classifies

exoplanets and returns some with the class by mining the features present in the PHL-EC

(Method 2 in Fig. 1). This process is independent of computing an explicit habitability score

for Proxima b (aka Method 1 in Fig. 1), and indicates habitability class by learning attributes

from the catalog. This implicit method should match the outcome suggested by the CDHS,

i.e. that Proxima b score should be close to the Earth’s CDHS habitability score (with good

precision), computed explicitly.

The second approach is based on XGBoost – a statistical machine-learning classification

method used for supervised learning problems, where the training data with multiple fea-

tures is used to predict a target variable. Authors intend to test whether the two different

approaches to investigate the habitability of Proxima b, analytical and statistical, converge

with a reasonable degree of confidence.
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5.2 Analytical Approach via CDHS: Explicit Score Computation of Prox-

ima b

We begin by discussing the key elements of the analytical approach. The parameters of

the planet (Entry #3389 in the dataset) for this purpose were extracted from the PHL-EC:

minimal mass 1.27 EU, radius 1.12 EU, density 0.9 EU, surface temperature 262.1 K, and

escape velocity 1.06 EU, where EU is the Earth Units. The Earth Similarity Index (ESI) for this

new planet, estimated using a simplified version of ESI4, is 0.87. By definition, ESI ranges

from 0 (totally dissimilar to Earth) to 1 (identical to Earth), and a planet with ESI ≥ 0.8 is

considered an Earth-like.

5.2.1 Earth Similarity Index

In general, the ESI value of any exoplanet’s planetary property is calculated using the following

expression [Schulze-Makuch et al.2011],

ESIx =
(
1−

∣∣∣∣x −x0

x +x0

∣∣∣∣)wx

, (46)

where x is a planetary property – radius, surface temperature, density, or escape velocity, x0 is

the Earth’s reference value for that parameter – 1 EU, 288 K, 1 EU and 1 EU, respectively, and

wx is the weighted exponent for that parameter. After calculating ESI for each parameter by

Eq. (1), the global ESI is found by taking the geometric mean (G.M.) of all four ESIx ,

ESI =
( n∏

x=1
ESIx

) 1
n

. (47)

The problem in using Eq. (2) to obtain the global ESI is that sometimes there no available

data to obtain all input parameters, such as in the case of Proxima b – only its mass and the

distance from the star are known. Due to that, a simplified expression was proposed by the

PHL for ESI calculation in terms of only radius and stellar flux,

ESI = 1−
√

1

2

(
R −R0

R +R0

)2

+
(

S −S0

S +S0

)2

, (48)

where R and S represent radius and stellar flux of a planet, and R0 and S0 are the reference

values for the Earth. Using 1.12 EU for the radius and 0.700522 EU for the stellar flux, we

4http://phl.upr.edu/projects/earth-similarity-index-esi
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obtain ESI = 0.8692. It is worth mentioning that once we know one observable – the mass –

other planetary parameters used in the ESI computation (radius, density and escape velocity)

can be calculate based on certain assumptions. For example, the small mass of Proxima b

suggests a rocky composition. However, since 1.27 EU is only a low limit on mass, it is

still possible that its radius exceeds 1.5 – 1.6 EU, which would make Proxima b not rocky

[rogers2014]. In the PHL-EC, its radius is estimated using the mass-radius relationship -

R =


M 0.3 M ≤ 1

M 0.5 1 ≤ M < 200

(22.6) M (−0.0886) M ≥ 200

(49)

Since Proxima b mass is 1.27 EU, the radius is R = M 0.5 ≡ 1.12 EU. Accordingly, the escape

velocity was calculated by Ve = p
2GM/R ≡ 1.065 (EU), and the density by the usual D =

3M/4πR3 ≡ 0.904 (EU) formula. If we use all four parameters provided in the catalog, the

global ESI becomes 0.9088.

5.2.2 Cobb Douglas Habitability Score (CDHS)

We have proposed the new model of the habitability score in [Bora et al.2016] using a con-

vex optimization approach [Saha et al.2016]. In this model, the Cobb Douglas function is

reformulated as Cobb-Douglas habitability production function (CD-HPF) to compute the

habitability score of an exoplanet,

Y= f (R,D,Ts ,Ve ) = (R)α · (D)β · (Ts)γ · (Ve )δ , (50)

where the same planetary parameters are used – radius R, density D, surface temperature

Ts and escape velocity Ve . Y is the habitability score CDHS, and f is defined as CD-HPF.

The goal is to maximize the score, Y, where the elasticity values are subject to the condition

α+β+γ+δ< 1. These values are obtained by a computationally fast algorithm Stochastic

Gradient Ascent (SGA) described in Section 3. We calculate CDHS score for the constraints

known as returns to scale: Constant Return to Scale (CRS) and Decreasing Return to Scale

(DRS) cases; for more details please refer to [Bora et al.2016].

As Proxima b is considered an Earth-like planet, we endeavored to cross-match the

observation via the method explained in the previous section. The analysis of CDHS will

help to explore how this method can be effectively used for newly discovered planets. The

eventual classification of any exoplanet is accomplished by using the proximity of CDHS
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of that planet to the Earth, with additional constraints imposed on the algorithm termed

"probabilistic herding". The algorithm works by taking a set of values in the neighborhood of

1 (CDHS of Earth). A threshold of 1 implies that CDHS value between 1 and 2 is acceptable

for membership in "Earth-League", pending fulfillment of further conditions. For example,

the CDHS of the most potentially habitable planet before Proxima b, Kepler-186 f, is 1.086

(the closest to the Earth’s value), though its ESI is only 0.64. While another PHP GJ-163 c has

the farthest score (1.754) from 1; and though its ESI is 0.72, it may not be even a rocky planet

as its radius can be between 1.8 to 2.4 EU, which is not good for a rocky composition theory,

see e.g. [rogers2014].

5.2.3 CDHS calculation using radius, density, escape velocity and surface temperature

Using the estimated values of the parameters from the PHL-EC, we calculated CDHS score

for the CRS and DRS cases, and obtained optimal elasticity and maximum CDHS value. The

CDHS values in CRS and DRS cases were 1.083 and 1.095, respectively. The degree/extent of

closeness is explained in [Bora et al.2016] in great detail.

Table 35: Rocky planets with unknown surface temperature:Oversampling, attribute mining and using
association rules for missing value imputation: cf. subsection 1

P.Name P.Composition Class

Kepler-132 e rocky-iron
Kepler-157 d rocky-iron
Kepler-166 d rocky-iron
Kepler-176 e rocky-iron
Kepler-192 d rocky-iron
Kepler-217 d rocky-iron
Kepler-271 d rocky-iron
Kepler-398 d rocky-iron
Kepler-401 d rocky-iron
Kepler-403 d rocky-iron

WD 1145+017 b rocky-iron

5.2.4 Missing attribute values: Surface Temperature of 11 rocky planets (Table I)

We observed missing values of surface temperature in Table I. The values of equilibrium

temperature of those entries are also unknown. Imputation of missing values is commonly

done by filling in the blanks by computing the mean of continuous valued variables in the

same column, using other entries of the same type, rocky planets in this case. However, this
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method has demerits. We propose the following method to achieve the task of imputing

missing surface temperature values.

Data imputation using Association Rules: A more sophisticated method of data impu-

tation is that of rule based learning. Popularized by Agrawal et al. [Agrawal1993] through

their seminal paper in 1993, it is a robust approach in Data Mining and Big Data Analytics for

the purpose of filling in missing values. The original approach was inspired by unexpected

correlations in items being purchased by customers in markets. An illustrative example

making use of samples and features from the PHL-EC dataset is presented here.

Any dataset has samples and features. Say, we have n samples S = {s1, s2, ..., sn} and m

features, X = {X1, X2, ..., Xm}, such that each sample is considered to be a 1×m vector of

features, si = {xi 1, xi 2, ..., xi m}. Here, we would like to find out if the presence of any feature

set A amongst all the samples in S implies the presence of a feature set B .

Table 36: Table of features used to construct the association rule for missing value imputation

P.Name P.Zone Class P.Mass Class P.Composition Class P.Atmosphere Class Class Label

8 Umi b Hot Jovian gas hydrogen-rich non-habitable
GJ 163 c Warm Superterran rocky-iron metals-rich psychroplanet
GJ 180 b Warm Superterran rocky-iron metals-rich mesoplanet
GJ 180 c Warm Superterran rocky-iron metals-rich mesoplanet
14 Her b Cold Jovian gas hydrogen-rich non-habitable

Consider Table 36. An interesting observation is that all the planets with P.Zone Class =

Warm, P.Mass Class = Superterrain and P. Composition Class = rocky-iron (the planets GJ 163

c, GJ 180 b and GJ 180 c) also have P. Atmosphere Class as metals-rich. Here, if we consider

conditions A = {P.Zone Class = Warm, P.Mass Class = Superterran, P.Composition Class = rocky-

iron} and B = {P.Atmosphere Class = metals-rich}, then A ⇒ B holds true. But what does it

mean in for data imputation? If there exists a sample sk in the dataset such that condition A

holds good for sk but the value of P.Atmosphere Class is missing, then by the association rule

A ⇒ B , we can impute the value of P.Atmosphere Class for sk as metals rich. Similarly, if A′ =

{P.Mass Class = Jovian, P.Composition Class = gas} and B ′ = {P.Atmosphere Class = hydrogen-

rich}, then A′ ⇒ B ′ becomes another association rule which may be used to impute vales of

P.Atmosphere Class. Note here the exclusion of the variable P.Zone Class. In the two samples

which satisfy A′, the value of P.Zone Class are not the same and hence they do not make for a

strong association with B ′.
In Table 36, we have mentioned the class labels alongside the samples. However this is

just indicative; the class labels should not be used to form associations (if they are used, then
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some resulting associations might become similar to a traditional classification problem!)

Different metrics are used to judge how interesting a rule is, i.e., the goodness of a rule. Two

of the fundamental metrics are:

1. Support: It is an indicator of how frequently a condition A appears in the database.

Here, t is the set of samples in S which exhibit the condition A.

supp(A) = |t ∈ S; A ⊆ t |
|S| (51)

In the example considered, A = {P.Zone Class = Warm, P.Mass Class = Superterran,

P.Composition Class = rocky-iron} has a support of 3/5 = 0.6.

2. Confidence: It is an indication of how often the rule was found to be true. For the rule

A ⇒ B in S, the confidence is defined as:

con f (A ⇒ B) = supp(A∪B)

supp(A)
(52)

For example, the rule A ⇒ B considered in our example has a confidence of 0.6/0.6 = 1,

which means 100% of the samples satisfying A = {P.Zone Class = Warm, P.Mass Class =

Superterran, P.Composition Class = rocky-iron} will also satisfy B = {P.Atmosphere Class

= metals-rich}.

Association rules must satisfy thresholds set for support and confidence in order to be

accepted as rules for data imputation. The example illustrated is a very simple one. In practice,

association rules need to be considered over thousands or millions of samples. From one

dataset, millions of association rules may arise. Hence, the support and confidence thresholds

must be carefully considered. The example makes use of only categorical variables for the

sake of simplicity. However, association rules may be determined for continuous variables by

considering bins of values. Algorithms exist that are used for discovering association rules,

amongst which a priori [Agrawal 1994] is the most popular.

In the original text, the features considered here are called items and each sample is called

a transaction.

5.2.5 CDHS calculation using stellar flux and radius

Following the simplified version of the ESI on the PHL website, we repeated the CDHS

computation using only radius and stellar flux (1.12 EU and 0.700522 EU, respectively). Using
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the scaled down version of Eq. (5), we obtain CDHSDRS and CDHSC RS as 1.168 and 1.196,

respectively. These values confirm the robustness of the method used to compute CDHS and

validate the claim that Proxima b falls into the "Earth-League" category.

5.2.6 CDHS calculation using stellar flux and mass

The habitability score requires the use of available physical parameters, such as radius,

or mass, and temperature, and the number of parameters is not extremely restrictive. As

long as we have the measure of the interior similarity – the extent to which a planet has

a rocky interior, and exterior similarity – the location in the HZ, or the favorable range of

surface temperatures, we can reduce the number of parameters (or increase). Since radius

is calculated from an observable parameter – mass, we decided to use the mass directly in

the calculation. We obtained CDHSDRS as 1.168 and CDHSC RS as 1.196. The CDHS achieved

using radius and stellar flux (Section 2.3) and the CDHS achieved using mass and stellar flux

have the same values.

Remark: Does this imply that the surface temperature and radius are enough to compute

the habitability score as defined by our model? It cannot be confirmed until enough number of

clean data samples are obtained containing the four parameters used in the original ESI and

CDHS formulation. We plan to perform a full-scale dimensionality analysis as future work

The values of ESI and CDHS using different methods as discussed above are summarized

in Table 37.

Table 37: ESI and CDHS values calculated for different parameters

Parameters Used ESI CDHSC RS CDHSDRS

R, D , Ts , Ve 0.9088 1.083 1.095
Stellar Flux, R 0.869 1.196 1.168
Stellar Flux, M 0.849 1.196 1.167

NOTE: The nicety in the result, i.e. little difference in the values of CDHS, is due to the

flexibility of the functional form in the model proposed in [Ginde2016], and the computation

of the elasticities by the Stochastic Gradient Ascent method. Using this method led to the fast

convergence of the elasticities α and β. Proxima b passed the scrutiny and is classified as a

member of the "Earth-league".
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5.3 Elasticity computation: Stochastic Gradient Ascent (SGA)

[Bora et al.2016] used a library function fmincon to compute the elasticity values. Here, we

have implemented a more efficient algorithm to perform the same task. This was done for two

reasons: to be able to break free from the in-built library functions, and to devise a sensitive

method which would mitigate oscillatory nature of Newton-like methods around the local

minima/maxima. There are many methods which use gradient search including the one

proposed by Newton. Although theoretically sound, algorithmic implementations of most of

these methods faces convergence issues in real time due to the oscillatory nature. Stochastic

Gradient Descent was used to find the minimal value of a multivariate function, when the

input parameters are known. We tried to identify the elasticities for mass, radius, density

and escape velocity. We do this separately for interior CDHS and surface CDHS, and use a

convex combination to compute the final CDHS (for detail, see [Bora et al.2016]) for which the

maximum value is attained under certain constraints. Our objective is to maximize the final

CDHS. We have employed a modified version of the descent, a Stochastic Gradient Ascent

algorithm, to calculate the optimum CDHS and the elasticity values α, β, etc. As opposed to

the conventional Gradient Ascent/Descent method, where the gradient is computed only

once, stochastic version recomputes the gradient for each iteration and updates the elasticity

values. Theoretical convergence, guaranteed otherwise in the conventional method, is though

sometimes slow to achieve. Stochastic variant of the method speeds up the convergence,

justifying its use in the context of the problem (the size of data, i.e. the number of discovered

exoplanets, is increasing every day).

Output elasticity of Cobb-Douglas habitability function is the accentual change in the

output in response to a change in the levels any of the inputs. α and β are the output elasticity

of density and radius respectively. Accuracy of α and β values is crucial in deciding the right

combination for the optimal CDHS, where different approaches are analyzed before arriving

at final decision.

5.3.1 Computing Elasticity via Gradient Ascent

Gradient Ascent algorithm is used to find the values of α and β. Gradient Ascent is an

optimization algorithm used for finding the local maximum of a function. Given a scalar

function F (x), gradient ascent finds the maxx F (x) by following the slope of the function. This

algorithm selects initial values for the parameter x and iterates to find the new values of x

which maximizes F (x) (here CDHS). Maximum of a function F (x) is computed by iterating
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through the following step,

xn+1 ← xn +χ∂F

∂x
, (53)

where xn is an initial value of x, xn+1 the new value of x, ∂F
∂x is the slope of function Y = F (x)

and χ denotes the step size, which is greater than 0 and forces the algorithm make a small

jump (descent or ascent algorithms are trained to make small jumps in the direction of

the new update) . Note that the interior CDHSi , denoted by Y 1, is calculated using radius

R and density D, while the surface CDHSs , denoted by Y 2, is calculated using surface tem-

perature Ts and escape velocity Ve . The objective is to find elasticity value that produces the

optimal habitability score for the exoplanet, i.e. to find Y1 = maxα,βY (R,D) such that, α> 0,

β> 0 and α+β≤ 1. (Please note that α+β< 1 is the DRS condition for elasticity which may

be scaled to α1 +α2 + . . .+αn < 1). Similarly, we need to find Y2 = maxγ,δY (T,Ve ) such that

γ> 0, δ> 0 and δ+γ≤ 1. (Analogously, δ+γ< 1 is the DRS condition for elasticity which

may be scaled to δ1 +δ2 + . . .+δn < 1).

Stochastic variant thus mitigates the oscillating nature of the global optima – a frequent

malaise in the conventional Gradient Ascent/Descent and Newton-like methods, such as

fmincon used in [1]. At this point of time, without further evidence of recorded/measured

parameters, it may not be prudent to scale up the CD-HPF model by including more parame-

ters other than the ones used by either ESI or our model. But if it ever becomes a necessity

(to utilize more than the four parameters), the algorithm will come in handy and multiple

optimal elasticity values may be computed fairly easily.

5.3.2 Computing Elasticity via Constrained Optimization

Let the assumed parametric form be log(y) = log(K )+α log(S)+β log(P ). Consider a set of

data points,

ln(y1) = K ′ + αS′
1 + βP ′

1
...

...
...

...

ln(yN ) = K ′ + αS′
N + βP ′

N

(54)

where

K ′ = log(K ) ,

S′
i = log(S′

i ) ,

P ′
i = log(P ′

i ) .
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If N > 3, this is an over-determined system, where one possibility to solve it is to apply a least

squares method. Additionally, if there are constraints on the variables (the parameters to be

solved for), this can be posed as a constrained optimization problem. These two cases are

discussed below.

No constraints: This is an ordinary least squares solution. The system is in the form

y = Ax, where

x =
[

K ′ α β
]T

, (55)

y =


y1

.

.

yN

 (56)

and

A =


1 S′

1 P ′
1

...

1 S′
N P ′

N

 . (57)

The least squares solution for x is the solution that minimizes

(y − Ax)T (y − Ax) . (58)

It is well known that the least squares solution to Eq. (54) is the solution to the system

AT y = AT Ax , (59)

i.e.

x = (AT A)−1 AT y . (60)

In Matlab, the least squares solution to the overdetermined system y = Ax can be obtained

by x = A\y . Table II presents the results of least squares (No constraints) obtained for the

elasticity values after performing the least square fitting, while Table III displays the results

obtained for the elasticity values after performing the constrained least square fitting.
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Table 38: Elasticity values for IRS, CRS & DRS cases after performing the least square test (No con-
straints): elasticity values α and β satisfy the theorem α+β< 1,α+β= 1, and α+β> 1 for DRS, CRS
and IRS, respectively, and match the values reported previously [Bora et al.2016].

IRS CRS DRS
α 1.799998 0.900000 0.799998
β 0.100001 0.100000 0.099999

Constraints on parameters: this results in a constrained optimization problem. The

objective function to be minimized (maximized) is still the same, namely,

(y − Ax)T (y − Ax) . (61)

This is a quadratic form in x. If the constraints are linear in x, then the resulting constrained

optimization problem is a quadratic program (QP). A standard form of a QP is

max xT H x + f T x , (62)

such that

Suppose the constraints are α,β> 0 and α+β≤ 1. The QP can be written as (neglecting

the constant term yT y)

max xT (AT A)x −2yT Ax , (63)

such that

α> 0,

β> 0,

α+β≤ 1. (64)

For the standard form as given in Eq. (16), Eqs. (63)-(64) can be represented by rewriting

the objective function as

xT H x + f T x , (65)

where

H = AT A and f =−2AT y . (66)

Page 114 of 316



The inequality constraints can be specified as

C =


0 −1 0

0 0 −1

0 1 1

 , (67)

and

b =


0

0

1

 . (68)
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6 COMPARING HABITABILITY METRICS

A sequence of recent explorations by Saha et al. [4] expanding previous work by Bora et al.[1]

on using Machine Learning algorithm to construct and test planetary habitability functions

with exoplanet data raises important questions. The 2018 paper analyzed the elasticity of their

Cobb-Douglas Habitability Score (CDHS) and compared its performance with other machine

learning algorithms. They demonstrated the robustness of their methods to identify poten-

tially habitable planets from exoplanet dataset. Given our little knowledge on exoplanets

and habitability, these results and methods provide one important step toward automatically

identifying objects of interest from large datasets by future ground and space observatories.

The paper provides a logical evolution from their previous work. Additionally, model and

the methods yielding a new metric for "Earth-similarity" paves the way for comparison with

its predecessor, ESI [Schulze-Makuch et al.2011]. Even though, CDHS proposed in [1] and

extended in [4] consider identical planetary parameters such as Mass, Radius, Escape Velocity

and Surface Temperature; the contrasts are overwhelming compared to the similarities. The

note aims to bring out the differences and investigates the contrasts between the two metrics,

both from machine learning and modeling perspectives.

It is worth mentioning that once we know one observable – the mass – other planetary pa-

rameters used in the ESI computation (radius, density and escape velocity) can be calculated

based on certain assumptions. For example, the small mass of Proxima b suggests a rocky

composition. However, since 1.27 EU is only a low limit on mass, it is still possible that its

radius exceeds 1.5 – 1.6 EU, which would make Proxima b not rocky [rogers2014]. Since Prox-

ima b mass is 1.27 EU, the radius is R = M 0.5 ≡ 1.12 EU5. Accordingly, the escape velocity was

calculated by Ve =
p

2GM/R ≡ 1.065 (EU), and the density by the usual D = 3M/4πR3 ≡ 0.904

(EU) formula.

The manuscript, [4] consists of three related analyses: (i) computation and comparison of

ESI and CDHS habitability scores for Proxima-b and the Trappist-1 system, (ii) some consid-

erations on the computational methods for computing the CDHS score, and (iii) a machine

learning exercise to estimate temperature-based habitability classes. The analysis is carefully

conducted in each case, and the depth of the contribution to the literature helped unfold the

differences and approaches to CDHS and ESI.

Several important characteristics were introduced to address the habitability question.

[Schulze-Makuch et al.2011] first addressed this issue through two indices, the Planetary

5http://phl.upr.edu/library/notes/standardmass-radiusrelationforexoplanets, Standard Mass-Radius Rela-
tion for Exoplanets, Abel Mendez, June 30, 2012.
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Habitability Index (PHI) and the Earth Similarity Index (ESI), where maximum, by definition,

is set as 1 for the Earth, PHI=ESI=1.

ESI represents a quantitative measure with which to assess the similarity of a planet

with the Earth on the basis of mass, size and temperature. But ESI alone is insufficient to

conclude about the habitability, as planets like Mars have ESI close to 0.8 but we cannot

still categorize it as habitable. There is also a possibility that a planet with ESI value slightly

less than 1 may harbor life in some form which is not there on Earth, i.e. unknown to

us. PHI was quantitatively defined as a measure of the ability of a planet to develop and

sustain life. However, evaluating PHI values for large number of planets is not an easy

task. In [Irwin et al.2014], another parameter was introduced to account for the chemical

composition of exoplanets and some biology-related features such as substrate, energy,

geophysics, temperature and age of the planet — the Biological Complexity Index (BCI). Here,

we briefly describe the mathematical forms of these parameters.

6.1 Earth Similarity Index (ESI)

ESI was designed to indicate how Earth-like an exoplanet might be [Schulze-Makuch et al.2011]

and is an important factor to initially assess the habitability measure. Its value lies between

0 (no similarity) and 1, where 1 is the reference value, i.e. the ESI value of the Earth, and a

general rule is that any planetary body with an ESI over 0.8 can be considered an Earth-like.

It was proposed in the form

ESIx =
(
1−

∣∣∣∣x −x0

x +x0

∣∣∣∣)w

, (69)

where ESIx is the ESI value of a planet for x property, and x0 is the Earth’s value for that

property. The final ESI value of the planet is obtained by combining the geometric means of

individual values, where w is the weighting component through which the sensitivity of scale

is adjusted. Four parameters: surface temperature Ts , density D , escape velocity Ve and radius

R, are used in ESI calculation. This index is split into interior ESIi (calculated from radius

and density), and surface ESIs (calculated from escape velocity and surface temperature).

Their geometric means are taken to represent the final ESI of a planet. However, ESI in the

form (69) was not introduced to define habitability, it only describes the similarity to the

Earth in regard to some planetary parameters. For example, it is relatively high for the Moon.

What’s the paradox?

The ESI and CDHS scores should be similar in the sense of being computed from essentially

the same ingredients. However, similarity in numerical values may be accidental also unless

more informative picture could be provided with the additional exploration of the general
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relationship between ESI and CDHS scores. We explore relationship and establish the con-

trasts in the following section. It will also be established that ESI and CDHS are not related

and there exists no causal relationship between the two. We note that the only similarity is

both ESI and CDHS use identical input parameters.

We have not argued that the CD-HPF is a superior metric. However, we do argue that the

foundations of the CD-HPF, in both a mathematical and a philosophical sense, are solidly

grounded, and substantiated by analytical proofs.

• The CDHS is not derived from ESI. CDHS is not a classifier and neither is ESI – this is

because we do not (yet) categorize planets based on the values of either ESI or CDHS.

Even though we were categorical in emphasizing the contrast and reconciliation of two

approaches (one being CDHS), we reiterate our baseline argument for the benefit of

the reviewer. CDHS contributes to the Earth-Similarity concepts where the scores have

been used to classify exoplanets based on their degree of similarity to Earth. However

Earth-Similarity is not equivalent to exoplanetary habitability. Therefore, we adopted

another approach where machine classification algorithms have been exploited to

classify exoplanets in to three classes, non-habitable, mesoplanets and psychroplanets.

While this classification was performed, CDHS was not used at all, rather discriminating

features from the PHL-EC were used. This is fundamentally different from CDHS

based Earth-Similarity approach where explicit scores were computed. Therefore, it

was pertinent and remarkable that the outcome of these two fundamentally distinct

exercises reconcile. We achieved that. This reconciliation approach is the first of its

kind and fortifies CDHS, more than anything else. Fig.1 captures this spirit and portrays

the hallmark of the manuscript. We maintain that this convergence between the two

approaches is not accidental. We have been constantly watching the catalog, PHL-EC

and scientific investigations in habitability of exoplanets. Please refer to the discussion

section of the revised manuscript (last bulleted item) for further details. We urge the

referee to revisit the schematic flow elucidated in Fig. 1 of the manuscript. We made

minor modifications to Fig. 1 for a better understanding.

• As an exercise, we tried to find the optimal point of the ESI in a same fashion as we

found it for CD-HPF – the finding was that a minima or a maxima cannot be guaranteed

by the functional form of the CD-HPF.

• As ESI is not based on maximizing a score, when we go on increasing the number of

constituent parameters, the numerical result of the ESI might go on decreasing: there
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is no guarantee of stability. The reason for this is that each constituent term in the

ESI is a number between 0 and 1 – now as we add more terms to this, the value of the

score tends to zero. This is not the case with our model, CD-HPF, as we have shown in

the supplementary file of [4] that global optima is unaffected under additional input

parameters (finitely many). However this throws a computational challenge of local

oscillations which has been tackled by Stochastic Gradient Ascent[].

• It is easy to misconstrue CDHS with ESI as being one since the parameters of the

CD-HPF are the same as that of the ESI, and the functional form in either metric is

multiplicative in nature. However, that is not the case. We have laid a little emphasis on

how our metric is similar to ESI in saying that the ESI is a special case of the CD-HPF.

The crux of the philosophy behind the CD-HPF is essentially that of adaptive modeling,

i.e., the score generated is based on the best combination of the factors and not by

static weights as followed by ESI.

That, essentially, the ESI score gives non-dynamic weights to all the different planetary

(with no trade-off between the weights) observables or calculated features considered,

which in practice may not be the best approach, or at least, the only way of indicating

habitability. It might be reasonable to say that for different exoplanets, the various

planetary observables may weigh each other out to create a unique kind of favorable

condition. For instance, in one planet, the mass may be optimal, but the tempera-

ture may be higher than the average of the Earth, but still within permissible limits;

in another planet, the temperature may be similar to that of the Earth, but the mass

may be lower. By discovering the best combination of the weights (or, as we call it,

elasticities) to maximize the resultant score, to the different planetary observables, we

are creating a score which presents the best case scenario for the habitability of a planet.

• The essence of the CD-HPF, and consequently, that of the CDHS is indeed orthogonal

to the essence of the ESI or BCI. We argue not in favor of the superiority of our metric,

but for the new approach that is developed. We believe that there should actually be

various metrics arising from different schools of thought so that the habitability of

an exoplanet may be collectively determined from all these. Such a kind of adaptive

modeling has not been used in the context of planetary habitability prior to the CD-HPF.

While not in agreement with the structure of ESI, CDHS does complement ESI.

Key Differences between ESI and CDHS: In the case of the ESI, there is no evidence of

a rigorous functional analysis. Schulze-Makuch et al. have not reported the existence of
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Table 39: Differences between ESI and CDHS at a glance

S. No. ESI CDHS

1.

Derived for four input parameters
only. It is unclear how the ESI
will behave if additional parame-
ters such as eccentricity, flux, radial
velocity, etc. are added.

On the contrary, the CDHS is
solidly grounded in optimization
theory as we have shown (in the
supplementary file).

2.
The exponents of each term in the
CDHS, wi /n is predetermined.

The exponentsα,β, γ and δ are not
predetermined; computing them is
a part of the optimization problem.

3.

In all likelihood, the inclusion of
additional input parameters will di-
minish the ESI since all input pa-
rameters are scaled between 0 and
1, and the weights are fixed.

This does not happen with the
CDHS even if we include additional
parameters.

extrema for the ESI. We tried to find the maximum for the ESI in a manner similar to that

of CD-HPF and we were unable to do so with the appropriate mathematical tools. This

means that if we were to draw parallels between the CDHS and the ESI, the ESI would have

no guarantee of having a maxima. The CD-HPF is based on an adaptive modeling, that is,

when the CDHS is computed, the response is a maximum, which is based on the functional

form of the CD-HPF. We reported the proof in order to substantiate the fact that a maximum

does exist of the functional form that we have used. The highlights of the CD-HPF are: – this

paragraph seems a little redundant

• The exponents (or, the elasticities) of each observable in the function, R, D , Ts , Ve are

denoted using α, β, γ, and δ respectively. The constraints on the permissible values

of the elasticities are: – we’ve also mentioned this in the paper, so even this is a little

redundant

α+β+γ+δ≤ 1

and

α,β,γ,δ≥ 0

Thus, the computation of the CDHS of a planet is essentially a constrained optimization

problem.

• In (insert page number), we have also shown that the number of components in the
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Figure 16: ESI vs CDHS (CRS)

CDHS can be countably infinite. Of course, the components being considered for

each planet should be the same and the scoring system becomes different, but the

possibility still exists that n number of observables and/or input parameters can be

accommodated into the function, while keeping the constraints on the elasticities

intact. Moreover, we have proved a very important theorem that even if n number of

observables and/or input parameters make the functional form extremely complicated,

a global optima is still guaranteed. – this probably can be combined with a point we

previously made

The reason why CDHS computation is a challenging problem (and ESI is not!) is

• Local oscillations about the optima [3], [Ginde2016], [8] are difficult to mitigate even

though we have shown there exists a theoretical guarantee for the same.

• Extrema doesn’t occur at the corner points and is therefore the location of such is

difficult to predict.

• We have emphasized enough on how the CD-HPF reconciles with the machine learning

methods that we have used to automatically classify exoplanets. It is not easy two to

propose two fundamentally different approaches (one of which is CDHS) that lead
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Figure 17: ESI vs CDHS (CRS) – a closeup

Figure 18: ESI vs CDHS (DRS)
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Figure 19: ESI vs CDHS (DRS) – a closeup

to a similar conclusion about an exoplanet. While the CDHS provides a numerical

indicator (in fact the existence of one global optima shouldn’t be a concern at all, rather

a vantage point of the model that this eliminates the possibility of computing scores

arbitrarily), the machine classification bolsters our proposition by telling us automati-

cally which class of habitability an exoplanet belongs to (more on the concerns of the

reviewer on the ML methods in a later section in this document). The performance

of machine classification is evaluated by class-wise accuracy. The accuracies achieved

are remarkably high, and at the same time, we see that the values of the CDHS for the

sample of potentially habitable exoplanets which we have considered are also close to

1. Therefore, the computational approaches map earth similarity to habitability. This is

remarkable and non-trivial. This degree of computational difficulty is non-existent in

ESI.

• NOTE: One should not miss the crucial point of computation of CDHS which is only a

part of the exercise. The greater challenge is the vindication of the CDHS metric in the

classification of habitability of exoplanets by reconciliation of the modeling approach

with the machine classification approach (where explicit scores were not used to classify

habitability of exoplanets but the outcome validates the metric). The greatest strength
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of CDHS is its flexibility in functional form helping forge the unification paradigm.

To be specific, even under the constrained optimization problem, the search space is count-

ably infinite making the problem of finding the global optima computationally intractable

until some intervention is made. We have mitigated the problem by employing stochastic

gradient ascent. If it’s a simplex problem, we know the optima is at one of the corner points

(theoretically) and therefore don’t bother looking for it in the entire search space (please

note even in that case, the computational complexity is hard to ignore and people develop

different kinds of approximation algorithms to improve upon the complexity). The functional

form in our case is non-linear, convex and is bounded by constraints (which is typically a

geometric region, contour/curved) making the search space complex enough to find the

optima. The only positive thing in our favor is the theoretical existence of global optima

which ensures, once our algorithm finds the optima, it terminates! There is the other issue

of handling oscillation around the optima, coupled with finding "the optima". It is, indeed

the question of finding the optima efficiently that distinguishes CDHS from ESI. As an ex-

ploratory investigation, we rendered ESI a functional form, similar to CDHS with the express

objective of finding elasticity (dynamic weights to each of the parameters) that may compute

optimum Earth similarity of any exoplanet. What we found was such theoretical guarantee

is non-existent for ESI and it may ensure global optima only in the case of IRS, which is

infeasible (Please refer to [?]). Therefore, our attempt to render theoretical credence to ESI

fails as the new metric holds for IRS condition only (neither maxima nor minima). The new

ESI input structure, despite a functional form very similar to CDHS is not able to reproduce

the dynamic and flexible behavior of the Earth Similarity Score reported by CDHS. The details

are documented in Appendix A.

6.2 Discussion

While each of these analyses is conducted independently, the results reconcile in a way that is

sensible. The earth similarity indices, usually a solution that doesn’t address the habitability

classification problem has been reconciled with machine classification approach. In the

process of doing so, we developed CDHS which is more representative (as opposed to ESI) of

the mapping between these two completely different approaches.

A different perspective of the inference sought from the results of the ML algorithms

is in the values of the Cobb-Douglas Habitability Scores (CDHS). We see that the values of

CDHS of Proxima-b and TRAPPIST-1 c, d, and e (on which the probability of life is deemed

to be more probable) are closer to the CDHS of Earth than those of the remaining planetary
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samples which we have specifically explored in our study.

The exposition of the efficacy of our methods are concurrently being made by astrophysi-

cists. In a recent article in Astrobiology, it has been said that two planets in the TRAPPIST-1

system are likely to be habitable: http://astrobiology.com/2018/01/two-trappist-1-system-

planets-are-potentially-habitable.html. TRAPPIST-1 b and c are likely to have molten-core

mantles and rocky surfaces, and hence, moderate surface temperatures and modest amounts

of tidal heating. The expected favorable conditions are also reflected in the CDHS values of

these planets (insert).

The computational aspect is also worth mentioning here so as to provide the reader a

thorough understanding of the method we have explored, their advantages over existing

methods, and notwithstanding, their limitations.

The rate at which exoplanets are being discovered is rapidly increasing. Given the current

situation and how technology is rapidly improving in astronomy, we firmly believe that

eventually, problems such as this in observational astronomy will require a thorough dealing

of data science to be handled efficiently. As the number of confirmed exoplanets grow, it might

be wise to use an indexing and classification method which can do the job automatically,

with little need for human intervention. This is where both ESI and CDHS shall play useful

roles, we believe.

Appendix A: Constraint Conditions for elasticity;α,β, γ andδ: ESI with dynamic input

elasticity fails to be an optimizer.

In the function,

Y = k.

(
1− Re −R

Re +R

)α
.

(
1− De −D

De +D

)β
.

(
1− Te −T

Te +T

)γ
.

(
1− Ve −V

Ve +V

)δ
(70)

where Re , De ,Te and Ve are the radius, density, surface temperature and escape velocity of

Earth and are constant terms. R,D.T and V are radius , density ,surface temperature and

escape velocity for the planet under study.k is also a constant parameter

Differentiating eq.1 above partially w.r.t. R

∂Y

∂R
=α.

(
2R

Re +R

)α−1

.
2Re

(Re +R)2
(71)
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finding second derivative from eq.2
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∂R2
=α. (α−1) .

(
2R

Re +R

)α−2

.

(
2Re

(Re +R)2

)
.

(
2Re

(Re +R)2

)
−α.

(
2R

Re +R

)α−1

.

(
4Re (Re +R)

(Re +R)4

)
=α. (α−1) .

(
2R

Re +R

)α−2

.
4R2

e

(Re +R)4
−α.

(
2R

Re +R

)α−1

.

(
4R2

e +4Re .R)

(Re +R)4

)
=α. (α−1) .

(
2R

Re +R

)α−2

.
1

(Re +R)4
.

(
(α−1).4R2

e −
2R

Re +R
.(4R2

e +4RRe )

)
=α. (α−1) .

(
2R

Re +R

)α−2

.
1

(Re +R)4
.
(
(α−1).4R2

e −8RRe
)

hence final second order derivative is-

∂2Y
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(
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.
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(72)

for concavity eq.3 must be greater than 0 so,

α. (α−1) .

(
2R

Re +R

)α−2

.
1

(Re +R)4
.
(
(α−1).4R2

e −8RRe
)> 0 (73)

on solving above inequality we will get ,

α−1 > 2
R

Re
(74)

similarly it can be proved for other 3 elasticity constants which gives us constrained conditions

β−1 > 2
D

De
, (75)

γ−1 > 2
T

Te
, (76)

δ−1 > 2
V

Ve
(77)

Summing up equations (5),(6),(7) and (8),

α+β+γ+δ−4 > 2

(
R

Re
+ D

De
+ T

Te
+ V

Ve

)
(78)

⇒α+β+γ+δ> 2

(
R

Re
+ D

De
+ T

Te
+ V

Ve

)
+4 (79)

Above Equation (10) shows that sum of the four elasticity constants cannot be less than or
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equal to 1 (in fact cannot be less than 1). This is the case of IRS (increasing return to scale)

in CDHPF function, which means that function is neither concave nor convex. The new

metric holds for IRS condition only which doesn’t ensure a global maxima implying lack of

theoretical foundation for the ESI input structure.
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7 SUPERNOVA CLASSIFICATION

7.1 Introduction

This work describes the classification of supernova into various types. The focus is given

on the classification of Type-Ia supernova. But the question is why we need to classify

supernovae or why is it important? Astronomers use Type-Ia supernovae as âĂIJstandard

candlesâĂİ to measure distances in the Universe. Classification of supernovae is mainly a

matter of concern for the astronomers in the absence of spectra.

A supernova is a violent explosion of a star, whose brightness for an amazingly short

period of time, matches that of the galaxy in which it occurs. This explosion can be due to the

nuclear fusion in a degenerated star or by the collapse of the core of a massive star, both leads

in the generation of massive amount of energy. The shock waves due to explosion can lead to

the formation of new stars and also helps astronomers indicate the astronomical distances.

Supernovae are classified according to the presence or absence of certain features in their

orbital spectra. According to Rudolph Minkowski there are two main classes of supernova,

the Type-I and the Type-II. Type-I is further subdivided into three classes i.e. the Type-Ia,

the Type-Ib and the Type-Ic. Similarly, Type II supernova are further sub-classified as Type

IIP and Type IIn. Astronomers face lot of problem in classifying them because a supernova

changes itself over the time. At one instance a supernovae belonging to a particular type, may

get transformed into the supernovae of other type. Hence, at different time of observation, it

may belong to different type. Also, when this spectra is not available, it poses a great challenge

to classify them. They have to rely only on photometric measurements for their classification

which poses a big challenge in front of astronomers to do their studies.

Machine learning methods help researchers to analyze the data in real time. Here, we

build a model from the input data. A learning algorithm is used to discover and learn knowl-

edge from the data. These methods can be supervised (that rely on training set of objects for

which target property is known) or unsupervised (require some kind of initial input data but

unknown class).

In this chapter, classification of Type Ia supernova are taking in considerations from a su-

pernova dataset defined in [Davis et al.2007],[Riess et al.2007] and [Wood-Vassey et al.2007]

using several machine learning algorithms. To solve this problem, the dataset is classified

in two classes which may aid astronomers in the classification of new supernovae with high
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accuracy.

7.2 Categorization of Supernova

The basic classification of supernova is done depending upon the shape of their light curves

and the nature of their spectra. But there are different ways of classifying the supernovae-

a) Based on presence of hydrogen in spectra If hydrogen is not present in the spectra then

it belongs to the Type I supernova; otherwise, it is the Type II.

b) Based on type of explosion There are two types of explosions that may takes place in the

star- thermonuclear and core-collapse . Core collapse, happens at the final phase in the

evolution of a massive star , whereas thermonuclear explosions are found in white dwarfs.

The detailed classification of supernova is given below where both types are discussed

in correspondence to each other. The classification is the basic classification depending on

Type I and Type II .

7.3 Type I supernova

Supernova are classified as Type I if their light curves exhibit sharp maxima and then die

away smoothly and gradually. The spectra of Type I supernovae are hydrogen poor. As

discussed earlier they have three more types- Type-Ia, Type-Ib and Type-Ic. According to

[Fraser] and [supernova tutorial], Type Ia supernova are created when we have binary star

where one star is a white dwarf and the companion can be any other type of star, like a red

giant, main sequence star, or even another white dwarf. The white dwarf pulls off matter from

the companion star and the process continues till the mass exceeds the Chandrasekhar limit

of 1.4 solar masses (According to [Philipp], the Chandrasekhar limit/mass is the maximum

mass at which a self gravitating object with zero temperature can be supported by electron

degeneracy method). This causes it to explode. Type-Ia is due to the thermonuclear explosion

and has strong silicon absorption lines at 615 nm and this type is mainly used to measure

the astronomical distances. This is the only supernova that appears in all type of galaxies.

Type-Ib have strong helium absorption lines and no silicon lines, Type-Ic have no silicon

and no helium absorption lines. Type Ib and Type Ic are core collapse supernova like Type

II without hydrogen lines. The reason of Type-Ib and Type-Ic to fall in core collapse is that

they produce little Ni [Phillips93] and are found within or near star formation regions. Core
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collapse explosion mechanism happens in massive stars for which hydrogen is exhausted

and sometimes even He (as in case of Type-Ic). Both the mechanisms are shown in Figure 20

Figure 20: Core collapse supernova (Left) and Thermonuclear Mechanism(Right)

7.4 Type II supernova

Type-II is generally due to core collapse explosion mechanism. These supernovae are mod-

eled as implosion-explosion events of a massive star. An evolved massive star is organized in

the manner of an onion, with layers of different elements undergoing fusion. The outermost

layer consists of hydrogen, followed by helium, carbon, oxygen, and so forth. According

to [Fraser], a massive star, with 8-25 times the mass of the Sun, can fuse heavier elements

at its core. When it runs out of hydrogen, it switches to helium, and then carbon, oxygen,

etc, all the way up the periodic table of elements. When it reaches iron, however, the fusion

reaction takes more energy than it produces. The outer layers of the star collapses inward in a

fraction of a second, and then detonates as a Type II supernova. Finally the process left with

a dense neutron star as a remnant. This show a characteristic plateau in their light curves

a few months after initiation. They have less sharp peaks at maxima and peak at about 1

billion solar luminosity. They die away more sharply than the Type I. It has visible strong

hydrogen and helium absorption lines. If the massive star have more than 25 times mass

of the Sun, the force of the material falling inward collapses the core into a black hole. The

main characteristics of Type II supernova is the presence of hydrogen lines in itâĂŹs spectra.

These lines have P Cygni profiles and are usually very broad, which indicates rapid expansion

velocities for the material in the supernova.

Type II supernova are sub-divided based on the shape of their light curves. Type II-Linear
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(Type II-L) supernova has fairly rapid, linear decay after maximum light. Type II-plateau

(Type II-P) remains bright for a certain period of time after maximum light i.e. they shows a

long phase that lasts approximately 100d and here light curves are almost constant(plateau

phase). TypeII-L is rarely found and doesnâĂŹt show the plateau phase, but decreases log-

arithmically after their light curve is peaked. As they drops on logarithmic scale, more or

less linearly , hence L stands for âĂIJLinearâĂİ. In Type II-narrow (Type IIn) supernova,

hydrogen lines had a vague or no P Cygni profile, and instead displayed a narrow component

superimposed on a much broader base. Some type Ib/Ic and IIn supernova with explosion

energies E >1052 erg are often called hypernovae. The classification of supernova is shown

in Figure 21 with the flowchart as-

Figure 21: Classification of Supernova

7.5 Machine Learning Techniques

Machine learning is a discipline that constructs and study algorithms to build a model from

input data. The type and the volume of the dataset will affect the learning and prediction

performance. Machine learning algorithms are classified into supervised and unsupervised

methods, also known as predictive and descriptive, respectively. Supervised methods are
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also known as classification methods. For them class labels or category is known. Through

the data set for which labels are known, machine is made to learn using a learning strategy,

which uses parametric or non-parametric approach to get the data. In parametric model,

there are fixed number of parameters and the probability density function is specified as

p(x|θ) which determines the probability of pattern x for the given parameter θ (generally a

parameter vector). In nonparametric model, there are no fixed number of parameters, hence

cannot be parameterized. Parametric models are basically probabilistic models like Bayesian

model, Maximum Aposteriori Classifiers etc. and non- parametric where directly decision

boundaries are determined like Decision Trees, KNN etc. These models ( parametric and

nonparametric) mainly talks about the distribution of data in the data set, which helps to

take the decision upon the use of appropriate classifiers.

If class labels are not known (unsupervised case), and data is taken from different distri-

butions it is hard to assess. In these cases, some distance measure, like Euclidean distance,

is considered between two data points, and if this distance is 0 or nearly 0, the two points

are considered as similar. All the similar points are kept in the same group, which is called as

cluster. Likewise the clusters are devised. While clustering main aim is to keep high intraclus-

ter similarity and low intercluster similarity. There are several ways in which clustering can

be done. It can be density based, distance based, grid based etc. Shapes of the cluster also

can be spherical, ellipsoidal or any other based on the type of clustering being performed.

Most basic type of clustering is distance based, on the basis of which K-means algorithm is

devised which is most popular algorithm. Other clustering algorithms to name a few are K-

medoids, DB Scan, Denclue etc. Each has its own advantages and limitations. They have to

be selected based on the dataset for which categorization has to be performed. Data analytic

uses machine learning methods to make decision for a system.

According to [Nicholas et al.2010], supervised methods rely on a training set of objects for

which the target property, for example a classification, is known with confidence. The method

is trained on this set of objects, and the resulting mapping is applied to further objects for

which the target property is not available. These additional objects constitute the testing

set. Typically in astronomy, the target property is spectroscopic, and the input attributes are

photometric, thus one can predict properties that would normally require a spectrum for the

generally much larger sample of photometric objects.

On the other hand, unsupervised methods do not require a training set. These algorithms

usually require some prior information of one or more of the adjustable parameters, and the

solution obtained can depend on this input.

In between supervised and unsupervised algorithms there is one more type of model-
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semi-supervised method is there that aims to capture the best from both of the above meth-

ods by retaining the ability to discover new classes within the data, and also incorporating

information from a training set when available.

7.6 Supernovae Data source and classification

The selection of classification algorithm not only depends on the dataset, but also the ap-

plication for which it is employed. There is, therefore, no simple method to select the best

optimal algorithm. Our problem is to identify Type Ia supernova from the given dataset in

[Davis et al.] which contains 292 different supernova information. Since the classification is

binary classification, as one need to identify Type Ia supernova from the list of 292 supernovas,

the best resulting algorithms are used for this purpose. The algorithms used for classification

are NaÃŕve Bayes, LDA, SVM, KNN, Random Forest and Decision Tree.

The dataset used is retrieved from [Davis et al.]. These data are a combination of the

ESSENCE, SNLS and nearby supernova data reported in Wood-Vasey et al. (2007) and the

new Gold dataset from Riess et al.(2007). The final dataset used is combination of ESSENCE /

SNLS / nearby dataset from Table 4 of Wood-Vasey et al. (2007), using only the supernova

that passed the light-curve-fit quality criteria. It has also considered the HST data from

Table 6 of Riess et al. (2007), using only the supernovae classified as gold. These were

combined for Davis et al. (2007) and the data are provided in 4 columns: redshift, distance

modulus, uncertainty in the distance modulus and quality as âĂIJGoldâĂİ or âĂIJSilverâĂİ.

The supernova with quality labeled as âĂIJGoldâĂİ are Type Ia with high confidence and

those with label âĂIJSilverâĂİ are Likely but uncertain SNe Ia. In the dataset, all the supernova

with redshift value less than 0.023 and quality value Silver are discarded.

7.7 Results and Analysis

The experimental study was setup to evaluate performance of various machine learning

algorithms to identify Type-Ia supernova from the above mentioned dataset. The data set

mentioned above is tested on 6 major classification algorithms namely NaÃŕve Bayes, De-

cision tree, LDA, KNN, Random Forest and SVM respectively. A ten-fold cross validation

procedure was carried out to make the best use of data, that is, the entire data was divided

into ten bins in which one of the bins was considered as test-bin while the remaining 9 bins

were taken as training data. We observe the following results and conclude that the outcome

of the experiment is encouraging, considering the complex nature of the data. Table 40 shows

the result of classification.

Page 133 of 316



Table 40: Results of Type -Ia supernova classification

Algorithm Accuracy (%)

NaÃŕve Bayes 98.86

Decision Tree 98.86

LDA 65.90

KNN 96.59

Random Forest 97.72

SVM 65.90

Performance analysis of the algorithms on the dataset is as follows.

1. NaÃŕve BayesâĂŹ and Decision Tree top the accuracy table with the accuracy of 98.86%.

2. Random Forest ranks 2 with accuracy of 97.72% and KNN occupies 3rd position with

96.59% accuracy.

3. The dramatic change was observed in the case of SVM, which occupied the last position

with LDA with an accuracy of 65.9%. The geometric boundary constraints inhibit the perfor-

mance of the two classifiers.

Overall, we can conclude NaÃŕve BayesâĂŹ, Decision Tree and Random Forest perform

exceptionally well with the dataset, while KNN acts as an average case.

7.8 Conclusion

In this chapter, we have compared few classification techniques to identify Type Ia supernova.

Here it is seen that Naive Bayes, Decision Tree and Random Forest algorithms gave best result

among all. This work is relevant to astroinformatics, especially for classification of supernova,

star-galaxy classification etc. The dataset used is a well-known which is the combination of

ESSENCE, SNLS and nearby supernova data.

7.9 Future Research Directions

Supernova classification is an emerging problem that scientists, astronomers and astro-

physicists are working on to solve using various statistical techniques. In the absence of

spectra, how this problem can be solved. In this chapter, Type-Ia supernova are classified
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using machine learning techniques based on redshift value and distance modulus. The same

techniques can be applied to solve the overall supernova classification problem. It can help

us to differentiate Type I supernova from Type II, Type Ib from Type Ic or so on. Machine

learning techniques along with various statistical methods help us to solve such problems.
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8 MACHINE LEARNING DONE RIGHT: A CASE STUDY IN QUASAR-

STAR CLASSIFICATION

8.1 Introduction

Quasars are quasi-stellar radio sources, which were first discovered in 1960. They emit radio

waves, visible light, ultraviolet rays, infrared rays, X-rays and gamma rays. They are very

bright and the brightness causes the light of all the other stars becoming relatively faint in that

galaxy which houses these quasars. The source of their brightness is generally the massive

black hole present in the center of the host galaxy. Quasars are many light-years away from

the Earth and the energy from quasars takes billions of years to reach the earth’s atmosphere;

they may carry signatures of the early stages of the universe. This information gathering

exercise and subsequent physical analysis of quasars pose strong motivation for the study.

It is difficult for astronomers to study quasars by relying on telescopic observations alone

since quasars are not distinguishable from the stars due to their great distance from Earth.

Evolving some kind of semi-automated or automated technique to classify quasars from stars

is a pressing necessity.

Identification of large numbers of quasars/active galactic nuclei (AGN) over a broad range

of redshift and luminosity has compelled astronomers to distinguish them from stars. His-

torically, quasar candidates have been identified by virtue of color, variability, and lack of

proper motion but generally not all of these combined. The standard way of identifying large

numbers of candidate quasars is to make color cuts using optical or infrared photometry. This

is because the majority of quasars at z < 2.5 emit light that mostly falls in the frequencies

corresponding to blue than the majority of stars in the optical range, and light whose frequen-

cies are much lower than infrared. This establishes the inadequacy to distinguish stars from

quasars based on color, variability, and proper motion. Machine learning techniques have

turned out to be extremely effective in performing classification of various celestial objects.

Machine Learning (ML) [Basak et al.(2016)] is a sub-field of computer science which relies

on statistical methods for predictive analysis. Machine learning algorithms broadly fall into

two categories: supervised and unsupervised methods. In supervised methods, target values

are assigned to every entity in the data set. These may be class labels for classification,

and continuous values for regression. In unsupervised methods, there are no target values

associated with entities and thus the algorithms must find similarities between different

entities. Clustering is an unsupervised machine learning approach. ML algorithms may

broadly make use of one strong classifier, or a combination of weak classifiers. A strong
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classifier or a strong learner is a single model implementation which may effectively be

able to predict the outcome of an input, based on training samples. A weak learner, on

the contrary, is not a robust classifier itself and may be only slightly better than a random

guess. Combinations of weak learners may be used to make strong predictions. Namely two

broad approaches exist for this: bootstrap aggregation (bagging) and boosting. In bagging

[Breiman(1996)], the attribute set of a training sample is a subset of all the attributes. Often,

successive learners complement each other for making a prediction. In boosting, each learner

makes a prediction, usually on the entire attribute set, which is very close to a random guess:

based on accuracy of each weak learner, a weight for each class is assigned to the weak

learner successively constructed; the contribution of each weak learner to the final prediction

depends on these weights. Consequently, the model is built based on a scheme of checks-

and-balances to get the best results over many learners. AdaBoost was introduced by Freund

and Schapire [Freund & Schapire(1996)], which is based on the aforementioned principles of

boosting. Over time, many variations of the original algorithm have been suggested which

take into consideration biases present in the data set and uneven costs of misclassification

such as AdaCost, AdaBoost. MH, Sty-P Boost, Asymmetric AdaBoost etc.

Machine learning algorithms have been used in various fields of astronomy. In this

manuscript, the strength of such algorithms has been utilized to classify quasars or stars to

complement the astronomers’ task of distinguishing them. Some evidence of data classifica-

tion methods for quasar-star classification such as Support Vector Machines [Gao et al.(2008),

Elting et al.(2008)] and SVM-kNN [Peng et al.(2013)] is available in the existing literature.

However, there is room for critical analysis and re-examination of the published work and

significant amendments are not redundant! Machine learning has the potential to provide

good predictions (in this case, determining whether the class a stellar object belongs to is

that of a star or a quasar): but only if aptly and correctly applied; otherwise, it may lead

to wrong classifications or predictions. For example, a high accuracy may not necessarily

be an indication of a proper application of machine learning as these statistical indicators

themselves may lead to controversial results when improperly used. The presentation of the

results, inclusive of appropriate validation methods depending on the nature of data, may

reveal the correctness of the methods used. Incorrect experimental methods and critical

oversight of nuances in data may not be a faithful representation of the problem statement;

this is elaborated in Sections 8.4 to 13.5.

The remainder of the paper is organized as follows: Section 8.2 presents the motivation

behind re-investigating the problems and the novel contribution in the solution scheme.

This is followed by a literature survey where the existing methods are highlighted Section 8.3.
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Section 8.4 discusses the data source, acquisition method, and nuances present in data, used

in existing work. Section 8.5 discusses a few machine learning methods that are used with

emphasis on the effectiveness of a particular approach bolstered by the theoretical analysis of

the methods employed by the authors of this paper. Section ?? of the paper discusses various

metrics used for performance analysis of the given classification approaches. Section 13.5

presents and analyzes the results obtained using the approaches used in Section 8.5; this

section elaborates on the comparison between the work surveyed and the work presented

in this paper. In Section ??, a discussion reconciles all the facts discovered while exploring

the dataset and various methods, and our ideas on an appropriate workflow in any data

analytic pursuit. We conclude in Section ?? by reiterating and fortifying the motivation for

the work presented and document a workflow thumb rule (Figure ??) for the benefit of the

larger readership.

8.2 Motivation and Contribution

The contribution of this paper is two-fold: novelty and critical scrutiny. Once the realization

about data imbalance dawned upon us, we proposed a method, Asymmetric Adaboost, tailor

made to handle such imbalance. This has not been attempted before in star-quasar classifi-

cation, the problem under consideration. Secondly, the application of this method makes

it imperative to critically analyze other methods reported in the existing literature and this

exercise helped unlock the nuances of this problem, otherwise unknown. This exercise sheds

some light on the distinction between classical pattern recognition and machine learning.

The former typically assumes that data are balanced across the classes and the algorithms

and methods are written to handle balanced data. However, the latter is designed to tackle

data cleaning and preparation issues within the algorithmic framework. Thus, beneath the

hype, the rationality, and science behind choosing machine learning over classical pattern

recognition emerges; machine learning is more convenient and powerful. The problem turns

out to be a case study for investigating such a paradigm shift. This has been highlighted by

the authors through critical mathematical and computational analysis and should serve as

another significant contribution.

Different algorithms are not just explored on a random basis but are chosen carefully in

cognizance of papers available in the public domain. Extremely high accuracy reported in

the papers surveyed (refer to Section 8.3), not consistent with the data distribution raised

reasonable doubt. Hence the authors decided to adopt careful scrutiny of the work accom-

plished in the literature, having set the goals on falsification; scientific validation of those
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results required re-computation and investigative analysis of the ML methods used in the

past. This has brought up several anomalies in the published work. The authors intend

to highlight those in phases throughout the remainder of the text. AstroInformatics is an

emerging field and is thus prone to erroneous methods and faulty conclusions. Correcting

and re-evaluating those are important contributions that the community should not ignore!

This is the cornerstone of the work presented apart from highlighting the correct theory

behind ML methods in astronomy and science. The detailed technical contributions made

by authors are summarized as follows:

• We have attempted to demonstrate the importance of linear separability tests. This is

done to check whether the data points are linearly separable or not. Certain algorithms

like SVM with linear kernel cannot be used if data is not linearly separable. The impli-

cations of a separability test, an explanation for which has been given in Section ??, has

been overlooked in the available literature.

• A remarkable property of this particular data set, the presence of data bias, has been

identified. If the classification is performed without considering the bias in the data

set, it may lead to biased results; for example, if two classes C1 and C2 are present

in the dataset and one class is dominating in the dataset then directly applying any

classification algorithm may return results which are biased by the dominating class.

We argue that a dataset must be balanced i.e. the selected training set for classification

must contain almost the same amount of data belonging to both classes. This is

presented in Section 8.5.1 as the concept of artificial balancing of the dataset.

• We have also proposed an approach which mathematically handles the bias in the

dataset. This approach can be used directly in the presence of inherent data bias.

Known as Asymmetric AdaBoost, this has been discussed in Section ??.

It is important to note that the authors have used the same datasets from previous work

by other researchers. Also, the paper is not only about highlighting the efficacy of a method

by exhibiting marginal improvements in accuracy. Astronomy is becoming increasingly

data driven and it is imperative that such new paradigms be embraced by the leaders of the

astronomical community. However, such endeavor should be carefully pursued because

of the possible loopholes that can arise due to oversight or lack of adequate foundation in

data science. Through this paper, apart from demonstrating effective methods for automatic

classification of stars and quasars, the authors laid down some fundamental ideas that should

be kept in mind and adhered to. The ideas/working rules are for anyone wishing to pursue
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astroInformatics or data analytics in any area. A flowchart presenting the knowledge base is

presented in the conclusion section (Figure ??).

All the experiments were performed in Python3, using the machine learning toolkit

scikit-learn [Pedregosa et al.(2011)].

8.3 Star-Quasar Classification: Existing Literature

Support Vector Machine (SVM) is one of the most powerful machine learning methods, dis-

cussed in detail in Section 8.5. It is used generally for binary classification. However, variants

of this method can also be applied for multi-class classification. Since the classification is

based on two classes, namely stars and quasars, SVM has been widely used in the existing

literature to classify quasars and stars.

[Gao et al.(2008)] used SVM to separate quasars from stars listed in the Sloan Digital Sky

Survey (SDSS) database (refer to Section 8.4 for details on data acquisition). Four colors:

u − g , g − r , r − i , and i − z are used for photometric classification of quasars from stars.

SVM was used for the classification of quasars and stars. A non-linear radial basis function

(RBF) kernel was used for SVM. The main reason for the usage of RBF kernels was to tune the

parameters γ and c (trade-off) to increase the accuracy. The highest accuracy of classification

obtained was equal to 97.55%. However, the manuscript fails to check for linear separability

of the two classes. [Elting et al.(2008)] used SVM for the classification of stars, galaxies, and

quasars. A data set comprising the u−g , g − r , r − i and i − z colors is used for the prediction

on unbalanced data set. A non-linear RBF kernel was used for classification and an accuracy

of 98.5% was obtained.

The aforementioned papers used non-linear RBF kernel which is commonly used when

data distribution is Gaussian. It is imprudent to cite increase the accuracy as the reason for

using any kernel. The choice of kernel depends on the data. Therefore, authors in the present

manuscript have performed a linear separability test on the data set, discussed in Section

8.5, which clearly shows that the data is mostly linearly separable and hence, a linear kernel

should be used. [Peng et al.(2013)] used an SVM-KNN method which is a combination of

SVM and KNN. SVM-KNN strengthens the generalization ability of SVM and applies KNN to

correct some forecasting errors of SVM and improve the overall forecast accuracy. SVM-KNN

was applied for classification using a linear kernel. SVM-KNN (the ratio of the number of

samples in the training set to the testing set as 9:1) was applied on the unbalanced SDSS data

set which was dominated by the "star" class. This gave an overall accuracy of 98.85% as the

data was unbalanced and the classes were biased. The total percentage of stars and quasars
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which were classified using this method was 99.41% and 98.19% respectively.

SVM should not be used without performing a separability test and therefore, choice

of linear or RBF kernel depends on the linear separability of data. If data is linearly sep-

arable, then SVM may be implemented using a linear kernel. The absence of linear sep-

arability and evidence of a normal trend in data may justify SVM implementation in con-

junction with the RBF kernel. However, that evidence was not forthcoming in the works

by [Gao et al.(2008)], [Elting et al.(2008)] or [Peng et al.(2013)]. In fact, one should select

the kernel and then accordingly should apply SVM depending on the data distribution.

There was no evidence of a separability analysis being performed by [Gao et al.(2008)],

[Elting et al.(2008)] or [Peng et al.(2013)], thus forcing the conclusion that the kernel was

chosen without proper examination. [Gao et al.(2008)] and [Elting et al.(2008)] used a non-

linear RBF kernel is used along with SVM. Similarly, in [Peng et al.(2013)] used a linear kernel

in SVM-KNN without a proper justification. Moreover, the class dominance was ignored in

[Gao et al.(2008), Elting et al.(2008), Peng et al.(2013)]. Class dominance must be considered,

otherwise, the accuracy of classification obtained will be biased by the dominant class and

it will always be numerically very high. We have performed artificial balancing of data to

counter the effects of class bias; the process of artificial balancing has been elaborated in

8.5.1.

The authors would like to emphasize that the manuscript is not a black-box assembly

of several ML techniques but a careful study of those methods, eventually picking the right

classifier based on the nature of data (such as Asymmetric Adaboost, as discussed in Section

??). The algorithm’s ability to handle class imbalance, and establishing the applicability of

such an algorithm to solve similar kind of problems have been addressed in our work.

Sensitivity and specificity are measures of performance for binary classifiers. The accuracy

obtained without calculating sensitivity and specificity is not always meaningful. Sensi-

tivity and specificity are used to check the correctness of the obtained accuracy but were

not reported in [Gao et al.(2008), Elting et al.(2008), Peng et al.(2013)]. This makes accuracy

validation difficult.

The comparison of the results obtained from these [Gao et al.(2008), Elting et al.(2008),

Peng et al.(2013)] are presented in Table 41.

8.4 Data Acquisition

The Sloan Digital Sky Survey (SDSS) [Adelman-McCarthy et al.(2008)] has created the most

detailed three-dimensional maps of the Universe ever made, with deep multi-color images of
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Table 41: Results of classification obtained by [Gao et al.(2008), Elting et al.(2008), Peng et al.(2013)]:
the critical and challenging issues not addressed in the cited literature are tabulated as well.

Methods Accuracy (%) Class Bias Data Imbalance Linear Separability Test Done
[Gao et al.(2008)] 97.55 YES YES NO

[Elting et al.(2008)] 98.5 YES YES NO
[Peng et al.(2013)] 98.85 YES YES NO

one-third of the sky and spectra for more than three million astronomical objects. It is a major

multi-filter imaging and spectroscopic redshift survey using a dedicated 2.5m wide-angle

optical telescope at the Apache Point Observatory in New Mexico, USA. Data collection began

in 2000 and the final imaging data release covers over 35% of the sky, with photometric

observations of around 500 million objects and spectra for more than 3 million objects. The

main galaxy sample has a median redshift of z = 0.1; there are redshifts for luminous red

galaxies as far as z = 0.7, and for quasars as far as z = 5; and the imaging survey has been

involved in the detection of quasars beyond a redshift z = 6. Stars have a redshift of z = 0.

SDSS makes the data releases available over the Internet. Data release 7 (DR7) [Abazajian et al.(2009)],

released in 2009, includes all photometric observations taken with SDSS imaging camera, cov-

ering 14,555 square degrees of the sky. Data Release 9 (DR9) [Ahn et al.(2013)], released to the

public on 31 July 2012, includes the first results from the Baryon Oscillations Spectroscopic

Survey (BOSS) spectrograph, including over 800,000 new spectra. Over 500,000 of the new

spectra are of objects in the Universe 7 billion years ago (roughly half the age of the universe).

Data release 10 (DR10), released to the public on 31 July 2013. DR10 is the first release of

the spectra from the SDSS-III’s Apache Point Observatory Galactic Evolution Experiment

(APOGEE), which uses infrared spectroscopy to study tens of thousands of stars in the Milky

Way. The SkyServer provides a range of interfaces to an underlying Microsoft SQL Server. Both

spectra and images are available in this way, and interfaces are made very easy to use. The

data are available for non-commercial use only, without written permission. The SkyServer

also provides a range of tutorials aimed at everyone from school children up to professional

astronomers. The tenth major data release, DR10, released in July 2013, provides images,

imaging catalogs, spectra, and redshifts via a variety of search interfaces. The datasets are

available for download from the casjobs website (http://skyserver.sdss.org/casjobs).

The spectroscopic data is stored in the SpecObj table in the SkyServer. Casjobs is a flexible

and advanced SQL-based interface to the Catalog Archive Server (CAS), for all data releases.

It is used to download the SDSS DR6 [Elting et al.(2008)] data set which contains spectral

information of 74463 quasars and 430827 stars. Spectral information like the colors u − g ,
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g − r , r − i , i − z and redshift are obtained by running a SQL query. The output obtained from

running the query is downloaded in the form of a comma-separated value (CSV) file.

8.5 Methods

8.5.1 Artificial Balancing of Data

Since the dataset is dominated by a single class (stars), it is essential for the training sets used

for training the algorithms to be artificially balanced. In the data set, the number of entities

in the stars’ class is about six times greater than the number of entities in the quasars’ class; it

is a cause of concern as a data bias is imminent. In such a case, voting for the dominating

class naturally increases as the number of entities belonging to this class is greater. The

number of entities classified as stars is far greater than the number of entities classified as

quasars. The extremely high accuracy reported by [Gao et al.(2008)], [Elting et al.(2008)], and,

[Peng et al.(2013)] is because of the dominance of one class and not because the classes are

correctly identified. In such cases, the sensitivity and specificity are also close to 1.

Artificial balancing of data needs to be performed such that the classes present in the

dataset used for training a model don’t present a bias to the learning algorithm. In quasar-star

classification, the stars’ class dominates the quasars’ class. This causes an increase in the

influence of the stars’ class on the learning algorithm and results in a higher accuracy of

classification. Algorithms like SVM cannot handle the imbalance in classes if the separating

boundary between the two classes is thin, or slightly overlapping (which is often the case

in many datasets) and end up classifying more number of samples as belonging to the

dominant class, thereby increasing the accuracy of classification, numerically. It is found that

the accuracy of classification decreases with the artificial balancing of the dataset as shown

in Section 13.5. In artificial balancing, an equal number of samples from both the classes

are taken for training the classifier. This eliminates the class bias and the data imbalance.

The dataset used for analysis has a larger number of samples belonging to the stars’ class as

compared to the number of samples in the quasars’ class. The samples that are classified as

belonging to the stars’ class are more when compared to the number of sampled classified

as belonging to the quasars’ class as the voting for the dominating class increases with

imbalance and results in a higher accuracy of classification. Hence, the voting for the stars’

class was found to be 99.41% which is higher than the voting of quasars, which is 98.19%, by

[Peng et al.(2013)]. The accuracy claimed is doubtful as there data imbalance and class bias

is prevalent.
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9 AN INTRODUCTION TO IMAGE PROCESSING

9.1
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10 A STUDY IN EMERGENCE OF ASTROINFORMATICS: A NOVEL

METHOD IN BIG DATA MINING

10.1 INTRODUCTION

Scientometrics evaluates the impact of the results of scientific research by placing focus on the

work’s quantitative and measurable aspects. Statistical mathematical models are employed

in this study and evaluation of journals and conference proceedings to asses their quality.

The implosion of journals and conference proceedings in the science and technology domain

coupled with the insistence of different rating agencies and academic institutions to use

journal metrics for evaluation of scholarly contribution present a big data accumulation and

analysis problem. This high volume of data requires an efficient metric system for fair rating

of the journals. However, certain highly known and widely used metrics such as the Impact

Factor and the H factor have been misused lately through practices like non-contextual

self-citation, forced citation, copious-citation etc. [7] Thus, the way this volume of data is

modeled needs improvement because it influences the evaluation and processing of this data

to draw useful conclusions. One effective way to deal with this problem is to characterize

a journal by a single metric or a reduced set of metrics that hold more significance. The

volumes of data scraped from various sources are organized as a rectangular mxn matrix

where m is the rows representing the number of articles in a journal and n columns of various

Scientometric parameters. An effective dimensionality and rank reduction technique such as

the Singular Value Decomposition (SVD) applied on the original data matrix not only helps

to obtain a single ranking metric(based on the different evaluation parameters enlisted as

various columns) but also identifies pattern used for efficient analysis of the big data. Apache

Mahout, Hadoop, Spark, R, Python, Ruby are some tools that can be used to implement SVD

and other similar dimensionality reduction techniques. [5]

One notable characteristic of the Scientometric data matrix is its sparsity. The matrix

is almost always rectangular and most metric fields (columns) do not apply to many of the

articles(rows). For instance, a lot of journals may not have patent citations. Similarly, a

number of other parameters might not apply to a journal as a whole. Usually, n and m differ

from each other by a good integer difference. Thus, by virtue of this sparsity, the efficiency

of the SVD algorithms can be enhanced when coupled with norms like l1-norm, l2-norm or

the group norms. In general, both sparsity and structural sparsity regularization methods

utilize the assumption that the output Y can be described by a reduced number of input

variables in the input space X that best describe the output. In addition to this, structured
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sparsity regularization methods can be extended to allow optimal selection over groups of

input variables in X .

10.2 The depths of Dimensionality Reduction

Dimensionality reduction has played a significant role in helping us ascertain results of

the analysis for voluminous data set [2]. The propensity to employ such methods comes

from the phenomenal growth of data and the velocity at which it is generated. Dimensional

reduction such as Singular Value Decomposition and Principle component Analysis solves

such big data problems by means of extracting more prominent features and obtaining a

better representation of the data. This data tends to be much smaller to store and much

easier to handle to perform further analysis. These dimensionality reduction methods are

very often found in most of the tools which handle large data sets and perform rigorous

data analysis. Such tools include Apache Mahout, Hadoop, Spark, R, Python etc. The ease

of employing such methods is directly dependent on the performance of such tools to be

able to compute and assess the results quickly and store it efficiently, all this while managing

resources available at an optimal rate. The divergence in the methods used in these tools to

compute such algorithms gives us scope to study and evaluate such case scenarios and help

us choose the right kind of tools to perform these tasks.

10.2.1 PCA

Principal Component Analysis, a technique mostly used in statistics to transform a set of

observations of possibly correlated variables into a set of linearly uncorrelated variables

called as Principal Components. These Principal Components are the representation of the

underlying structure in the data or the directions in which the variance is more and where

the data is more concentrated.

The procedure lays emphasis on variation and identification of strong patterns in the

dataset. PCA extracts a low dimensional set of features from a higher dimension dataset,

simultaneously serving the objective of capturing as much useful information as possible.

PCA is most commonly implemented in two ways:-

• Eigenvalue Decomposition of a data covariance(or correlation) matrix into canonical

form of eigenvalues and eigenvectors. However, only square/diagonalizable matrices

can be factorized this way and hence it also takes the name Matrix Diagonalization.

• Singular Value Decomposition of the initial higher dimension matrix. This approach
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is relatively more suitable for the problem being discussed since it exists for all matrices:

singular, non-singular, dense, sparse, square or rectangular.

10.2.2 Singular Value Decomposition

Singular Value Decomposition is the factorization of a real or complex matrix. Large scale

of Scientometric data is mined using suitable web scraping techniques and is modeled as a

matrix in which the rows represent the articles in a journal published over the years, and the

columns represent various Scientometrics or indicators proposed by experts of evaluation

agencies [3]. The original data matrix, say A of dimension mxn and rank k is factorized into

three unique matrices U, V and WH.

• U - Matrix of Left Singular Vectors of dimension mxr

• V - Diagonal matrix of dimension rxr containing singular values in decreasing order

along the diagonal

• WH - Matrix of Right Singular Vectors of dimension nxr. The Hermitian, or the con-

jugate transpose of W is taken, changing its dimension to rxn and hence the original

dimension of the matrix is maintained after the matrix multiplication. In this case of

Scientometrics, since the data is represented as a real matrix, Hermitian transpose is

simply the transpose of W.

r is a very small number numerically representing the approximate rank of the matrix or

the number of "concepts" in the data matrix A. Concepts refer to latent dimensions or latent

factors showing the association between the singular values and individual components

[3]. The choice of r plays a vital role in deciding the accuracy and computation time of the

decomposition. If r is equal to k, then the SVD is said to be a Full Rank Decomposition

of A. Truncated SVD or Reduced Rank Approximation of A is obtained by setting all but

the first r largest singular values equal to zero and using the first r columns of U and W

[Manyika et al.()Manyika, Chui, Brown, Bughin, Dobbs, Roxburgh, and Byers].

Therefore, choosing a higher value of r closer to k would give a more accurate approxima-

tion whereas a lower value would save a lot of computation time and increase efficiency.

10.2.3 Regularization Norms

In the case of Big Data, parsimony is central to variable and feature selection, which makes

the data model more intelligible and less expensive in terms of processing.
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lp -norm of a matrix or vector x, represented as ||xp || is defined as, ||xp || = p
√
Σi |x|i p i.e the

pth root of summation of all the elements raised to the power p. Hence, by definition, l1 norm

= ||x||1 = Σi |x|i
Sparse approximation, inducing structural sparsity as well as regularization is achieved by

a number of norms, the most common ones being l1 norm and the mixed group l1-lq norm.

The relative structure and position of the variable in the input vector, and hence the inter-

relationship between the variables is inconsequential as a variable is chosen individually in l1

regularization. Prior knowledge aids in improving the efficacy of estimation through these

techniques.

The l1 norm concurs to only the cardinality constraint and is unaware to any other

information available about the patterns of non-zero coefficients.[1]

10.2.4 Sparsity via the l1 norm

Most variable or feature selection problems are presented as combinatorial optimization

problems. Such problems focus on selecting the optimal solution through a discrete, finite

set of feasible solutions. Additionally, l1 norm turns these problems to convex problems

after dropping certain constraints from the overall optimization problem. This is known

as convex relaxation. Convex problems classify as the class of problems in which the con-

straints are convex functions and the objective function is convex if minimizing, or concave

if maximizing.

l1 regularization for sparsity through supervised learning involves predicting a vector y

from a set of usually reduced values/observations consisting a vector in the original data

matrix x. This mapping function is often known as the hypothesis h : x→y. To achieve this,

we assume there exists a joint probability distribution P(x,y) over x and y which helps us

model anomalies like noise in the predictions.

In addition to this, another function known as a loss function L(y’,y) is required to measure

the difference in the prediction y’=h(x) from the true result y. Consider the resulting vectors

consisting of the predicted value and the true value to be y’ and y respectively. A characteristic

called Risk, R(h) associated with loss function, and hence in turn with the hypothesis-h(x) is

defined as the expectation of the loss function.

R(h) = E[L(y ′, y)] =
∫

L(y ′, y)dP (x, y)
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Thus, the hypothesis chosen for mapping should be such that the risk, R(h) is minimum.

This refers to as risk minimization. However, in usual cases, the joint probability distribution

of the problem in hand, P(x,y) is not known. So, an approximation called empirical risk is

computed by taking the average of the loss function of all the observations. Empirical Risk is

given by :

Remp (h) = 1

n

n∑
i=1

L(y’i ,yi )

The empirical risk minimization principle states that the hypothesis(h’) selected must be

such it that reduces the empirical risk Remp (h):

h′ = min
h

Remp (h)

While mapping observations x in n dimensional vector x to outputs y in vector y, we

consider p pairs of data points - (xi ,yi ) ∈Rn× y where i = 1,2...p.

Thus the optimization problem for the data matrix in Scientometrics takes the form:

min
w∈ Rn

1

p

p∑
i=1

L(y’i ,wT xi )+λΩ(w)

L is a loss function which can either be square loss for least squares regression, L(y ′, y) =
1
2 (y ′− y)2, or a logistic loss function. Now, the problem thus takes the form:

min
w∈Rn

||y’−Aw||2

Since the variables in the vector space/groups can overlap, it is ideal to chooseΩ(w) to be

a group norm for better predictive performance and structure. The m rows of data matrix A

are treated as vectors or groups(g) of these variables, forming a partition equal to the vector

dimension, [1:n]. If G is the set of all these groups and dg is a scalar weight indexed by each

group g, the norm is said be a l1-l−q norm where q ∈ [2,∞). [1]

Ω(w) = ∑
g∈G

dg ||wg ||q

The choice of the indexed weight dg is critical because it is responsible for the discrep-

ancies of sizes between the groups. It must also compensate for the possible penalization

of parameters which can increase due to high-dimensional scaling. The factors that affect
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the selection are the choice of q in the group norm and the consistency that is expected of

the result. In addition to this, accuracy and efficiency can be enhanced by weighing each

coefficient in a group rather than weighing the entire group as a whole. The initial sparse

data matrix is first manipulated using the l1-norm. [1]

10.3 Methodology

An estimate of a journal’s scholastic indices is necessary to judge its effective impact. The

nuances of scientometric factors such as Total Citation Count and Self-citation Count come

into play when deciding the impact of a journal. However, these factors unless considered

in ideal circumstances don’t by themselves become a good indicator to represent the im-

portance of a journal. Many anomalies arise when considering these indices directly which

may misrepresent or falsify a journal’s true influence. The necessity to use these indices in

context with a ranking algorithm is imperative to better utilize these indices. The resulting

transformation of l1-norms gives rise to a row matrix which is of the length equal to the

number of features of the pristine Scientometric data. This row matrix effectively represents

the entire dataset at any given iteration. The application of the Singular Value Decomposition

operation on this row matrix is key in determining the necessary norm values to remove

through a recursive approach.

The si ng val array contains the Normalized Singular Values of all the individual l1-norm

transformed columns. These values act as scores while addressing the impact of any given

journal. In the context of Singular Values the one with the lowest si ng val score is the most

influential journal. Utilizing these scores we can formulate a list of Journals which give

preference to subtle factors such as high or low Citation Counts and give an appropriate

ranking. Identifying the influential journals from a column norm and contrasting it with

the Singular values is the equivalent of recursively eliminating the a low impact journal by

comparing it’s Singular Value to its Frobenius norm. This allows the algorithm to repeatedly

eliminate the journals and find the score simultaneously to give a more judicious ranking

system. Our method is different from the SCOPUS journal rank (SJR) algorithm. The SJR

indicator computation uses an iterative algorithm that distributes prestige values among

the journals until a steady-state solution is reached. The method is similar to eigen factor

score [9] where the score is influenced by the size of the journal so that the score doubles

when the journal doubles in size. Our method, on the contrary, adopts a recursive approach

and doesn’t assume initial prestige values. Therefore, the eigen factor approach may not be

suitable for evaluating the short-term influence of peer-reviewed journals. In contrast, our

Page 150 of 316



Algorithm 1 Recursive l1-norm SVD

1: A ← Input Transposed Feature Matrix A
2: procedure LASSO

3: row_matrix ← Coefficents of Lasso Regression
4: r etur n row_matrix

5: procedure SVD
6: U,Σ,V ← Matrices of SVD
7: r etur n Σ

8: procedure NORMALIZE

9: Norm_Data ← Normalized using l1-norms
10: r etur n Norm_Data

11: procedure RECURSIVE

12: L1_row ← L ASSO(A)
13: singval [] ← SV D(L1_r ow)
14: Row_Norm ← Nor mal i ze(L1_r ow)
15: Col_Norm ← Nor mal i ze(All columns of A)
16: Col_i ← Closest Col_Norm Value to Row_Norm
17: Delete Col_i from A
18: g oto RECURSIVE

method works well under such restrictions.

10.4 The Big Data Landscape

The appeal of modern-day computing is its flexibility to handle volumes of data through

an aspect of coordination and integration. Advancements in Big Data frameworks and

technologies has allowed us to break the barriers of memory constraints for computing

and implement a more scalable approach to employ methods and algorithms. [5] The

aforementioned journal ranking scheme is one such algorithm which thrives under the

improvements made to scalability in Big Data. With optimized additions such as Apache

Spark to the distributed computing family, the enactment of l1 Regularization and Singular

Value Decomposition has reached an all new height. Implementing the SVD algorithm with

the help of Spark can not only improve spatial efficiency but temporal as well. The l1-norm

SVD scheme utilizes the SVD and regularization implementation of ARPACK and LAPACK

libraries along with a cluster setup to enhance the speed of execution by a magnitude of at

least three times depending on the configuration. Collecting data is also a very important

aspect of Big Data topography. The necessity of a cluster based system is rendered useless

without the requisite data to substantiate it. Scientometric data usually deals with properties

of the journals such as Total Citation, Self-Citation etc. This data could be collected using
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Web Scraping methodologies but also can be found by most journal ranking organizations,

available for open source use; SCOPUS and SCIMAGO. For the l1-norm SVD scheme, we used

SCOPUS as it had an eclectic set of features which were deemed appropriate to showcase the

effectiveness of the algorithm. The inclusion of the two important factors such as CiteScore

and SJR indicators gave a better enhancement over just considering one over the other. For

more information about the data and code used to develop this algorithm (please refer to

[Aedula(2018)], Github repository of the project).

10.4.1 Case Study: Astronomy and Computing

SCOPUS and SCIMAGO hold some of the best journal ranking systems to this day, using their

CiteScore and SJR indicators respectively to rank journals. However, due to the manner in

which both these indicators are considered, it is often the case that the ranking might not

display the true potential of a specified scientific journal. To demonstrate this we considered

the case of the Journal Astronomy and Computing within the context of SCOPUS Journals in

the relevant domain of Astronomy and Astrophysics.

The primary focus of this case study is to determine where the Journal Astronomy and

Computing stand with respect other journals which were established prior to it. The algorithm

also tests the validity of the ranking and suggests an alternative rank which used a more

holistic approach towards the features.

Using the publicly available SCOPUS dataset we implemented the aforementioned l1-

norm SVD scheme to rank all its corresponding journals and simultaneously determine the

potency of the algorithm. SCOPUS contains approximately around 46k Journals listed in

different domains. Discarding few redundancies, SCOPUS effectively covers a large range

of metrics and provides adequate resources for verification. For this demonstration, we

have considered SCOPUS’s 7 different metrics to be used as features in our algorithm. These

features include Citation Count, Scholarly Output, SNIP, SJR, CiteScore, Percentile and Percent

Cited.

To cross verify the results of the algorithm they were compared to SJR based ranking of

SCIMAGO to articulate the discrepancies. The l1-norm SVD scheme worked brilliantly in

rating the journals and approached the data in a more wholesome sense. The result was

a ranking system which ranked Astronomy and Computing much higher than most older

journals and also at the same time highlighting the niche prominence of the particular journal.

Similarly, this method also highlighted the rise of other journals which were underrepresented

due to the usage of the aforementioned SCOPUS and SCIMAGO indicators. This was method

was largely successful in rectifying the rank of such journals. This l1-norm SVD scheme
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Journal Name L1 Scheme Rank SJR based Rank Year
Astronomy and Computing 39 31 2013

Astronomy and Astrophysics Review 40 5 1999
Radiophysics and Quantum Electronics 41 51 1969

Solar System Research 42 48 1999
Living Reviews in Solar Physics 43 3 2005

Astrophysical Bulletin 44 45 2010
Journal of Astrophysics and Astronomy 45 55 1999

Revista Mexicana de Astronomia y Astrofisica 46 23 1999
Acta Astronomica 47 20 1999

Journal of the Korean Astronomical Society 48 32 2009
Cosmic Research 49 58 1968

Geophysical and Astrophysical Fluid Dynamics 50 46 1999
New Astronomy Reviews 51 12 1999

Kinematics and Physics of Celestial Bodies 52 65 2009
Astronomy and Geophysics 53 67 1996

Chinese Astronomy and Astrophysics 54 72 1981

Table 42: Case Study: Astronomy and Computing, SJR and L1-SVD ranks

can be extrapolated to other data entries as well. It can also be used to study the impact of

individual articles. Utilizing similar features such as Total Citation, Self Citation, and NLIQ.

The algorithm can be used to rank articles within a journal with great accuracy along with a

holistic consideration.

10.4.2 Contrasting Performances of l1 and l2 Norms

Being recursive in nature the Norm-based algorithms are subjected to some lapse while

parallelizing its execution. However, they can be improved by using the right kind of suitable

norm to enhance its running time. The decision of using l1-norm over the l2-norm was made

because of a pragmatic choice for the following recursive scheme. The facet of the l1-norm to

use a loss function over the l2-norm’s squared data approach proves to be significantly better

in structuring the data for a high-density computation. This type of method allows the overall

dataset to reduce to a row matrix the size of the smallest dimension of the original data. This

gives the added benefit of having a very consistent execution time and scale accordingly with

the increase in data size.
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Norm Time per row

l1 Norm 0.172s

l2 Norm 0.188s

Table 43: Performance time for a row matrix of size 46k.

The execution time mentioned in Table 2 of this article gives the time-based performance

of the different norms. This will only get significant with the increase in the size of the rows.

This dereliction in parallelization can be compensated by the expected speed increase in the

execution of the l1-norm and SVD routines in a cluster setup. Optimized settings like Apache

Spark which uses the aforementioned LAPACK and ARPACK libraries are able to boost the

speed even further. The biggest benefit of opting such Big Data settings is that by increasing

the size of the cluster the overall speed of the algorithm also scales appropriately.

Data Framework Overall Time

Python 2hrs +

R 58 mins

L1 SVD 15 mins

Table 44: Performance time for SVD of size 100k X 100k.

Table 3 indicates the performance time for the SVD algorithms in different ecosystems.

The usage of SVD function in the algorithm to determine the individual singular values of the

reduced row matrices of the columns can also be enhanced by using the corresponding Eigen

Value optimization which are usually provided within the Big Data environment. Algorithms

such as Lanczo’s algorithm can not only enhance the speed of the operation but also can be

very easily parallelized.

Hence, this combination of l1-norm and SVD can effectively make the best version of

algorithm; being fast in execution at the same time delivering a holistic approach.

10.5 Knowledge Discovery from Big Data Computing: The Evolution of

ASCOM

Even though Astronomy and Computing (ASCOM) has been in publication for five years only,

its reputation has grown quickly as seen from the ranking system proposed here. This is
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despite the fact that ASCOM is severely handicapped in size. ASCOM is ranked 39 according

to our method, slightly lower than its 31 rank in SCOPUS. This is due to the fact that we

haven’t used " citations from more prestigious journals" as a feature. Nonetheless, it is ranked

higher than many of its peers which have been in publication over 20 years. This is also due

to the fact that ASCOM is "one of its kind" and uniquely positioned in the scientific space

shepherded by top notch editors. Such qualitative feature, regrettably is not visible from the

big data landscape.

Figure 22: l1 Rank Progression of ASCOM based on SCOPUS data computed by the proposed method.
The steady ascendancy in the journal’s rank is unmistakable. it will be interesting to investigate the
behavior of the journal rank in the long run once enough data is gathered.

There is another interesting observation to take note of. By ignoring the "size does matter"

paradigm, the ranks of some journals (many years in publication with proportionate volumes

and issues) suffered. A few examples include Living Reviews in Solar Physics, ranked 43

according to our scheme while it is ranked 3 in SCOPUS and Astronomy and Astrophysics

Review, ranked 40 in our scheme while it is ranked 5 according to SCOPUS. This is important

as our goal was to investigate the standing of a journal relatively new and in a niche area. This

indicates that years in publication may sometimes dominate over other quality indicators

and may not capture the growth of journals in "short time windows". Our study also reveals

that ASCOM is indeed a quality journal as far as early promise is concerned.
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10.6 Conclusion

The Big Data abode adds a new dimension to the already existing domain of Machine Learn-

ing; where the computation aspect is as important as the algorithmic and operational facet.

The l1-norm SVD scheme does just that, it introduces a brand new way of ranking data by

considering all the features to its entirety. The added benefit of optimizing the required norms

and methodologies in terms of a Big Data domain suggests its vast flexibility in the area of

Big Data Mining. This article covered its application in the Scientometric Domain. However

it can be extended to any type of data, provided that the nuances are well understood. The

aforementioned recursive methodology of the scheme allows us to carefully consider the

important feature of the dataset and make prudent decisions based on the outcome of an

iteration. This allows us to take a more wholesome approach which is very similar to the

page rank algorithm which gives a specific importance to each one of the features under

computation.

In the context of Scientometrics, this scheme is also applicable as a way to rank specific

articles in a given journal with the result that their respective scholastic indices are available.

We can conduct similar data experiments using indicators like Total Citations, Self Citations

etc to categorize them of their various other features available for articles. We have also done

some extensive studies based on the scholastic indices of the ACM journal whose case study

lies outside the scope of this article and were able to successfully rank the corresponding

journals and article. The scheme proved to be successful in evaluating the parameters with

their nuances intact. More often than not, most Scientometric indicators do not apply to

the journal being evaluated. As a consequence of this, the data matrix in which the rows

represent the articles in the journal and the columns represent the different evaluation

metrics is clearly sparse. Exploiting this sparsity, using certain structural sparsity inducing

norms and applying recursive Singular Value Decomposition to eliminate metrics can make

the process more efficient. Sparse approximation is ideal in such cases because although the

data is represented as a matrix in a high-dimensional space, it can actually be obtained in

some lower-dimensional subspace due to it being sparse.

With the ever-expanding necessity to process voluminous amounts of data, there needs

to be a need to provide solutions which can adapt to the fluctuating technological climate.

The l1-norm SVD scheme tries to achieve similar potency, the usage of norm-based dimen-

sionality reduction enhances the over-all efficiency on how we interpret data. The usage of

techniques like sparsity norms suppresses outliers and only highlights the most meaningful

data in store. The evolution of such methods will prove to be an absolute prerequisite in

the future to compute copious amounts of data. Moving forward Dimensionality Reduction
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based techniques will become the foundation of salient data identification and the l1-norm

SVD scheme is such a step along that direction.
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11 MACHINE LEARNING BASED ANALYSIS OF GRAVITATIONAL

WAVES AND CLASSIFICATION OF EXOPLANETS

11.1 Introduction

Gravitational waves (GW) are the ripples in space-time curvature [?]. In other words, GW are

emitted when the mass quadrupole moment changes with time. Einstein’s theory of general

relativity first gave us a glimpse to the concept of Gravitational Waves, now after a span of

100 years with help of the extraordinary efforts of LIGO [?] and Virgo their existence has been

confirmed. On February 11th 2016, LIGO announced its first discovery of Gravitational waves

[?] corresponding to two black holes of 36 and 29 solar masses merging. So far at the time of

writing this manuscript five such events of black hole mergers have been recorded along with

a neutron star merger.

Gravitational waves are detected as strains in laser interferometers when it passes through

it. These strains given by, h(t) =∆L/L where ∆L is the change in length, is often converted

into numerical relativity based waveforms to better interpret the source. Numerical relativity

(NR) is a subsidiary of general relativity. It is often employed to study cosmological entities

such as black holes and neutron stars. The principles of NR regarding GW for a binary pair

however remain the same regardless of the type of entity which is being studied with some

minor adjustments. This leads to a postulation that NR can be extrapolated to other entities,

particularly weaker ones such as Exoplanets assuming that the necessary conditions of the

source are met. In our case the binary in-spiral of black holes is extended to the Star-Planet

Binary pair of an Exoplanet system [?], [?].

11.1.1 Premise and Solution

The primary problem with employing NR directly to weaker entities is that the complex

nature of NR algorithms and its reliance on a converging point gives it an enormous overhead

in terms of time complexity and therefore is ill-suited to obtain results quickly. Typically with

the new advancements in reduced order models, the current simulation times go as long a

couple of days. There is a significant necessity to find an optimized solution for generating

NR waveforms, as NR waveforms give valuable insight about the source. Software Modules

such as PyCBC make an attempt for finding approximated waveforms using semi-analytical

models, which still have considerable overheads. Aside from the computational aspects of

generating NR based waveforms for GW, there is also a need to use GW as a feature which can

supplement the existing cohort of information for entities such as Exoplanets. This additional
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information can provide valuable insight and address issues with detection of new exoplanets

as GW unlike light waves have negligible absorption and dispersion, therefore retaining a

large amount of information about the masses of the source objects.

Figure 23: Road map

Utilizing a meticulously constructed dataset from semi-analytical model softwares such

as PyCBC we can create a base to train our Machine Learning model. Given the correct

assumptions this model will be able to get a good approximation for generating waveforms for

weaker entities, while not accurate but is faster than the traditional methods. Methods based

of Regression not only enhance the speed of generating waveforms by a great magnitude

but also helps it in making it more consistent. Also, the added benefit of using the GW data

for entities like Star-Planet system of Exoplanets gives a greater depth of understanding

the intrinsic properties. Techniques such as Decision Trees and most importantly Random

Forests show how well the Gravitational Waves data not only integrate with the already

existing cohort of information, it also provides details about the GW frequency and spin.

11.1.2 Assumptions made to simplify computation

Extending Numerical Relativity using Machine Learning poses a few challenges when inter-

preting the results. Primarily, a direct one to one conversion is not possible, features such as

ring down of the NR waveform are exclusive to that of a system of black holes. To address

this issue we ensured that we used the appropriate adjustment and set the ring down to zero
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after merger. The spin associated with the Star-planet pair is also assumed to be zero to ease

calculations, since the spin of a planet or a star is of much lesser magnitude compared to

that of a black hole. The Gravitational Wave frequency is taken as twice the orbital frequency

of the planet around the star which is 2ω where ω is the calculated orbital frequency [?].

The sampling rate of the simulated data is also set at a constant del _t = 1/4096 for ease of

generating data. Note that this can be customized to generate particular data depending

on the required sampling rate. Lastly, since these mergers take an extraordinary amount of

time this simulation only generates data in the last stages of coalescence, effectively finding

the peak amplitude of coalescence on a time domain and use that peak amplitude in the

classification. Therefore, the most important part of the waveform is the sinusoidal aspect

pre-coalescence for information retrieval of the source.

11.2 Basic Properties and features of Gravitational waves

11.2.1 Physical Properties

In the context of physical nature, Gravitational waves cause the stretching and squeezing

of matter in space, it also distorts time around the object causing a slowing and speeding

up of time. GW also has polarization similar to light they are (i ) Plus and (i i ) Cross type

polarizations respectively. This polarization is caused due to the precession of the binary

in-spiral pair [?]. Gravitational Waves being ripples in Space-time propagate at the speed of

light. The necessary conditions required for the propagation of GW is

λ<< R

whereλ is the wavelength of the GW and R is the Radius of Curvature (ROC) of the background

space-time. Other properties such as absorption and dispersion are negligible in Gravitational

Waves.

11.2.2 Wave Characteristics

Gravitational Waves can only be studied and discerned by their waveforms and not just the

strain alone. It is not possible to map GW as a figure or a picture. Waveforms contains the

details of the source. They can hold many attributes such as mass of the binary pair, GW

frequency etc. Normally to decide these attributes it has to be compared with NR simulations

which as mentioned before takes a long time even with the capabilities of existing super com-

puters. To circumvent this problem, numerical relativity approximates are used. Numerical
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relativity approximates are simulated waveforms which are done in a weak field paradigm.

Under the assumption that the entities in question are not moving fast enough or to better

phrase it moving slower than the speed of light. This application of Einstein’s equations in a

weak field paradigm is also called Post Newtonian Expansion.

h( f ) = 1

r
M 5/6

ch f −7/6exp(iψ( f )) (80)

ψ( f ) = 2π f tc −φc − π

4
+ 3

128
(πMch f )−5/3 (81)

Here tc is time at coalescence, φc phase at coalescence and Mch is chirp mass which will

be discussed in the upcoming sections. The h is a first order approximation of the strain.

Both these equations correspond to the frequency domain. A few adjustments can be made

regarding the location of the source but for a basic scenario these formula can be generalized

[?]. These formula give insight into how these source attributes can be obtained by the wave.

11.2.3 Existing computational approximation methods

As previously mentioned NR takes a lengthy amount of time to approach generalized so-

lutions. To ease the arduous computational task approximation is used. This provides an

optimized solution with the help of the aforementioned Post Newtonian Expansion methods.

A common type of waveform is that of phenomenological waveform or phenom waveform

[?]. These type of waveforms have shown a very successful rate in mimicking NR waveforms

as closely as possible. It has some inaccuracies as it has come to be expected, because of

the approximated nature of its generation but over all efficiency has been significantly high

compared to most approximates. One such existing methods which uses phenom [?] based

waveforms is PyCBC[?]. PyCBC - an open source python implemented stable module could

be used to obtain the theoretical gravitational waveforms for specific input parameters such

as the masses, lower frequency and so on. This powerful module gives an optimized solution

to theoretical equations by means of Bayesian Belief Networks and computes different types

of gravitational waveform such as SEOBNR, TAYLOR and many more. The one problem with

PyCBC is that even though it is an optimized solution it can only give results for black holes

and other heavy entities like neutron stars. GW cannot be studied effectively regarding other

lesser mass entities like Exoplanets etc which are also in in-spiral with their corresponding

star. Through the course of this paper we will be extrapolating the approach used for black

holes on multiple Star-Exoplanet Systems. The aforementioned SEOBNR (Spin Effective One
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Figure 24: PyCBC generated SEOBNR waveform for black holes

Body Numerical Relativity) is a phenom based waveform which will be the primary focus as

we progress with this article.

11.2.4 Proposed Computational Approach

The problem lies in creating a flexible and elegant solution by discerning both aspects, the

waveform and the germane physics required to correlate the idea to other weaker entities.

On one hand there has to be a lucid interpretation of the waveform, that is to say there

should be clear understanding of how the trend of the waveform changes with respect to

different parameters which influence it and on the other hand the proposed astrophysical

model should not only validate but also make inferences by a supervised learning procedure.

The way to go about achieving these goals is to approach the problem in two simultaneous

subroutines.

These proposed mechanisms are :

• Regression Analysis

• Classification

Regression Analysis[?] deals with discerning the trend of the SEOBNR waveform. It tries to

correlate the various parameters that are inclusive of the generation of these waveforms and

tries to have a pellucid grasp on how it can be made computationally efficient and deals

with the process of extrapolation outside the domain of its limiting factors. Classification

aims to propose a new model to group these entities in question with the help of GW. Not

only does such a model not exist so far but also it helps in validating and correcting the

regression results in a peculiar way. The upcoming sections of this article delves deep into
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these subroutines and aids in surfacing a new computational model which is created by

mending these approaches.

11.3 Regression Analysis

The previous section speaks about the PyCBC module and why it is marked to be of utmost

importance in the study of GW. It is a robust module to perform tasks at various levels studying

GW, one such task is the generation of GW based on numerical relativistic equations[?].

The module also presents diverse waveforms to pick for study, ranging from the Taylor

series representation to the SEOBNR[?] and many more. An important observation here

is - the numerical relativistic equations or the theoretical equations involved behind the

generation of these waveforms are intrinsic by nature. This intrinsic property results in a lot

of computational overhead while using the module for some specific values supplied as part

of functional requirements such as the masses of the celestial objects for the generation of

GW. An other observation is that, beyond certain limit of the input parameters such as the

masses of celestial bodies in-spiral, PyCBC fails to compute values and generate waveforms,

though in reality a similar in-spiral system would naturally generate a GW. This paper aims to

introduce few basic concepts of ML[?], Regression and analyze their contribution to bring

down the computational overhead and extend the domain of the input parameters while

trading off the accuracy of the waveform generated by a small amount. This trade off should

be meager, shouldn’t interfere producing a result too deviated from the theoretical result. The

most interesting phase of in-spiral is that of the Coalescence. As discussed in the previous

sections about the in-spiral, there is a certain period of time after which they gain rapid

acceleration and spin vehemently about each other. This is followed by both of the celestial

bodies colliding and thus merging into a single body which is a common phenomenon in

binary Black holes. The start of this merger is marked by the coalescence. The peak amplitude

of the GW happens at the coalescence and plays a vital role to study the properties of celestial

bodies involved in generating this peak amplitude.

The above Fig. depicts a simple PyCBC generated waveform for the parameters m1 = 10,

m2 = 10, spi n1z = 0.0, del t a_t = 1.0/4096 and f _l ower = 60. The peak amplitude during

coalescence (h0) as seen from the waveform occurs at T i me = 0.00

To understand how the peak amplitude varies with various masses of the celestial bodies

in-spiral, a huge dataset was created with a mixture of masses, recording the peak amplitudes

during coalescence from the PyCBC module. In fact, the peak amplitude was recorded against
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Figure 25: A sample PyCBC Waveform for blackholes of masses 10 and 10

the chirp mass which is given by,

Mch = (m1m2)3/5

(m1 +m2)1/5

where m1, m2 correspond to the masses of the celestial bodies with m1 being the mass

of the more massive body among the two. The generation of the dataset involves a lot of

time as the generation of the waveform even for a single input requires a lot of time. Thus,

parallelization was used with the help of Multiprocessing module in python to build this

dataset using all cores of the CPU. The dataset created comprises peak amplitudes during

coalescence (SEOBNR) of celestial bodies recorded for different values of masses m1, m2 and

lower frequency f as follows:

parameter Range

m1 10 - 99

m2 10 - m1

f {35,40,45, ...60}

spz ≈ 0 (very negligible)

del 6.103515625E −05

It has to be noted that the peak amplitude during coalescence for any input lower fre-

quency got to be equal in magnitude, but for PyCBC generated waveforms the peak am-

plitudes are not strictly equal though approximately equal. Thus, the lower frequency is

also considered while generating the data set. For the preliminary analysis on the relation

between the peak amplitude during coalescence against the masses of the celestial bodies, a

scatter plot is plotted with these parameters.
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Figure 26: Regression on amplitude peaks

From the above Fig. it could be observed that the scatter plot approximates to a linear

curve. The x-axis corresponds to Mc while the y-axis corresponds to h0 ×1019. The linear

model of this data set could be imagined to be

h =β0 +β1Mch +ε

In the above equation, β0 and β1 is some coefficient and ε the error. The blue line in the

above equation is a linear fit which could be calculated using the Sum of squares method,

minimizing the sum of the squared errors. Thus, for the linear fit ĥ = β̂0+β̂1Mch , we obtained

the parameter β̂1 = 0.25464428. The term β̂0 or the intercept is zero, since it is logical that

when Mc = 0, h0 = 0. It is now possible that we make use of this model to obtain h0 for other

celestial bodies such as the Exoplanets, which could in turn be used for the classification of

Exoplanets as discussed in the later sections of this paper.

11.4 Complete Waveform generation

In the previous sections we have obtained a model to predict h0 for any given Mch . In this

section we discuss about an approach which could be used in the generation of complete

waveform. The approach taken here does not generate the exact waveform but an approx-

imation of the waveform. Generating the complete waveform would result in a lot of GW

characteristics which have potential applications in many fields of astronomy. As we can

observe from the PyCBC waveform, output for SEOBNR, it is evident that the amplitude

versus time waveform is a chirp equation whereby the frequency increases with time.

To generate a waveform with unique characteristics, the waveform could be identified with

the amplitude, the frequency and its phase. Now, to generate the GW waveform envelope
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we need to have at least two characteristics, the amplitude and the frequency. The reason

being that, the peak amplitude during coalescence always occurs at the time = 0. It could be

observed that the amplitude peaks versus time of a gravitational wave could be split into two

parts. By observation, it could be concluded that in the first part of the GW the time increases

exponentially with the amplitudes peaks. i.e., the relation between amplitude peaks and time

is with time t and amplitude h follows:

t = ea .eh.eb +ec

The coefficients ea , eb and ec of this model cannot be obtained analytically and hence we

resort to use approximation algorithms to obtain these values. For obtaining these values we

make use of the cur ve_ f i t () method inside sci py.opti mi ze. The initial guesses for these

constants were set to (−1,−1,−1) Now, hmax or the envelope could be obtained from t just

using

hmax =
(

1

eb

)
.l n(

t −ec

ea
)

The fit of the curve looks as depicted in Fig. 4

Figure 27: PyCBC generated SEOBNR waveform

For the fit in th, the points marked in the red color, forming an envelope above are the

predicted peaks. The curve fits pretty well for the amplitude peaks, but as we could see,

reversing the equation presents two issues viz. the first thing the domain error and the

second thing that the predicted values increase rapidly after a certain interval of time. It

could be defined that the time interval up to which neither of the issues occur as the pre-

coalescence phase or the non-coalescence phase. The time interval after which either of the

two issues occur could be defined as the coalescence phase, where by the current exponential
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model fails to fit the model and hence we would have to go with another model which could

be a model such as:

t = xa .hxb

Reversing the above equation for amplitude gives,

hmax =
(

t

xa

) 1
xb

It could be seen from the fit that the model fits perfectly for the values of time after the

non-coalescence period. Fig. 5 shows the fit of the amplitude peaks for the time after the

non-coalesce period or during the coalescence period.

Figure 28: PyCBC generated SEOBNR waveform for a lower mass couple

The points in black color, forming an envelope towards coalescence are the predicted

peaks during the coalescence phase.

An envelope around the graph peaks could be obtained by using the models for both

the positive peaks as well as the negative peaks. Now in order to obtain this envelope for

all the GW for given masses and lower frequency, we need to run a regression analysis on

how these Model parameters viz. ea , eb , ec , xa and xb vary with respect to masses and the

frequency. The images - Fig. 6 to Fig. 9 show 3D scatter plot of the Model parameters with

respect to chirp mass and frequency for the non-coalesce phase. The points green in color

are the predicted points while the points in blue color are the observed points. From the

below images we could infer that the distribution of these parameters against Mch and f is

exponential.

It could be visually confirmed that the relation of ea with chirp mass and the frequency is

exponential, in fact it has a score of roughly about 98.5 percent. Similarly, eb and ec follow
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Figure 29: ea against Mch and f

Figure 30: eb against Mch and f

an exponential distribution. The image of xa against Mch and f shows a 3D scatter plot of

the Model parameters with respect to the chirp mass and the frequency for the coalescence

phase.

It could be visually confirmed that the relation of xb with chirp mass and the frequency

also follows an exponential fit. But the relation of xb with respect to the chirp mass and

frequency is slightly scattered. Thus, for this we could take a density estimate. The reason

for this being that the scatter plot becomes uniform as the plot approaches toward the lower

masses and a lower frequency but still the regression line passes through the mean density of

the scatter.

After we are able to obtain an estimate of these model parameters, we could again obtain
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Figure 31: ec against Mch and f

Figure 32: xa against Mch and f

an envelope of the amplitude for the time of a GW for a given chirp mass and a given fre-

quency by just using a version of gradient descent on the equations up to the lower frequency.

The procedure for construction of the envelope goes as follows:

1. Compute h0

2. Initial time,

t = xa .hxb

d t

dh
= xa .xb .hxb−1
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3. Use d t
dh for new time,

tnew = tol d − d tol d

dh

4. Compute hnew

hnew =
(

tnew

xa

)1/xb

5. Compute fc (current frequency)

fc = | 1

tnew − tol d
|

if fc <= flower : stop else if:

h′ = 1

eb
ln

(
t −ec

ea

)
> hnew

then goto step 3 else: continue

6.
d t

dh
= ea .eb .eeb .h

7.

tnew = tol d − d tol d

dhol d

8.

hnew = 1

eb
ln

(
t −ec

ea

)
9. if

fc = | 1

tnew − tol d
| <= flower

then stop else goto step 3.

Now that the envelope of the wave would be generated the next question would be on

identifying the points at which the envelope of the wave has to be considered to roughly

approximate the original wave. For this a simple scatter plot between the chronological order

of positive peaks of amplitude versus time gives us a hyperbolic curve as shown in Fig. 10

Thus, going with a hyperbolic fit, the right lower part of the equation

t 2

a2
− i 2

b2
= 1
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Figure 33: index vs time (positive peaks

where t corresponds to the positive time and i corresponds to the chronological order or

index of the positive peaks. The next section deals with how the predicted amplitude during

coalescence could be applied for exo-planets and help in their classification.

11.5 Gravitational Waves Based Classification

11.5.1 Need for Classification

Classification is the grouping of entities with similar attributes under a defined class label.

The necessity for classification is that it serves two purposes, it validates the astrophysical

model and corroborates all the assumptions made so far in extrapolating the model outside

its usual domain, but also it helps in a subtle form of corrigible operations which corrects

any types of inconsistency that may occur due to the regression analysis. Primarily it is used

to bolster the claims made so far that the model can indeed be flexible enough to operate

outside the domain. The center of focus in this section is dealing with the implications of

extrapolating the already existing GW concepts to weaker entities, followed by some compu-

tational evidence that supports the usage of the GW concepts in this manner. The weaker

entities under scrutiny in this scenario are Star-planet system of Exoplanets. The reason to

choose this particular set of celestial objects is because they follow the in-spiral mechanisms

which is similar to black holes. As mentioned earlier some necessary adjustments have been

made such as disregarding ring down so as to keep it as relevant to star-planet system as

possible. The revolution of an Exoplanet around their respective star which is considerably

far away behave as a weak pair of binary coalescing black holes. The term "weak pair" here
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describes the reduced magnitude of mass compared to that of a black hole. The assumption

is that coalescence takes place a few million years later rather than quickly like that of two

merging black holes. Newtonian mechanics dictate that the gravitational orbits are stable

and once a celestial body such as a planet enters into orbit it remains in revolution forever.

But the introduction of Einstein’s general relativity showed otherwise, indeed there is a decay

in the gravitational orbits over time and this decay of energy is emitted out in the form of

Gravitational Waves. This Gravitational waves can be observed in planets the problem being

that the wave itself is too weak to be detected by any conventional detectors like LIGO. The

reason being that a planet system would emit a GW due to the motion of masses which are

many times weaker than that of black holes, particularly LIGO is currently more tuned to

extract GW information for only black holes. This means that to practically detect these waves

from such small sources would probably take more calibration on LIGO’s end but that doesn’t

say anything about interpreting the theoretical results. These theoretical results can assist

in creating a more suitable model to correlate weak mass entities with GW. The waveforms

are well discerned in the previous section Regression Analysis, the results generated for each

unique wave can be used as aids to help create a more pellucid model. Results such as the

maximum peak amplitude of the supposed coalescence, the GW frequency and the known

mass of the planets all help in creating a better classification model.

11.5.2 Classification Overview

Gravitational waves have a lot of factors which influence them but none more prominent

than mass. As mentioned in the previous sections the necessity of Chirp Mass in extracting

important information about the source is essential. When GW is so prominently influenced

by mass, it can also be used as an aid to help better sort the masses of the entities themselves.

The mass class is a parameter defined by astronomers used to classify various Exoplanets by

virtue of their mass. These masses have a defined set of constraining values which segregate

them to their corresponding mass classes. The numeric mass class are the integer allocated

values of the respective mass class done for easy graphic representation. The key idea here

is to relate the different masses of these Exoplanets to the Gravitational waves they may

produce while orbiting their corresponding star. A supervised machine learning model can

be proposed on the grounds of training data with already confirmed masses along with

their respective mass classes to that of the supposed Gravitational Wave information. The

Regression Analysis section shows the various wave information that can be extracted by

using various predictive modeling techniques. Although to reach this coalescence point

where there is an immense burst of GW from the corresponding potential merger it would
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Mass Class Numerical Mass Class(NMC)
Jovian 1
Terran 2

Superterran 3
Subrterran 4
Neptunian 5
Mercurian 6

Table 45: Planet Mass Classes, *NMC is used for denoting the mass classes in the classification
algorithm

take a considerable amount of time, at least a few billion years. However, this potential

maximum peak amplitude (GWPeakAmp) can be used as a feature in classification of these

Exoplanets. This is because the maximum peak still denotes a unique point in the NR

waveform. It can be used to uniquely identify a binary pair based on the Chirp Mass, thereby

making it a trainable feature in the classification model. Another feature which is used to

train the classification algorithm is the Gravitational Wave frequency (GWFrequency). The

frequency of the wave itself can tell us lot about the source, it can correlate to the orbital

dynamics of the binary pair of the star-planet system of the Exoplanet. The features which

determine the outcome of Machine learning based classification are as follows:

• GWPeakAmp

• SunMassSU

• PlanetMassSU

• GWFrequency

These features provide a rudimentary extension to the already existing mass class group-

ing mechanism, so by associating them we can not only increase the accuracy of the classi-

fication but also provide a new model, a catalog which encompasses Gravitational Waves

along with the existing features in the Exoplanet Catalog.

11.5.3 Exoplanet Catalog Dataset

The application of Gravitational Waves makes it a requisite to use the most reliable catalog

to extrapolate the idea. One such catalog is the Planetary Habitability Laboratory Exoplanet

Catalog (PHL-EC) by the University of Puerto Rico. Although this dataset is known for its
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study for habitability of planets the usage of the data set in this scenario is very different. The

PHL-EC data set is being used only to derive the orbital mechanics related information such

as orbital frequency and the corresponding masses of the planets. The mass classes are also a

part of this robust dataset.

Figure 34: Dimensionally reduced data distribution

Although, there might exist some inconsistencies when masses are taken into account,

such as compression of gravity and the scaling of mass with volume. All these factors might

cause a skew in the data set for some of the mass classes. The dimensionally reduced distri-

bution figure Jovian class for example contains the most varying range of possible planets,

but there may be cases in the data set where some of the observations are misclassified. For

this reason there is no hard limit set on the mass classes. This problem can be overcome by

our classification strategy by incorporating the Gravitational Waves as a feature giving more

clarity and distinction to the mass classes. Another recognizable problem with the dataset is

that it is unbalanced. This may cause problems with the algorithm as it causes a bias in the

ML model. The reason a bias like this might exist is because if there are more samples present

in the training data which belong to a particular class compared to the other classes, this will

cause the algorithm to identify the majority sample class with more efficiency compared to

that of the minority sample class. This type of imbalance problems can be resolved in various

over-sampling or under-sampling techniques. The next section will cover these methods in

more detail.

11.5.4 Oversampling using SMOTE

The two methods which are employed to tackle class imbalance problems are (i ) Oversam-

pling and (i i ) under-sampling techniques. Over-sampling techniques include procedures to

artificially generate data to fill the gaps so as to minimize then imbalance, where as Under-
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sampling includes using only part of the data to which all the classes are balanced, without

using the entire dataset. For this specific GW based classification problem, the better choice

was over-sampling. This was due to the high amounts of samples for the majority of the

classes making it easier to generate data with more accuracy. Another reason for performing

oversampling is that future data which has yet to be observed and recorded has not been

accounted for. The generation of synthetic data will help test the model in more robust condi-

tions. There are many well known oversampling techniques such as ADASYN etc, but for this

problem, Synthetic Minority Over-Sampling Technique (SMOTE) was the superior method.

Other methods such as Kernel Density Estimation (non parametric methods), ADASYN were

also evaluated, but SMOTE provided the most agreeable values. This is due to the inherent

nature of the dataset. There was a necessity that the synthetically generated values for the

planet have to resemble actual observable values. With a wide range of values for most of

the planet masses, it was imperative that the values have to be in the plausible range. The

Synthetic data has to also maintain it’s integrity with that of the original PHL-EC data. SMOTE

does exactly this, it provides values in an aggregated range (close to the mean) and also

manages to maintain the magnitudes of the parameters within domain constraints. Thus

while performing classification the data under operation will be as close to the probable

values. Thus solving the imbalance problem.

11.5.5 Classification Strategy using Random Forests

While the imbalance problem has been conquered by oversampling methods, classifying

the data and the features as mentioned in the previous section is a challenge all to its own.

Primarily, a clear distinction of mass class has to be established. As mentioned before

there are some small amount of inconsistencies in the dataset. The classification algorithm

must take this nature of data into consideration and should provide an improvement. The

following features are an integral part in determining the exact outcome of the mass class: (i )

GWPeakAmp (i i ) SunMassSU (i i i ) PlanetMassSU (i v) GWFrequency. The primary feature

which has the highest correlation and can contribute significantly to finding the mass class

is without a doubt is PlanetMassSU or in this case PMass according to Figure 13. Since the

entire classification revolves around the mass classification of exoplanets PMass becomes the

contributing factor. However, the primary purpose of this whole model is to use Gravitational

Wave data. Because of the aforementioned inconsistencies in section 5.3 we know that just

classifying with the mass of the planet fails to identify the exact mass class. Hence utilizing

features such as GWPeakAmp and GWFrequency we can make a more accurate prediction.

The binary nature of the source requiring a binary in-spiral pair means that there might be
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Figure 35: Random Forests on Gravitational Wave Data

some certain combinations of source masses which could produce the same GWPeakAmp.

For this reason including features such as SunMass can help in classifying the star-exoplanet

pair more accurately. The appropriate algorithm which satisfactorily tends to these nuances

is Random Forests. Random Forests being based on decision trees, finds the boundaries

of the classes. This is needed as previously stated, all the mass classes have to be uniquely

identified and should provide the best accuracy for each class. Under ideal circumstances

such an algorithm would be more than perfect to reliably complete the task. The reasons for

choosing Random Forests over Decision Trees is because Random Forests uses a significant

amount of voting based conclusions as compared to that of Decision Trees. It runs a bagging

based routine by using a large number of de-correlated Decision Trees to classify a predicted

class. This course of operations is highly suitable for the GW data and it’s associated mass

classification as it meticulously examines the feature space to make better judgments over

which mass class to finalize as the expected result.

11.5.6 Classification Performance Metrics

The accuracy metrics decide how efficiently the model has performed over a set of constrain-

ing factors. In the case of classification, it could be simply defined as the accuracy involved in

predicting the correct class for a given set of parameters. The results show various metrics
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such as True Positive Rate (TPR) or Sensitivity and True Negative Rate (TNR) Specificity etc.

These metrics give valuable insight into how each class is being treated and gives a more lucid

interpretation of all the nuances of the data. The following results displayed consists metric

scores of both classification without using SMOTE and classification after using SMOTE.

PM OD OSD
Overall Accuracy 89.4505% 84.9932%

95% CI (0.8625 , 0.9211) (0.8325, 0.8651)
Kappa 0.8488 0.8184

Table 46: Overall Metrics:PM = Performance Metrics; Original Data = OD; Original + Synthetic Data =
OSD

The scores mentioned in Table III show the overall performance of the Random Forest

classifier. As the results indicate there is a drop in the overall accuracy in the results of the

SMOTE generated data. This is because the classifier is trained without any imbalance and

hence showing a decrease in accuracy. But this classifier trained without imbalance is more

robust compared to that of the classifier which trained only on the original data. The higher

accuracy score of the original data can only be attributed to the skew in the data. Because of

imbalance the classifier tends to recognize class 1 (Jovian) more than any other class. Also,

in the actual data set the number of planets in the class 6 or Mercurian category are very

less which is visible in its peculiar class wise scores. This also factors into the classification

algorithm’s accuracy.

Specificity Sensitivity Accuracy F1 Score
NMC OD OSD OD OSD OD OSD OD OSD

1 0.99 0.98 1.00 0.99 0.99 0.99 0.99 0.98
2 0.89 0.88 0.99 0.97 0.97 0.95 0.92 0.83
3 0.70 0.73 0.96 0.92 0.92 0.89 0.74 0.71
4 0.78 0.54 0.92 0.93 0.90 0.87 0.69 0.56
5 0.88 0.91 0.99 0.99 0.99 0.97 0.91 0.93
6 0 0.90 1.00 0.99 0.99 0.99 0.000 0.98

Table 47: Class wise Performance Metrics: Original Data = OD; Original + Synthetic Data = OSD

The class-wise scores give a better insight on how the classifier is handling each class

separately. Understanding the variations in Specificity and Sensitivity are key in discerning

how to efficiently boost up the classification model. As shown in Table IV the class wise scores,
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the over all performance of the synthetic model improved compared to it’s counterpart. This

goes to show that even though overall accuracy is higher, the robustness of model might not

be prominent. The model built from using SMOTE and then applying Random forests might

score less in the overall accuracy (not by much), the robustness of the model is far more

superior. It has validated that it can handle the data it may have to process in the future and

show promising results.

11.6 CONCLUSIONS

Gravitational waves and its significance has just started emerging to the forefront. This

manuscript has taken steps in a creative direction of applying these physical phenomenon to

other weaker entities. The proposed computational model serves as a rudimentary approach

to a far more perplexing design. While nowhere do we claim in this article that we are

reinventing Gravitational Wave physics but what is being provided is an automated efficient

solution through the lens of Statistics. The strongest aspect of this model is the use of Machine

Learning tools to not only ease the understanding of this complex phenomenon but also

making it efficient to operate with it. The perspective of Data Science and Machine Learning

is that of elegance. Physicists already understand a vast amount about Gravitational Waves.

Data Science not only enhances that plethora of knowledge but also gives a unique outlook.

An eloquent solution to generalize one of the most arcane paradigms of the universe. The

progress made in this article is a stepping stone for more elaborate models yet to be made.

The understanding of Gravitational waves is absolutely vital in advancement of sciences. It’s

correlation with some of the most enigmatic entities like black holes make it all the more

reason to delve deep to discern them. In search of these answers the proposed approaches

suggested in this paper is the understanding of these waveforms and extrapolating the

information learned from these trends to far outside the domain. Our understanding of

the waveform and how it behaves over variation of various parameters such as mass and

frequency has been enhanced. The application of this knowledge outside the usual domain is

a step on the creative side of the paradigm. It led us to develop an efficient way of producing

waveforms, and also a new method for classifying Exoplanets based on the GW released by

the star-planet binary system, maturing a computational model comprising the two which

enhance each other. The application of this model lies in optimization algorithms to generate

waveforms and also catalog extraction which incorporates GW with Exoplanets.

As mentioned before, both our exoplanet data and our base PyCBC data were conditioned

with the required orbital frequency to ensure that our case study is appropriate for numerical
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relativity. As far as Hubble time is concerned, our use of PyCBC is only to generate hypo-

thetical waveforms which are weak to detect and would otherwise take a couple of days to

simulate in under a few hours. Our methods are purely based on the semi analytical models

and is a novel attempt to integrate Machine Learning into GWs. We never claimed anywhere

these are the most accurate waveforms that can be produced. However, it is the most efficient

semi analytical model that is out there by our estimates.

11.7 Future Scope

This proposed computational model is the first of many approaches that will unfold in

coming years, hopefully. To ensure simplicity, lot of assumptions were made to ease the

computational aspects. Section 1.2 discusses this in detail. Most of the these assumptions

were made using baseline conditions. With better understanding, a more refined model can

be created by considering a set of more elaborate factors. The proposed classification model

may use more discernible features and make the classification more robust. Fine tuning the

features in this data set and adding more depth to the assumed features can not only add a

higher degree of accuracy to the model but also might assist in knowledge discovery. Better

calibration of the LIGO sensors can help in physically validating the proposed waveforms.
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12 TIME REVERSED DELAY DIFFERENTIAL EQUATION BASED

MODELING OF JOURNAL INFLUENCE IN AN EMERGING AREA

12.1 Introduction

It is well-known that ranking of journals, whether in science, technology, engineering or in

social sciences, such as Economics, is a contentious issue. For many subjects, there is no

correct ranking, but a universe of rankings, each a result of subjective criteria included by its

creators. In this regard, the following studies are instructive: ([Engemann and Wall(2009)],

[Jangid et al.(2014)Jangid, Saha, Gupta, and Rao]). With the creators’ choices and rules laid

out explicitly, the users of such ranking still need to use own judgments and institutional

requirements to choose ranks appropriately. The subjective element in journal rankings not

only complicates matters about what is correct, if any, but also about outcomes that depend

crucially on adoption and analysis of rankings. For science and related subjects, SCOPUS and

SCIMAGO hold some of the best journal ranking systems to this day, using their Cite Score and

SJR indicators respectively, to rank journals.([Kianifar et al.(2014)Kianifar, Sadeghi, and Zarifmahmoudi])

However, owing to the manner in which both these indicators are considered, it is often the

case that the received ranking might not always display the true quality and outreach of

a specific scientific journal. Obviously, this could be true for a large number of subjects

across length and breadth of contemporary research therefore recourse to a scientifically

more acceptable method should always be of interest and often beneficial for a large set

of users. To demonstrate this, we therefore considered the case of the Journal entitled, As-

tronomy and Computing, within the context of SCOPUS Journals in the relevant domain

of AstroInformatics ([Bora et al.2016]) , in particular and Astronomy and Astrophysics, in

general.

The primary focus of this case study is to determine the standing of Journal Astronomy

and Computing with respect to other journals which were established prior to it. More

importantly, the reasons for such standing need to be investigated which is a more complex

and qualitative study. The algorithm also tests the validity of the ranking and suggests an

alternative rank that used a more holistic approach towards the features. While this paper

focuses on a specific journal, it is easy to see that the purpose of this construct is broad-

based and deep-seated at the same time, such that the applications of the algorithms can be

adopted by numerous other subjects grappling with the same problem.
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Table 48: Case Study: Astronomy and Computing, SJR ([González-Pereira et al.(2009)González-Pereira, Bote, and de Moya Anegón])
and L1-SVD ranks ([Aedula et al.(2018)Aedula, Yashasvi Madhukumar, Snehanshu Saha, Mathur, Kakoli Bora, and Surbhi Agrawal])

Journal Name L1 Scheme Rank SJR based Rank Year
Astronomy and Computing 39 31 2013

Astronomy and Astrophysics Review 40 5 1999
Radiophysics and Quantum Electronics 41 51 1969

Solar System Research 42 48 1999
Living Reviews in Solar Physics 43 3 2005

Astrophysical Bulletin 44 45 2010
Journal of Astrophysics and Astronomy 45 55 1999

Revista Mexicana de Astronomia y Astrofisica 46 23 1999
Acta Astronomica 47 20 1999

Journal of the Korean Astronomical Society 48 32 2009
Cosmic Research 49 58 1968

Geophysical and Astrophysical Fluid Dynamics 50 46 1999
New Astronomy Reviews 51 12 1999

Kinematics and Physics of Celestial Bodies 52 65 2009
Astronomy and Geophysics 53 67 1996

Chinese Astronomy and Astrophysics 54 72 1981

12.2 Motivation: The ranking scheme

We implemented l1-norm SVD scheme using the publicly available SCOPUS dataset to

rank all Astronomy journals, and simultaneously determine the potency of the algorithm.

The outcome of the ranking scheme posed interesting and compelling questions which

led us to model the growing influence of the particular journal. We discuss the detailed

method in Appendix A, for the simple reason that the focus of the manuscript is not on the

ranking methods, rather on the model formulation and interpretation explaining such rank.

SCOPUS contains approximately 46,000 Journals listed in different domains. Discarding few

redundancies, SCOPUS effectively covers a large range of metrics and provides adequate

resources for verification. For this demonstration, we have considered 7 different metrics

from SCOPUS to be used as features in our algorithm. These features include Citation Count,

Scholarly Output, SNIP, SJR, Cite Score, Percentile and Percent Cited.

The results of the algorithm are cross-verified with SJR based ranking of SCIMAGO for suit-

able articulation of the discrepancies. It seems that the l1-norm SVD scheme works quite suc-

cessfully ([Aedula et al.(2018)Aedula, Yashasvi Madhukumar, Snehanshu Saha, Mathur, Kakoli Bora, and Surbhi Agrawal])

in rating the journals and approaches the data in a more comprehensive way. The result

is a ranking system which ranks Astronomy and Computing much higher than most of the
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older journals and at the same time highlights the niche prominence of the particular journal.

Similarly, this method also highlights the rise of other journals which were underrepresented

due to the usage of the SCOPUS and SCIMAGO indicators only. This method, therefore,

has been largely successful in rectifying the rank of such journals. Importantly, the l1-norm

SVD scheme can be extrapolated to other data as well. It can be used to study the impact of

individual articles, for example. Utilizing similar features such as Total Citation, Self Citation,

and NLIQ ([Ginde2016]), the algorithm can be used to rank articles within a journal with

great accuracy along with a holistic coverage. To re-apprise the scope of this research, it is

important to remember that the common practice ([Engemann and Wall(2009)])has been to

control for the size of the journal (measures like pages, number of articles, even characters),

age of article, age of citation, reference intensity, exclusion of self-citations, etc.

12.2.1 Knowledge Discovery and the Evolution of ASCOM: Key Motivation for the model

Even though Astronomy and Computing (ASCOM) has been in publication for five years only,

its reputation has grown quickly as observed from the ranking system proposed here. (please

refer Fig. 1) This is despite the fact that ASCOM is severely handicapped in size. There is no

journal focused on the interface of astronomy and computing in the same way as ASCOM. It

can be observed from Table 1 that, ASCOM, in comparison with the other journals listed, is

significantly younger! Unless the number of volumes and issues published are significant, a

journal is unlikely to create the equivalent impact of an established journal. This is a notable

handicap for any new journal, ASCOM being no exception. We define this as "size handicap".

Despite the "size handicap" explained above, ASCOM is ranked 39 according to our

method, slightly lower than its 31 rank in SCOPUS. This is due to the fact that we have

not used "citations from more prestigious journals" as a feature (this data are not readily

available). Nonetheless, it is ranked higher than many of its peers which have been in pub-

lication for over 20 years. This is also due to the fact that ASCOM is "one of its kind" and

uniquely positioned in the scientific space steered by appropriate editorial support. However

SUBJECTIVE the statement may sound, it seems that interdisciplinary, diversity in back-

ground of the Editors and authors and novelty in theme have been instrumental in placing

journals uniquely ([NAKAWATASE(2017)]. [Rodríguez(2016)] [Jacobs and Rebecca.(2012)]

[Erfanmanesh(2017)]). Such qualitative feature, regrettably is not visible from the big data

landscape alone. This is another significant driving factor behind framing and interpreting a

novel model that explains trends arising from investigating the big data landscape. There is

another interesting observation to take note of. By ignoring the "size does matter" paradigm,

the ranks of some journals (many years in publication with several volumes and issues)
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Figure 36: l1 Rank Progression of ASCOM based on SCOPUS data computed by the proposed method.
Since, the steady ascendancy in the journal’s rank is unmistakable, it will be interesting to investigate
the behavior of the journal rank in the long run once enough data is gathered. Please see Appendix A
for details.

suffered according to our method. A few examples include Living Reviews in Solar Physics,

ranked 43 according to our scheme while it is ranked 3 in SCOPUS; and Astronomy and

Astrophysics Review, ranked 40 in our scheme while it is ranked 5 according to SCOPUS. This

reversal of positions should be considered as important findings, because existing methods

do not offer appropriate weights to journals that are new, despite catering to a niche and

important area of research. In other words, the results indicate that years in publication

may sometimes dominate over other indicators of quality and may not capture the growth

of journals in "short time windows". Our study also reveals that ASCOM is indeed a quality

journal as far as early promise is concerned.

Scientometrics deals with analyzing and quantifying works in science, technology, and inno-

vation. It is a study that focuses on quality rather than quantity. The journals are evaluated

against several metrics such as the impact of the journals, scientific citation, SJR, SNIP in-

dicators as well as the indicators used in policy and management contexts. The practice of

using journal metrics for evaluation involves handling a large volume of data to derive useful

patterns and conclusions ([?]). These metrics play an important role in the measurement and

evaluation of research performance. Due to the fact that most metrics are easily susceptible

to manipulation and misuse, it becomes essential to judge and evaluate a journal by using a

single metric or a reduced set of significant metrics. We proposed l1-norm Singular Value

Decomposition(l1-SVD) ([Aedula et al.(2018)Aedula, Yashasvi Madhukumar, Snehanshu Saha, Mathur, Kakoli Bora, and Surbhi Agrawal])

to efficiently solve this problem. The code of the proposed method is available at [Aedula()].
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12.2.2 The Big Data Landscape

Advancements in Big Data frameworks ([Ginde et al.(2017)Ginde, Aedula, Saha, Mathur, Dey, Sampatrao, and Sagar])

and technologies allow us to break the barriers of memory constraints for computing and im-

plement a more scalable approach to employ methods and algorithms. The aforementioned

journal ranking scheme is one such algorithm which thrives under the improvements made

to scalability in Big Data. Implementing the SVD algorithm with the help of Spark can not

only improve spatial efficiency but temporal as well. The l1-norm SVD scheme utilizes the

SVD and regularization implementation of ARPACK and LAPACK libraries along with a cluster

setup to enhance the speed of execution by a magnitude of at least three times (depending

on the configuration). We need to remind ourselves that The necessity of a cluster based

system is rendered useless without the requisite data to substantiate it. Scientometric data

usually deals with properties of the journals such as Total Citation, Self-Citation etc. This

data could be collected using Web Scraping methodologies but also can be found by most

journal ranking organizations, available for open source use; SCOPUS and SCIMAGO. For

the l1-norm SVD scheme, we used SCOPUS as it had an eclectic set of features which were

deemed appropriate to showcase the effectiveness of the algorithm. The inclusion of the

two important factors such as Cite Score and SJR indicators gave a better enhancement over

just considering one over the other. For more information about the data and code used to

develop this algorithm (please refer to [Aedula(2018)], Github repository of the project). The

landscape and the big data framework are able to capture the rapid growth of ASCOM but are

insufficient to explain it! This brings us to the next topic of deliberation.

12.3 Beyond the ranking framework: Seeking motivation for the model

In order to be precise, the ranking scheme raises some important questions which can be

reasonably challenging. Standard scientometric features used to study influence/reputation

of journals are not adequate for explaining the ascendancy of ASCOM in influence. The im-

portance of investigating intrinsic dynamics is rarely stressed upon in scientometric literature

([Fei et al.(2015)Fei, Chong, and Bell]). Usually, the analysis is static, based on citations and

other factors. The authors intend to bring out the missing dynamics via the DDE based model.

The following set of questions are addressed in this study. What are the non-quantitative

factors (could be qualitative and difficult to quantify) explaining the rapid growth of this jour-

nal? What is the direction of causation and how do we frame it? Does the big data landscape

help? Can we formulate a model that reasonably accounts for such surge in influence? Are

there features/factors, not statistically significant but play crucial roles as implicit control
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variables toward the phenomena? The proposed model (Section 4 onward) addresses the

following questions:

• What are the principal factors behind the quick rise in impact of the journal, Astronomy

& Computing (ASCOM)?

• The argument of quality articles from good authors contributing is a vicious cycle since

scholars of high intellect have a wide range of impressive journals in Astronomy &

Astrophysics to choose from. Why are they attracted to contributing to ASCOM?

• Are there extraneous factors which accelerate the growth of ASCOM? Is it the Editorial

board or the reputation of the publication house (Elsevier) or both that are responsible

for attracting quality scholars?

• Is history i.e. pedigree a key factor behind such growth? If so, what defines the pedigree

here?

• Finally, if the ranking framework is unable to answer the above questions, does there

exist a modeling approach to explain all of the above? In the absence of it, can we

propose a model that addresses the interesting questions raised by the ranking exercise?

We shall seek answers to these questions in the remainder of the paper. The rest of the

manuscript is organized as follows. We begin by presenting the motivation for Delay Differ-

ential Equation (DDE) based modeling by outlining key strengths of such modeling concept.

Next, we consider time reversed DDE to model the growth by including historical effects,

a fundamental contribution in section 4. Section 5 contains solutions, analytically and

computationally investigated and interpreted in light of the big data landscape. Section 6

considers further modifications in the model by adding Editorial reputation and Publisher

Goodwill value. We discuss the implications of these additional factors and the fundamental

assumptions in Discussion & Conclusion Sections, 7 and 8.

12.4 Scope of our study and Motivation for modeling via DDE

The manuscript strives to achieve two fundamental objectives:

• We establish and quantify current journal influence as a function of its past influence. If

the past influence is positive (good inheritance), the present journal influence benefits

immensely from it (Please see sections 4, 5 and Figures 2, 3 and 4).
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• The manuscript proposes a doctrine of " self-serving incentivization" by exploiting im-

plicit control variables (publisher goodwill value and editorial reputation-the celebrity

effect). The so-called " incentivized model" is proposed to propagate a positive "start-

up boost" to the journal influence. Thereby, these control variables and the modifica-

tions form the second and more advanced, complex layer in modeling journal influence

(Please see sections 6, 7 and Figures 5-10) and help quantify the theory of " celebrity

effect".

The factors mentioned above and the resulting model explained in the subsequent sec-

tions also account for the remarkable growth in influence and ASCOM discussed in sections

1 and 2. We achieve this by the DDE based model presented below.

DDE is a well known concept for over two centuries, which has found application in

various problems in the fields of dynamical modeling of biomedical systems, biochemical

reactions as well as in the newer models of interpersonal/romantic relationships!! DDEs

also find useful applications like dynamic population growth, economic growth and spread

of diseases like HIV, cancer, etc. Delay Differential Equations belong to the class of Partial

Differential Equations. These are used by the scientific community for modeling dynamic

systems for many of the obvious advantages. These equations describe the rate of change of

a function, at time ’t’ as a function of earlier times. A DDE in its general form can be given by:

p ′(t ) = f (p(t ), p(t −τ)); p(0) = p0 (82)

considering a constant delay of τ. Some of the advantages of DDEs are:

• DDEs take care of the "hereditary effects" during modeling a system. This implies

if the influence of a journal is positive in the past and/or intrinsic factors have been

responsible for surge in reputation, such features are naturally modeled in DDEs.

• In system modeling, it is desirable that the model is closer to the real process (in our

case, influence diffusion and percolation) and it has been observed that DDEs offer a

better model than others.

• DDEs are seen to provide better control over the system since historical data is directly

modeled in to the system (using time-reversed structure). This is particularly desirable.

• In case of a DDE, the initial point p0 defined over the interval [-τ, 0] , is a function

and not just a point. The solution p(t) is also a function in the same interval. Hence,

the solution becomes infinite dimensional, unlike an ODE. Moreover, in a dynamical
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system, DDE takes care of rate of growth, which is a robust form of looking at the real

world problem than just reading from hereditary events and inferring from them.

12.5 TIME REVERSED DDE: Our Contribution

Let p ′(t) denote rate of change of influence over time whereas p(t) stands for influence at

time t . Moreover, the history function is represented by p(−t) implying influence at time

t =−t . (t = 1, p ′(1) = ap(1)+bp(−1) or p ′(2) = ap(2)+bp(−2) and so on). The Time Reversed

equation can now be written as

p ′(t ) = ap(t )+bp(−t ) (83)

which implies the rate of change of influence is represented as a combination of present and

past influence. To begin with, let us consider a simple growth model given as

ap ′(t ) = b + cp(t )

p(0) = c

where p(0) is not the initial condition but is the value at the instant of time under the interval

of consideration. Please note, a,b,c are constants and are estimated from data in the model

fitting process explained in section 5. We represent this linear growth in the form of time

reversed structures as follows:

=⇒ p ′(t ) = b

a
+ c

a
p(t )

= b

a
+ c

2a
p(t )+ c

2a
p(t )

= b

a
+ c

2a
p(t )+ c

2a
p(−t )

We assume symmetric influence function from two possibilities, symmetric and non-symmetric

influence. (If p(t) = p(−t), the influence function is symmetric. The symmetry is a known

concept in calculus. The implication is astounding for the simple reason that symmetric

influence function carries over the good effects from the past and help a journal grow quickly

if the effects are utilized in a forward manner. This is exactly what is hypothesized in section
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2.3). Now, differentiating the above equation again w.r.t t ,

p ′′(t ) = c

2a
p ′(t )− c

2a
p ′(−t )

= c

2a

(b

a
+ c

2a
p(t )+ c

2a
p(−t )

)
− c

2a

(b

a
+ c

2a
p(−t )+ c

2a
p(t )

)
= 0

Therefore, p(t) = C t +C1 where C ,C1 are constants. This implies p(t) may exhibit linear

growth under the assumption that there is a certain repeatability in the journal influence.

12.5.1 The model under non-symmetric influence:

Let us not consider the symmetric influence function since it is too strong an assumption

to begin with (fluctuations are absent, unidirectional slope, elements of uncertainty almost

absent). Let us consider the same model given as

ap ′(t ) = b + cp(t ); p(0) = c (84)

without the assumption of symmetric influence (p(t) = p(−t)). Here also, p(0) is not the

initial condition but is the value at the instant of time under the interval of consideration.

Reorganizing equation 3,

p ′(t )+ (− c

a
)p(t ) = b

a
(85)

Assuming (− c
a ) and ( b

a ) are continuous functions (constants in our case), we fix (− c
a ) = r (t )

and ( b
a ) = s(t ). Putting this in the equation, we obtain

p ′(t )+ r (t )p(t ) = s(t ) (86)

Let µ(t) be an integrating factor giving by the following equation ([Saha(2011)]). Multiply

both sides of equation (5) with µ(t ) and integrating, we arrive at the following form:

µ(t ) = K e
∫

r (t )d t

where K is a constant. Eventually the expression for journal influence is written as

p(t ) =
∫

e
∫

r (t )d t s(t )d t + c
K

e
∫

r (t )d t
(87)
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Please see Appendix E for computational details. Under the assumption of non-symmetric

influence (more realistic), the influence experiences exponential growth or decay depending

on the coefficients but not a combination of both in a single expression. We shall see a

different picture in the next section when we encounter non-linear growth in influence for a

slightly more complicated, time reversed model.

Remark: Please note the above model does not contain "history" functions. Hence the

solution does not display a convex combination of exponential functions, which can be easily

interpreted in light of historical data. This is in contrast to the simple case (we assume a

symmetric influence) where we can safely conclude that if either the historic influence or the

current influence of the journal is high then the journal is most likely going to experience

further rise in influence in the near future.

12.5.2 Modeling Non-linear growth using symmetric influence effects

Let us consider eq.(1) with the condition p(0) = c by mapping these to the following DDE:

y ′(t ) = a1(t )y(t )+a2(t )y(t −d), t >= 0

y(t ) = p(t ), t ∈ [−d ,0]

Consider d = 2t ; a = a2(t ),b = a1(t ); y(t ) ≡ p(t )∀t ∈ [−d ,d ]. Our proposed model is a special

case of DDE and it will be shown later that eq.(1) has at least one solution (see Appendix B),

which may not be necessarily unique.

Sketch of the Solution Methodology: Let us consider the time reversed model eq.(2):

p ′(t ) = ap(−t )+bp(t )

p(0) = k

p ′(0) = (a +b)k

A clever manipulation yields (see Appendix F for details)

p ′(−t ) =−ap(t )−bp(−t ) (88)

Eventually we obtain,

p ′′(t ) = (a2 −b2)p(t )
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where r =
p

a2 −b2 [Please see Appendices F and D, E for further clarification and missing

steps] Again, by symmetry,

p ′′(−t ) = r 2p(−t ) (89)

Solution is of the form,

p(t ) = Aer t +Be−r t (90)

It is evident that p(t ) is an exponential function. Using initial conditions, solving for A & B in

terms of a & b we get,

p(t ) = c

2r

(
r +a +b

)
er t + c

2r

(
r −a −b

)
e−r t (91)

Appendix D contains the detailed derivation leading up to the solution obtained above, in

(10). Depending on the coefficient values, either positive or negative exponents will dominate.

The two possible solutions depend on the value of r.

• When r > 0(i .e.,b > a), we can expect an exponential real solution

Figure 37: Plot of eq. (9) where p(t ) is represented by the Y-axis and t is represented by the X-axis. The
present influence,p(t ) is controlled by past influence, p(−t )

• When r < 0(i .e.,b < a), there will be oscillatory solutions, due to r being imaginary.

Again, these solutions are deemed infeasible due to lack of fixed periodicity.

t = 0 is considered to be in the middle of a short time frame, at which, we are measuring

the influence. Hence, this is not considered as initial value problem and hence we are not

guaranteed of a unique solution. p(−t) is the mirror image of p(t) and it will result in a

sharp spike in influence provided its value is high. This is typically observed in a short time
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Figure 38: Plot of eq. (9) where p(t ) is represented by the Y-axis and t by the X-axis.Imaginary solutions
are obtained when a and b are varied such that w1 < 0. This is infeasible as the model explains real
solutions for obvious reasons.

window and averages out in the longer time span. We see that depending on the values of the

parameters a and b, either the historical or the current data dominates. The curve shows that,

in the first few years, the influence is largely dominated by the past reputation of the editors

represented by the historical part of the DDE. After a certain point (we have assumed this

point to be at the center of time series data), other parameters such as the current journal

citations and the current reputation of the editors begin to reflect on the influence.

12.6 Model Fitting:

Let us recall Eq.(1):

p ′(t ) = ap(t )+bp(−t )

p(0) = c

p ′(0) = (a +b)c

We also know, by approximation that,

p ′(t ) ≈ p(t +h)−p(t )

h

≈ p(t )−p(t −h)

h

where h is the step size. Let us consider the spread at discrete time intervals corresponding

to one to five years (obtained from the data set) indicated as p ′(1), p ′(2), p ′(3), p ′(4) and p ′(5)
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respectively. Here, we can write p ′(1) = ap(−1)+bp(1). Also,

=⇒ p(1)−p(0)

1
= ap(−1)+bp(1)

= a[Ae−r +Ber ]+b[Aer +Be−r ]

= (a A+bB)e−r + (aB +b A)er

The value on LHS is obtained from the data set. Similarly, we can compute p ′( 3
4 ), p ′( 1

2 ), p ′( 1
4 ),

etc. obtained from the data set, where the fractions represent the quarters in a year. We are

now required to estimate the coefficients a,b, A&B 6. This is an overestimation problem with

number of equations exceeding number of unknowns. We can solve this by method of Least

Squares and use the solution to predict future influence and rate of journal influence spread.

12.6.1 Least Square Method to fit the data:

From eq. (1), we obtain

p ′(t ) = ap(t )+bp(−t )

Let p ′(t ) = z, p(t ) = x, p(−t ) = y . Therefore, eq. (1) becomes

z = ax +by

Let

S =∑
(z − (ax +by))2

Differentiating w.r.t a,

S = 2
∑

(z − (ax +by))(−x) = 0

S =∑
(−zx +ax2 +bx y) = 0

∑
zx = a

∑
x2 +b

∑
x y (92)

6the coefficients a, b are constants and arise from the differential equation based model proposed in (2) and
subsequent derivatives of it. A & B are constants, obtained by integrating the differential equation to yield the
desired solution, p(t )
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Differentiating w.r.t b,

S = 2
∑

(z − (ax +by))(−y) = 0

S =∑
(−z y +ax y +by2) = 0

∑
z y = a

∑
x y +b

∑
y2 (93)

On solving eq. (11) and eq. (12), we obtain the values of a and b.

ESTIMATING ’A’ and ’B’: We have found that

p(t ) = (a A+bB)e−r t + (aB +b A)er t

Let,

p(t ) = y

a A+bB = w1

aB +b A = w2

er t = x

Taking log

log(x) = r t

log(x−1) =−r t

e−r t = 1

x

Therefore,

y = w1∗x + w2

x

x y = w1∗x2 +w2
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Let,

Y = x y

X = x2

Now,

Y = w1∗X +w2

∑
Y = w1

∑
X +w2∗n (94)∑

X
∑

Y = w1
∑

X 2 +w2
∑

X (95)

On solving eq. (13) and eq. (14) we can obtain values of w1 and w2. Hence,we can also

find the values of A and B. We present the algorithm below.

Algorithm 2 Model Fit using Least Square Method

1: p(t) ← Input journal influence data
2: EQU ← Model_EQ(p(t))
3: NEW_EQU ← LSM(EQU)
4: procedure MODEL_EQ(P( T ))
5: p’(t) ← ap(t) + bp(-t)
6: Discretize the derivative using present and past data
7: p’(t) ← p(t+h)-p(t)/h
8: (p(1)-p(0))/1 ← ap(-1) + bp(1)
9: = a[Ae−r +Ber ]+b[Aer +Be−r ]

10: Return (a A+bB)e−r + (aB +b A)er

11: procedure LSM(EQU)
12: Derive the values of ’a’ and ’b’ of EQU using Equations
13:

∑
zx = a

∑
x2 +b

∑
x y and

14:
∑

z y = a
∑

x y +b
∑

y2

15: Derive the values of ’A’ and ’B’ of EQU using Equations
16:

∑
Y = w1

∑
X +w2∗n

17:
∑

X
∑

Y = w1
∑

X 2 +w2
∑

X
18: r etur n EQU with derived values
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Goodness Of Fit: Percentage Accuracy in estimating the coefficients a,b turned out to be

97.1. Moreover, 70% Confidence interval of the coefficients a,b are in the range (-0.4005416,-

0.15684858) and (-0.3127150, -0.01080603) respectively implying the coefficient values are

significant. This is testimony of the goodness of fit of our model validated against real data.

The Confidence percentage would improve with additional data whenever available.

Figure 39: p ′(t ) v/s t ((Non-linear least square curve): The rate of change in influence over the span of
5 years shows small fluctuations but maintains an overall steady value. This means that the influence
in 5 years will not suffer drastically.

12.7 Model Modification to accommodate implicit control variables

Additionally, we consider implicit control variables which play important roles in the growth

of any journal. These variables pose challenges to the modeling set up and without these,

the scope is limited to empirical verification at a minor scale only. Next step in modeling

data is to carry out modifications to this structure in order to accommodate implicit control

parameters such as publisher goodwill value and âĂIJstart-up initiativeâĂİ by editors (edito-

rial reputation). We define this initiative as the reputation of editors who steered the journal

and offered a strong attraction for quality submissions from scholars across the globe. It is

realistic to hypothesize that reputed scholars acting as editors add value and credibility to an

emerging journal. This value however is extremely hard to quantify and therefore modeling

such phenomenon is novel and imperative to understand the journalâĂŹs growth pattern.

We propose to present the model and the analytical solution, repeat the exercise of sections 3

and 4 and discuss the implication of the proposed modification.

The Time Reversed equation with the additive influence term (Publisher goodwill value)
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can now be re-written as

p ′(t ) = ap(t )+bp(−t )+η+θ (96)

where η is an additive term implying goodwill of the publishing house, Elsevier, in our case!

θ, OTOH represents Editors’ reputation.

12.7.1 Additional Considerations

• Let us assume η to be either linear or exponential. Such considerations are justified

since any reputed publisher, in order to remain competitive, would strive to enhance

goodwill. Thus, η can’t possibly be a constant.

• We pose the next question pertinent to quantification of goodwill. It is modeled as a

function of the percentage of accepted papers over time, a trend that accommodates

a fixed number of accepted articles and the selection criteria of additional papers

becomes increasingly stringent. It is modeled as

η(.) = e−ar t +α(a −b) (97)

where ar t is the percentage of articles accepted after the initial threshold of α articles.

α(a −b) is the initial threshold, conveniently set to ensure that the influence doesn’t

hover to the negative.

• Thus, η(.) is a control variable in the formulation and explanation of publisher goodwill.

This implies, increasingly the percentage of accepted articles will diminish. Such

stringent measures in peer-review bolster publisher goodwill.

• The formulation being in place, we now integrate η(.) with the modified model.

• Editorial reputation may be any of the three: a constant function, linear or exponential

growth. The first one is more likely since the Editors of ASCOM are well established

in their fields. Therefore, it is less likely that their phase of influence is still growing at

quadratic rate or higher. In fact, we have observed that the influence pattern (citations)

is steady. Nonetheless, we have considered all three possibilities and discuss the

implications after integrating Editorial reputation, θ (which is a function of time) in to

the model.
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12.7.2 Temporal evolution of publisher goodwill value

Figures 5(a) and 5(b) throw some useful insights. We hypothesize that the linear graph (fig.

5(b)) is a subset of the non-linear one (fig. 5(a)). Fig 5(b), which is a time-series plot of

publisher goodwill value is linear upon fitting the ASCOM data. Fig. 5(a) is an extended time

window plot of the same journal which is accomplished by simulating the data available from

5 years, extended to 10 years. The 5-year trend, if we take the time-slice off from fig. 5(a),

produces fig. 5(b). This is done to establish the hypothesis that, available data to understand

and predict longer time average behavior is insufficient.

This synthetic experiment implies that, if commendable work in the past continues

(good inheritance in terms of positive influence of the implicit control variable i.e. the

publisher goodwill, it shall continue to grow in non-linear fashion). The observation is in

agreement with the publisher in question, Elsevier, who pursues aggressive and stringent

quality practices toward the larger goal of monopoly in the business of publishing. At this

point, we may note that, the nonlinear time dependent trend shall influence the overall

journal growth in influence to a greater proportion in comparison with the model we assumed

in eq. (16) (which is time-independent). We draw such inferences from the goodwill value as

a time series plot by re-solving the equation with fitted goodwill value model from time-series

data. We show that in the ensuing discussion accompanied by the figures below (Fig. 6, 7,

8). Let us now consider eq. (16). On adding the publishers goodwill as a function of time we

obtain the equation,

p ′′(t )− (b2 −a2)p(t ) = (a +b)θ(t )+k ∗ek1t ———————————————————–(*)

On solving the above equation on similar lines outlined in Appendix C, we obtain expressions

of journal influence as solutions for the three different cases of θ(t ) being constant, linear and

exponential and η(t) being the time dependent function instead of a function of accepted

articles as discussed earlier7.

1. CASE 1 (Fig. 6): Let us assume that θ(t ) = θ = const ant

=⇒ p(t ) = c1e t
p

b2−a2 + c2e−t
p

b2−a2 + θ
(a−b) + ke(k1)t

(k1)2−(b2−a2)

2. CASE 2 (Fig. 7): Let us assume that θ(t ) is linear: θ(t ) = At+B

=⇒ p(t ) = c1e t
p

b2−a2 + c2e−t
p

b2−a2 + At+B
a−b + ke(k1)t

(k1)2−(b2−a2)

3. CASE 3 (Fig. 8): Let us assume that θ(t ) is exponential:

θ(t ) = e At −→ p(t ) = c1e t
p

b2−a2 + c2e−t
p

b2−a2 + (a+b)e At

A2−(b2−a2)
+ ke(k1)t

(k1)2−(b2−a2)

7er t and exp(r t ) have been used interchangeably in the manuscript.
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These plots (shown in Figure 5, 6, 7 and 8) demonstrate clearly that if publisher goodwill

value is modeled as a time dependent evolution, the influence of the journal grows at a faster

pace in the longer run. Therefore, it complements our observation that, publisher goodwill

value has a small role to play in the growth of journal influence in short time span but evolves

gradually as time progresses.

12.7.3 Temporal evolution of Editorial reputation

We observe the celebrity effect here ([Fei et al.(2015)Fei, Chong, and Bell]). Editors are well

established scholars and by the time they assumed editorial responsibility, they are in the

"cool off state" implying the surge in reputation they experienced when they were rising

stars had stabilized. Therefore, steep gradient shall no longer be expected. This is what we

observe in Fig 9 where the editorial influence between 2004 and 2014 is plotted. Please note

ASCOM was founded in 2013. The influence trend of all the editors during that time (2010-14)

is approximately constant.

Next section will deliberate on the contributions of these variables, in particular and

model modification, in general on the rate of change in influence observed in ASCOM. The

role of control variables are evident in the visualization we present below.

12.8 DISCUSSION

We develop a model to study its effect on astronomy and computer science domains and

analyze parameters that have contributed in building the reputation of ASCOM. In this spe-

cific case study of journal influence, the spread is clearly dependent on present as well as

history dependent functions. This strengthens the motivation of using DDE model for the

study. The model explains the growth pattern of the journal well by capturing the intrinsic

attributes and historical data. The time reversed model works as a mirror and helps carry over

the good deeds of the past (quality of articles in niche areas and open problems solved by

interdisciplinary efforts reflected in citation history). Our model exploits the âĂIJhereditary

effectsâĂİ through time-reversed structure built in. Additionally, the phenomenon of ob-

serving a journal in an emerging and interdisciplinary area, modeled as a function of spatial

variables renders the system infinite degrees of freedom. Thus, the proposed model is robust

and provides better control over the system.

However, the data is limited since the journal is in publication for just over five years.

Therefore the influence of historical data does not translate to overwhelming quantitative

evidence in the way we liked it to. Nonetheless, if we extrapolate the interval by extending the
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time window of consideration (since the historical data is assumed to influence the present

one), we observe profound effects (Please see the discussion on temporal evolution of pub-

lisher goodwill value where the observed linear growth in goodwill is really a 5-year snapshot

subset of the longer window; (please see figs. 5(a) and (b) and the discussion in section

6.2). Additionally, we considered implicit control variables such as Editorial reputation and

Publisher goodwill which play important roles in the growth of any journal. These variables

pose challenges to the modeling set up and without those, the scope is limited to empirical

verification at minor scale.

References
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Figure 40: Plot of publishers goodwill VS time. We observe that the publishers good will shows a
linear rise in the span of the 5 years between 2013 and 2017. Extrapolated to 10 years, the linear trend
becomes non-linear and eventually impact the overall influence of the journal by a margin.
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Figure 41: Plot of p(t) v/s t when p(t), the influence is the solution to the equation (*). We observe
that the slope of the graph becomes steeper as k1 increases.

Figure 42: Plot of p(t ) v/s. t when p(t ), the influence is the solution to the equation (*). We observe
that the slope of the graph becomes steeper as k1 increases.

Figure 43: Plot of p(t ) v/s. t when p(t ), the influence is the solution to the equation (*). We observe
that the slope of the graph becomes steeper as k1 increases.
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Figure 44: The above plot represents editors influence against time. We see that the editorial influence
is almost constant with time. This is possible because the editors are already well established. Hence,
the influence is steady with little fluctuations.
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13 A NOVEL EXOPLANETARY HABITABILITY SCORE VIA PARTI-

CLE SWARM OPTIMIZATION OF CES PRODUCTION FUNCTIONS

13.1 Introduction

The search for extra-terrestrial life [Shostak2017, Schwieterman2017] and potentially habit-

able extrasolar planets [Johnson2018, Presto2017] has been an international venture since

Frank Drake’s attempt with Project Ozma in the mid-20th century [Shuch2011]. Cochran,

Hatzes, and Hancock[Cochran1991] confirmed the first exoplanet in 1991. This marked

the start of a trend that has lasted 25 years and yielded over 3,700 confirmed exoplanets.

There have been attempts to assess the habitability of these planets and to assign a score

based on their similarity to Earth. Two such habitability scores are the Cobb-Douglas Habit-

ability (CDH) score [Bora et al.2016, Saha2017] and the Constant Elasticity Earth Similarity

Approach (CEESA) score. Estimating these scores involves maximizing a production function

while observing a set of constraints on the input variables.

Under most paradigms, maximizing a continuous function requires calculating a gradient.

This may not always be feasible for non-polynomial functions in high-dimensional search

spaces. Further, subjecting the input variables to constraints, as needed by CDH and CEESA,

are not always straightforward to represent within the model. This paper details an approach

to Constrained Optimization (CO) using the swarm intelligence metaheuristic. Particle Swarm

Optimization (PSO) is a method for optimizing a continuous function that does away with the

need for calculating the gradient. It employs a large number of randomly initialized particles

that traverse the search space, eventually converging at a global best solution encountered by

at least one particle [Eberhart1995, Shi1998].

Particle Swarm Optimization is a distributed method that requires simple mathematical

operators and short segments of code, making it a lucrative solution where computational

resources are at a premium. Its implementation is highly parallelizable. It scales with the di-

mensionality of the search space. The standard PSO algorithm does not deal with constraints

but, through variations in initializing and updating particles, constraints are straightforward

to represent and adhere to, as seen in Section 13.3.2. Poli[Poli2007, Poli2008] carried out

extensive surveys on the applications of PSO, reporting uses in Communication Networks,

Machine Learning, Design, Combinatorial Optimization and Modeling, among others.

This paper demonstrates the applicability of Particle Swarm Optimization in estimating

habitability scores, CDHS and CEESA of an exoplanet by maximizing their respective produc-

tion functions (discussed in Sections 13.2.1 and 13.2.2). CDHS considers the planet’s Radius,
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Mass, Escape Velocity and Surface Temperature, while CEESA includes a fifth parameter, the

Orbital Eccentricity of the planet. The Exoplanet Catalog hosted by the Planetary Habitability

Laboratory, UPR Arecibo records these parameters for each exoplanet in Earth Units [?].

Section 13.5 reports the performance of PSO and discusses the distribution of the habitability

scores of the exoplanets.

13.2 Habitability Scores

13.2.1 Cobb-Douglas Habitability Score

Estimating the Cobb-Douglas Habitability (CDH) score [?] requires estimating an interior

score (CDHSi ) and a surface score (CDHSs) by maximizing the following production func-

tions,

Yi = C D HSi = Rα. Dβ , (98a)

Ys = C D HSs = Ve
γ.Ts

δ , (98b)

where, R, D, Ve and Ts are density, radius, escape velocity and surface temperature respec-

tively. α, β, γ and δ are the elasticity coefficients subject to 0 <α,β,γ,δ< 1. Equations 98a

and 98b are convex under either Constant Returns to Scale (CRS), whenα+β= 1 and γ+δ= 1,

or Decreasing Returns to Scale (DRS), when α+β< 1 and γ+δ< 1. The final CDH score is

the convex combination of the interior and surface scores as given by,

Y = wi .Yi +ws .Ys . (99)

13.2.2 Constant Elasticity Earth Similarity Approach Score

The Constant Elasticity Earth Similarity Approach (CEESA) uses the following production

function to estimate the habitability score of an exoplanet,

Y = (r.Rρ+d .Dρ+ t .Ts
ρ+ v.Ve

ρ+e.Eρ)
η
ρ , (100)

where, E is the fifth parameter denoting Orbital Eccentricity. The value of ρ lies within

0 < ρ ≤ 1. The coefficients r , d , t , v and e lie in (0,1) and sum to 1, r +d + t + v +e = 1. The

value of η is constrained by the scale of production used, 0 < η< 1 under DRS and η= 1 under

CRS.
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13.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [?] is a biologically inspired metaheuristic for finding the

global minima of a function. Traditionally designed for unconstrained inputs, it works by

iteratively converging a population of randomly initialized solutions, called particles, toward

a globally optimal solution. Each particle in the population keeps track of its current position

and the best solution it has encountered, called pbest. Each particle also has an associated

velocity used to traverse the search space. The swarm keeps track of the overall best solution,

called gbest. Each iteration of the swarm updates the velocity of the particle towards its pbest

and the gbest values.

13.3.1 PSO for Unconstrained Optimization

Let f (x) be the function to be minimized, where x is a d-dimensional vector. f (x) is also

called the fitness function. Algorithm 45 outlines the approach to minimizing f (x) using

PSO. A set of particles are randomly initialized with a position and a velocity, where l and

u are the lower and upper boundaries of the search space. The position of the particle

corresponds to its associated solution. The algorithm initializes each particle’s pbest to its

initial position. The pbest position that corresponds to the minimum fitness is selected to

be the gbest position of the swarm. Shi and Eberhart[?] discussed the use of inertial weights

to regulate velocity to balance the global and local search. Upper and lower bounds limit

velocity within ±vmax.

On each iteration, the algorithm updates the velocity and position of each particle. For

each particle, it picks two random numbers ug ,up from a uniform distribution, U (0,1) and

updates the particle velocity. Here, ω is the inertial weight and λg ,λp are the global and

particle learning rates. If the new position of the particle corresponds to a better fit than its

pbest, the algorithm updates pbest to the new position. Once the algorithm has updated all

particles, it updates gbest to the new overall best position. A suitable termination criteria for

the swarm, under convex optimization, is to terminate when gbest has not changed by the

end of an iteration.

13.3.2 PSO with Leaders for Constrained Optimization

Although PSO has eliminated the need to estimate the gradient of a function, as seen in Sec-

tion 13.3.1, it still is not suitable for constrained optimization. The standard PSO algorithm

does not ensure that the initial solutions are feasible, and neither does it guarantee that

the individual solutions will converge to a feasible global solution. Solving the initialization
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Input: f (x), the function to minimize.
Output: global minimum of f (x).

1: for each particle i ← 1,n do
2: pi ∼U (l ,u)d

3: vi ∼U (−|u − l |, |u − l |)d

4: pbesti ← pi

5: gbest ← argmin
pbesti , i=1...n

f (pbesti )

6: repeat
7: oldbest ← gbest
8: for each particle i ← 1. . .n do
9: up ,ug ∼U (0,1)

10: vi ←ω.vi +λg ug (gbest−pi )+λp up (pbesti −pi )
11: vi ← sgn(vi ).max{|vmax|, |vi |}
12: pi ← pi + vi

13: if f (pi ) < f (pbesti ) then
14: pbesti ← pi

15: gbest ← argmin
pbesti , i=1...n

f (pbesti )

16: until |oldbest−gbest | < threshold
17: return f (gbest)

Figure 45: Algorithm for PSO.

problem is straightforward, resample each random solution from the uniform distribution

until every initial solution is feasible. To solve the convergence problem each particle uses an-

other particle’s pbest value, called lbest, instead of its own to update its velocity. Algorithm 46

describes this process.

On each iteration, for each particle, the algorithm first picks two random numbers ug ,up .

It then selects a pbest value from all particles in the swarm that is closest to the position

of the particle being updated as its lbest. The lbest value substitutes pbesti in the velocity

update equation. While updating pbest for the particle, the algorithm checks if the current fit

is better than pbest, and performs the update if the current position satisfies all constraints.

The algorithm updates gbest as before.
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Input: f (x), the function to minimize.
Output: global minimum of f (x).

1: for each particle i ← 1,n do
2: repeat
3: pi ∼U (l ,u)d

4: until pi satisfies all constraints
5: vi ∼U (−|u − l |, |u − l |)d

6: pbesti ← pi

7: gbest ← argmin
pbesti , i=1...n

f (pbesti )

8: repeat
9: oldbest ← gbest

10: for each particle i ← 1. . .n do
11: up ,ug ∼U (0,1)
12: lbest ← argmin

pbest j , j=1...n
‖pbest j −pi‖2

13: vi ←ω.vi +λg ug (gbest−pi )+λp up (lbest−pi )
14: pi ← pi + vi

15: if f (pi ) < f (pbesti ) and pi satisfies all constraints then
16: pbesti ← pi

17: gbest ← argmin
pbesti , i=1...n

f (pbesti )

18: until |oldbest−gbest | < threshold
19: return f (gbest)

Figure 46: Algorithm for CO by PSO.

13.4 Representing the Problem

A Constrained Optimization problem can represented as,

minimize
x

f (x)

subject to gk (x) ≤ 0, k = 1. . . q ,

hl (x) = 0, l = 1. . .r .

Ray and Liew[?] describe a way to represent non-strict inequality constraints when op-

timizing using a particle swarm. Strict inequalities and equality constraints need to be

converted to non-strict inequalities before being represented in the problem. Introducing an

error threshold ε converts strict inequalities of the form gk
′(x) < 0 to non-strict inequalities

of the form gk (x) = gk
′(x)+ε≤ 0. A tolerance τ is used to transform equality constraints to a
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pair of inequalities,

g(q+l )(x) = hl (x)−τ≤ 0, l = 1. . .r ,

g(q+r+l )(x) =−hl (x)−τ≤ 0, l = 1. . .r .

Thus, r equality constraints become 2r inequality constraints, raising the total number

of constraints to s = q +2r . For each solution pi , ci denotes the constraint vector where,

ci k = max{gk (pi ),0}, k = 1. . . s. When ci k = 0, ∀k = 1. . . s, the solution pi lies within the

feasible region. When ci k > 0, the solution pi violates the kth constraint.

13.4.1 Representing CDH Score Estimation

Under the aforementioned guidelines, the representation of CDH score estimation under

CRS is,

minimize
α,β,γ,δ

Yi =−Rα.Dβ , Ys =−Ve
γ.Ts

δ ,

subject to −φ+ε≤ 0, ∀φ ∈ {α,β,γ,δ} , (100a)

φ−1+ε≤ 0, ∀φ ∈ {α,β,γ,δ} , (100b)

α+β−1−τ≤ 0, (100c)

1−α−β−τ≤ 0, (100d)

γ+δ−1−τ≤ 0, (100e)

1−γ−δ−τ≤ 0. (100f)

Under DRS the constraints 100c to 100f are replaced with,

α+β+ε−1 ≤ 0, (101a)

γ+δ+ε−1 ≤ 0. (101b)

13.4.2 Representing CEESA

The representation of CEESA score estimation (described in Section 13.2.2) under DRS is,
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Table 49: Parameters from the PHL-EC used for the experiment.

Parameter Description Unit

P. Radius Estimated radius Earth Units (EU)

P. Density Density Earth Units (EU)

P. Esc Vel Escape velocity Earth Units (EU)

P. Ts Mean Mean Surface temperature Kelvin (K)

P. Eccentricity Orbital eccentricity

minimize
r,d ,t ,v,e,ρ,η

Y =−(r.Rρ+d .Dρ+ t .Ts
ρ+ v.Ve

ρ+e.Eρ)
η
ρ

subject to ρ−1 ≤ 0, (101c)

ρ−1+ε≤ 0, (101d)

−φ+ε≤ 0, ∀φ ∈ {r,d , t , v,e,η} , (101e)

φ−1+ε≤ 0, ∀φ ∈ {r,d , t , v,e,η} , (101f)

(r +d + t + v +e)−1−τ≤ 0, (101g)

1− (r −d − t − v −e)−τ≤ 0. (101h)

Under CRS there is no need for the parameter η (since η= 1). Thus, the objective function for

the problem reduces to,

minimize
r,d ,t ,v,e,ρ,η

Y =−(r.Rρ+d .Dρ+ t .Ts
ρ+ v.Ve

ρ+e.Eρ)
1
ρ

13.5 Experiment and Results

The data set used for estimating the Habitability Scores of exoplanets was the Confirmed

Exoplanets Catalog maintained by the Planetary Habitability Laboratory (PHL) [?]. The

catalog records observed and modeled parameters for exoplanets confirmed by the Extrasolar

Planets Encyclopedia. Table 49 describes the parameters from the PHL Exoplanets’ Catalog

(PHL-EC) used for the experiment. Since surface temperature and eccentricity are not

recorded in Earth Units, we normalized these values by dividing them with Earth’s surface

temperature (288 K) and eccentricity (0.017). PHL-EC assumes an Eccentricity of 0 when

unavailable. The PHL-EC records empty values for planets whose surface temperature is not

known. We chose to drop these records from the experiment.
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(a) CRS Score Distribution (b) DRS Score Distribution

(c) CRS Iterations Distribution (d) DRS Iterations Distribution

Figure 47: Plots for the Cobb-Douglas Habitability Score.
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(a) CRS Score Distribution (b) DRS Score Distribution

(c) CRS Iterations Distribution (d) DRS Iterations Distribution

Figure 48: Plots for the Constant Elasticity Earth Similarity Approach.
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The implementation resulted in a Python library now available on the Python Packaging

Index under the name PSOPy [?]. It can be installed through pip as pip install psopy

(also available in the github folder AstrIRG). Our implementation used n = 25 particles to

traverse the search space, with learning rates λg = 0.8 and λp = 0.2. It used an inertial weight

of ω = 0.6 and upper and lower bounds ±1.0. We used an error threshold of ε = 1×10−6

to convert strict inequalities to non-strict inequalities, and a tolerance of τ = 1×10−7 to

transform an equality constraint to a pair of inequalities. Further implementation details are

discussed in the Appendix.

The plots in Figures 47a and 47b describe the distribution of the CDH scores across

exoplanets tested from the PHL-EC. Figures 47c and 47d show the distribution of iterations

required to converge to a global maxima. The spike at 0 is caused by particles converging

to a gbest that does not shift from the original position (for a more detailed explanation

see Appendix ??). The plots in Figures 48b and 48b describe the distribution of the CEESA

score across the exoplanets, while Figures 48d and 48c show the distribution of iterations to

convergence. These graphs aggregate the results of optimizing the Habitability Production

Functions (Equations 101, 101, 102 and 102) for each exoplanet in the PHL-EC by the method

described in Algorithm 46.

Table 50 records the CDH scores for a sample of exoplanets under CRS at wi = 0.99

and ws = 0.01. α, β, γ and δ record the parameters of Equation 101. Yi and Ys record

the maxima for the objective functions. ii and is specify the number of iterations taken

to converge to a stable gbest value. Under the Class column there are four categories for

the planets — Psychroplanets (psy), Mesoplanets (mes), Non-Habitable planets (non) and

Hypopsychroplanets (hyp). Table 51 records the CDH scores for a sample under DRS, with α,

β, γ and δ recording the parameters of Equation 101.

Tables 52 and 53 record the estimated CEESA scores under CRS and DRS respectively. r ,

d , t , v , e, ρ and et a record the parameters of Equation 102 in Table 53 and the parameters of

Equation 102 in Table 52. However, since under the CRS constraint, η= 1, there is no need

for the parameter η in Table 52. i specifies the number of iterations taken to converge to the

maxima.

These tables indicate that although CEESA has 7 parameters and 16 constraints under

DRS, PSO takes a little over twice the number of iterations to converge as in each step of

the CDH score estimation, which has 2 parameters and 5 constraints. This is a promising

result as it indicates that the iterations required for converging increases sub-linearly with

the number of parameters in the model. As for real time taken to converge, PSO took 666.85 s

(≈ 11min 7s) to estimate the CDH score under CRS for 1683 exoplanets, at an average of
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Table 50: Estimated Cobb-Douglas Habitability scores under CRS.

Name Class α β Yi ii γ δ Ys is CDHS

GJ 176 b non 0.460 0.540 1.90 50 0.107 0.893 2.11 61 1.90

GJ 667 C b non 0.423 0.577 1.71 58 0.692 0.308 1.81 54 1.71

GJ 667 C e psy 0.129 0.871 1.40 50 0.258 0.742 1.39 55 1.40

GJ 667 C f psy 0.534 0.466 1.40 48 0.865 0.135 1.39 47 1.40

GJ 3634 b non 0.409 0.591 1.89 58 0.724 0.276 2.09 48 1.89

HD 20794 c non 0.260 0.740 1.35 50 0.096 0.904 1.34 58 1.35

HD 40307 e non 0.168 0.832 1.50 49 0.636 0.364 1.53 63 1.50

HD 40307 f non 0.702 0.298 1.52 68 0.303 0.697 1.55 45 1.52

HD 40307 g psy 0.964 0.036 1.82 51 0.083 0.917 1.98 55 1.82

Kepler-186 f hyp 0.338 0.662 1.17 50 0.979 0.021 1.12 40 1.17

Proxima Cen b psy 0.515 0.484 1.12 37 0.755 0.245 1.07 0 1.12

TRAPPIST-1 b non 0.319 0.681 1.09 0 0.801 0.199 0.89 0 1.09

TRAPPIST-1 c non 0.465 0.535 1.06 0 0.935 0.065 1.14 26 1.06

TRAPPIST-1 d mes 0.635 0.365 0.77 34 0.475 0.525 0.73 47 0.77

TRAPPIST-1 e psy 0.145 0.855 0.92 0 0.897 0.103 0.83 55 0.92

TRAPPIST-1 g hyp 0.226 0.774 1.13 43 0.876 0.124 1.09 0 1.13

198.11 ms for each planet for each individual score (interior and surface) of the CDH score.

For CDH estimation under DRS, it took 638.69 s (≈ 10min 39s) at an average of 189.75 ms

for each part of the CDH score. The CEESA calculations, requiring a single estimate, took

a little over half the CDH estimation execution time to run. Under DRS it took a total of

370.86 s (≈ 6min 11s) at 220.36 ms per planet, while under CRS it took 356.92 s (≈ 5min 57s)

at 212.07 ms per planet.

13.6 Conclusion

Particle Swarm Optimization mainly draws its advantages from being easy to implement

and highly parallelizable. The algorithms described in Section 13.3 use simple operators

and straightforward logic. What is especially noticeable is the lack of the need for a gradient,

allowing PSO to work in high dimensional search spaces with a large number of constraints,

precisely what is needed in a potential Habitability score estimate. Further, particles of the

swarm, in most implementations operate independently during each iteration, their updates

can occur simultaneously and even asynchronously, yielding much faster execution times

than those outlined in Section 13.5. However, since strict inequalities and equality constraints

are not exactly represented, the resulting solution may not be as accurate as direct methods.
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Table 51: Estimated Cobb-Douglas Habitability scores under DRS.

Name Class α β Yi ii γ δ Ys is CDHS

GJ 176 b non 0.395 0.604 1.90 59 0.372 0.627 2.11 56 1.90

GJ 667 C b non 0.781 0.218 1.71 58 0.902 0.097 1.81 57 1.71

GJ 667 C e psy 0.179 0.820 1.40 49 0.234 0.765 1.39 60 1.40

GJ 667 C f psy 0.704 0.295 1.40 64 0.398 0.601 1.39 61 1.40

GJ 3634 b non 0.602 0.397 1.89 59 0.429 0.570 2.09 77 1.89

HD 20794 c non 0.014 0.985 1.35 50 0.116 0.883 1.34 45 1.35

HD 40307 e non 0.752 0.247 1.50 60 0.677 0.322 1.53 50 1.50

HD 40307 f non 0.887 0.112 1.52 51 0.261 0.738 1.55 60 1.52

HD 40307 g psy 0.300 0.699 1.82 62 0.785 0.214 1.98 56 1.82

Kepler-186 f hyp 0.073 0.926 1.17 46 0.740 0.259 1.12 51 1.17

Proxima Cen b psy 0.045 0.954 1.12 57 0.216 0.783 1.07 53 1.12

TRAPPIST-1 b non 0.102 0.897 1.09 41 0.000 0.000 1.00 65 1.09

TRAPPIST-1 c non 0.471 0.528 1.06 44 0.227 0.772 1.14 57 1.06

TRAPPIST-1 d mes 0.000 0.000 1.00 67 0.000 0.000 1.00 59 1.00

TRAPPIST-1 e psy 0.000 0.000 1.00 55 0.000 0.000 1.00 57 1.00

TRAPPIST-1 g hyp 0.888 0.111 1.13 47 0.949 0.050 1.09 46 1.13

Table 52: Estimated Constant Elasticity Earth Similarity Approach scores under CRS.

Name Class r d t v e ρ η CDHS i

GJ 176 b non 0.194 0.020 0.315 0.465 0.006 0.398 1.000 1.88 86

GJ 667 C b non 0.162 0.289 0.090 0.087 0.372 0.836 1.000 3.54 107

GJ 667 C e psy 0.373 0.032 0.134 0.304 0.157 0.217 1.000 1.25 71

GJ 667 C f psy 0.394 0.006 0.043 0.360 0.196 0.490 1.000 1.44 81

GJ 3634 b non 0.351 0.122 0.006 0.069 0.453 0.439 1.000 2.89 96

HD 20794 c non 0.101 0.077 0.691 0.071 0.059 0.756 1.000 1.58 94

HD 40307 e non 0.069 0.091 0.097 0.173 0.569 0.768 1.000 5.29 94

HD 40307 f non 0.285 0.161 0.053 0.443 0.058 0.342 1.000 1.42 73

HD 40307 g psy 0.156 0.010 0.081 0.302 0.451 0.612 1.000 7.15 94

Kepler-186 f hyp 0.036 0.017 0.082 0.383 0.483 0.929 1.000 1.68 85

Proxima Cen b psy 0.352 0.383 0.103 0.059 0.103 0.936 1.000 0.89 83

TRAPPIST-1 b non 0.148 0.147 0.344 0.269 0.093 0.767 1.000 0.94 81

TRAPPIST-1 c non 0.038 0.060 0.575 0.321 0.005 0.602 1.000 1.17 86

TRAPPIST-1 d mes 0.023 0.065 0.475 0.391 0.045 0.830 1.000 0.84 79

TRAPPIST-1 e psy 0.176 0.464 0.253 0.103 0.004 0.920 1.000 0.86 81

TRAPPIST-1 g hyp 0.060 0.086 0.310 0.540 0.004 0.848 1.000 0.97 86
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Table 53: Estimated Constant Elasticity Earth Similarity Approach scores under DRS.

Name Class r d t v e ρ η CDHS i

GJ 176 b non 0.304 0.001 0.375 0.271 0.050 0.467 0.808 1.52 85

GJ 667 C b non 0.297 0.010 0.318 0.052 0.322 0.682 0.730 2.36 90

GJ 667 C e psy 0.230 0.286 0.137 0.199 0.148 0.551 0.906 1.14 85

GJ 667 C f psy 0.397 0.035 0.152 0.402 0.014 0.793 0.999 1.31 100

GJ 3634 b non 0.178 0.175 0.005 0.194 0.447 0.894 0.657 2.07 94

HD 20794 c non 0.073 0.142 0.452 0.190 0.144 0.953 0.635 1.20 78

HD 40307 e non 0.156 0.307 0.185 0.033 0.319 0.428 0.939 2.69 88

HD 40307 f non 0.272 0.231 0.064 0.305 0.127 0.676 0.802 1.28 77

HD 40307 g psy 0.113 0.219 0.066 0.454 0.148 0.711 0.991 3.26 92

Kepler-186 f hyp 0.039 0.159 0.116 0.329 0.357 0.253 0.919 1.35 70

Proxima Cen b psy 0.272 0.173 0.284 0.193 0.079 0.615 0.114 0.99 75

TRAPPIST-1 b non 0.488 0.151 0.039 0.193 0.129 0.151 0.014 0.99 87

TRAPPIST-1 c non 0.172 0.236 0.275 0.242 0.075 0.969 0.962 1.06 80

TRAPPIST-1 d mes 0.106 0.308 0.075 0.218 0.293 0.844 0.017 0.99 93

TRAPPIST-1 e psy 0.189 0.266 0.192 0.094 0.260 0.371 0.006 0.99 84

TRAPPIST-1 g hyp 0.326 0.186 0.143 0.278 0.067 0.315 0.021 1.00 76

Despite this, using PSO to calculate the habitability scores is beneficial when the number of

input parameters are large, which further increases the number of constraints, resulting in a

model too infeasible for traditional optimization methods.

Determining habitability from exoplanet requires that determining parameters are collec-

tively considered [?] before coming up with a conclusion as no single factor alone contributes

to it. Our proposed model would serve as an indicator while looking for new habitable worlds.

Eccentricity may have some effect on habitabilty and the models for computation should

address that. CDHS doesn’t, at least for the Trappist system (otherwise considered a set of

potentially habitable exoplanets) since the eccentricities for all memebers of the Trappist

system are 0 identically. CDHS, being a product model then will render the habitability score

to be 0, not in agreement with observations and overall opinion in the community. This is

the reason CESSA is considered in the process of habitability score computation (additive

nature of the model). One might wonder why metaheuristic optimization was applied on

two different optimization problems. We hope, our clarification would suffice.

However, the functional forms considered to compute the habitability score pose chal-

lenges. As we intend to add more parameters (such as eccentricity) to the basic model [?][?],

the functional form tends to suffer from curvature violation [?][?]. Even though global op-
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tima is guaranteed, premature convergence and local oscillations are hard to mitigate. An

attempt to address such issues, with moderate success, could be found in [?]. The greatest

contribution of the manuscript is to propose an evolutionary algorithm to track dynamic

functions of the type that allow for the oscillation that were instead mitigated with SGA in [?].

Consequently, a Pyhton library is integrated with the open source tool suite, an add on for

coding enthusiasts to test our method.
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ING

Page 223 of 316



16 PYTHON CODES

16.1 Fuzzy Neural Nets implementation

The code shown in this section is an implementation of Back Propagation algorithm written

in python. No in-built libraries are used and the code is written from scratch. The reason

behind implementing the algorithm from scratch is that one can clearly look at every step

from core and can visualize the movement of data between layers and the propagation of

error back to the network. Stochastic gradient Descent is used to reduce the error margins.

The code runs for 500 epochs and the learning rate is kept at 0.001. Vowel data set is used as

input to the network that comprises of 871 patterns, 3 input features and 6 output classes .

The input layer and the output layer is fuzzified by using PI membership function. Code 1

uses the class-independent fuzzification and Code 2 fuzzifies input layer on the basis of class

values. 5-fold cross validation is used to achieve good accuracy and classes are balanced in

each fold.

Code 1 (Class Independent fuzzification)

from random import seed

from random import randrange

from random import random

from csv import reader

from math import exp

from sklearn . metrics import confusion \ _matrix

import numpy as np

import math

# Load a CSV f i l e

def load_csv ( filename ) :

dataset = l i s t ( )

with open( filename , ’ r ’ ) as f i l e :

csv_reader = reader ( f i l e )

for row in csv_reader :

i f not row :

continue

dataset . append(row)

return dataset

def minmax( dataset ) :

minmax = l i s t ( )

Page 224 of 316



s t a t s = [ [ min(column) , max(column) ] for column in zip ( * dataset ) ]

return s t a t s

# Rescale dataset columns to the range 0−1

def normalize ( dataset , minmax) :

for row in dataset :

for i in range ( len (row)−1) :

row [ i ] = (row [ i ] − minmax[ i ] [ 0 ] ) / (minmax[ i ] [ 1 ] − minmax[ i

] [ 0 ] )

# Convert s t r i n g column to f l o a t

def column_to_float ( dataset , column) :

for row in dataset :

t r y :

row [ column ] = f l o a t (row [ column ] . s t r i p ( ) )

except ValueError :

print ( " Error with row" ,column , " : " ,row [ column ] )

pass

# Convert s t r i n g column to integer

def column_to_int ( dataset , column) :

for row in dataset :

row [ column ] = i n t (row [ column ] )

# Find the min and max values for each column

# S p l i t a dataset into k folds

def c r o s s _ v a l i d a t i o n _ s p l i t ( dataset , n_folds ) :

d a t a s e t _ s p l i t = l i s t ( )

dataset_copy = l i s t ( dataset )

f o l d _ s i z e = i n t ( len ( dataset ) / n_folds )

for i in range ( n_folds ) :

fold = l i s t ( )

while len ( fold ) < f o l d _ s i z e :

index = randrange ( len ( dataset_copy ) )

fold . append( dataset_copy . pop( index ) )

d a t a s e t _ s p l i t . append( fold )

return d a t a s e t _ s p l i t

# Calculate accuracy percentage

def accuracy_met ( actual , predicted ) :
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correct = 0

for i in range ( len ( actual ) ) :

i f actual [ i ] == predicted [ i ] :

correct += 1

return correct / f l o a t ( len ( actual ) ) * 100.0

# Evaluate an algorithm using a cross val idat ion s p l i t

def run_algorithm ( dataset , algorithm , n_folds , * args ) :

# print ( dataset )

folds = c r o s s _ v a l i d a t i o n _ s p l i t ( dataset , n_folds )

# for fold in folds :

# print ( " Fold { } \n \n " . format ( fold ) )

scores = l i s t ( )

for fold in folds :

# print ( " Test Fold { } \n \n " . format ( fold ) )

t r a i n _ s e t = l i s t ( folds )

t r a i n _ s e t . remove ( fold )

t r a i n _ s e t = sum( train_set , [ ] )

t e s t _ s e t = l i s t ( )

for row in fold :

row_copy = l i s t (row)

t e s t _ s e t . append( row_copy )

row_copy[−1] = None

predicted = algorithm ( train_set , t e s t _ s e t , * args )

actual = [ row[−1] for row in fold ]

# print ( predicted )

# print ( actual )

accuracy = accuracy_met ( actual , predicted )

cm = confusion_matrix ( actual , predicted )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for

row in cm] ) )

#confusionmatrix = np . matrix (cm)

FP = cm.sum( axis =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)

print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )
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TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)

print ( ’ ÃĄccuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

scores . append( accuracy )

# Calculate neuron act ivat ion for an input

def a c t i v a t e ( weights , inputs ) :

act ivat ion = weights [−1]

for i in range ( len ( weights )−1) :

act ivat ion += weights [ i ] * inputs [ i ]

return act ivat ion

# Transfer neuron act ivat ion

def function ( act ivat ion ) :

return 1.0 / ( 1 . 0 + exp(−act ivat ion ) )

# Forward propagate input to a network output

def forward_propagate ( network , row) :

inputs = row

# print ( " input row { } \ n " . format ( inputs ) )

for layer in network :

new_inputs = [ ]

for neuron in layer :

act ivat ion = a c t i v a t e ( neuron [ ’ weights ’ ] , inputs )

neuron [ ’ output ’ ] = function ( act ivat ion )

new_inputs . append( neuron [ ’ output ’ ] )

inputs = new_inputs

# print ( " output row { } \ n " . format ( inputs ) )

return inputs

# Calculate the d e r i v a t i v e of an neuron output

def function_derivative ( output ) :

return output * ( 1 . 0 − output )
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# Backpropagate error and store in neurons

def backprop_error ( network , expected ) :

for i in reversed ( range ( len ( network ) ) ) :

layer = network [ i ]

errors = l i s t ( )

i f i ! = len ( network ) −1:

for j in range ( len ( layer ) ) :

error = 0.0

for neuron in network [ i + 1 ] :

error += ( neuron [ ’ weights ’ ] [ j ] * neuron [ ’

delta ’ ] )

errors . append( error )

e lse :

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

errors . append( expected [ j ] − neuron [ ’ output ’ ] )

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

neuron [ ’ delta ’ ] = errors [ j ] * function_derivative ( neuron [ ’

output ’ ] )

# Update network weights with error

def change_weights ( network , row , l _ r a t e ) :

for i in range ( len ( network ) ) :

inputs = row[: −1]

i f i ! = 0 :

inputs = [ neuron [ ’ output ’ ] for neuron in network [ i − 1 ] ]

for neuron in network [ i ] :

for j in range ( len ( inputs ) ) :

neuron [ ’ weights ’ ] [ j ] += l _ r a t e * neuron [ ’ delta ’ ] *
inputs [ j ]

neuron [ ’ weights ’ ][−1] += l _ r a t e * neuron [ ’ delta ’ ]

#To f u z z i f y the output layer

def fuzzyout (row ,mean, stdev , n_outputs ) :

z= l i s t ( )

mu= l i s t ( )

muINT= l i s t ( )

rowclass=row[−1]−1

# print ( rowclass )

for k in range ( n_outputs ) :

sumz=0
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for j in range ( 9 ) :

interm=pow( ( row [ j ]−mean[ k ] [ j ] ) / stdev [ k ] [ j ] , 2 )

sumz=sumz+interm

# print ( "row { } " . format (row [ j ] ) )

# print ( "mean { } " . format (mean[ rowclass ] [ j ] ) )

# print ( "sum { } " . format (sumz) )

weightedZ=math . sqrt (sumz)

memMU=1/(1+( weightedZ /5) )

i f 0 <= memMU <= 0 . 5 :

memMUINT=2*pow(memMU, 2 )

else :

temp=1−memMU

memMUINT=1−(2*pow(temp , 2 ) )

mu. append(memMU)

z . append( weightedZ )

muINT. append(memMUINT)

return muINT

# Train a network for a f ixed number of epochs

def neural_network_train ( network , train , l_rate , n_epoch , n_outputs ) :

# print ( dataset )

for epoch in range ( n_epoch ) :

# print ( t r a i n )

for row in t r a i n :

outputs = forward_propagate ( network , row)

# print ( outputs )

expected = fuzzyout (row ,mean, stdev , n_outputs )

# print ( " input row { } \ n " . format (row) )

#expected [ row[−1]−1] = 1

# print ( " expected row { } \ n " . format ( expected ) )

backprop_error ( network , expected )

change_weights ( network , row , l _ r a t e )

# I n i t i a l i z e a network

def i n i t _ n e t ( n_inputs , n_hidden , n_outputs ) :

network = l i s t ( )

hidden_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_inputs + 1) ] } for i in

range ( n_hidden ) ]

network . append( hidden_layer )

output_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_hidden + 1) ] } for i in

range ( n_outputs ) ]

network . append( output_layer )

Page 229 of 316



return network

# Make a prediction with a network

def predict ( network , row) :

outputs = forward_propagate ( network , row)

# print ( outputs )

indexOut=outputs . index (max( outputs ) ) +1

# print ( indexOut )

return indexOut

# Backpropagation Algorithm With Stochastic Gradient Descent

def back_propagation ( train , test , l_rate , n_epoch , n_hidden ) :

n_inputs = len ( t r a i n [ 0 ] ) − 1

n_outputs = len ( set ( [ row[−1] for row in t r a i n ] ) )

network = i n i t _ n e t ( n_inputs , n_hidden , n_outputs )

# print ( " i n i t i a l i z e network { } \ n " . format ( network ) )

neural_network_train ( network , train , l _rate , n_epoch , n_outputs )

# print ( " network { } \ n " . format ( network ) )

predictions = l i s t ( )

for row in t e s t :

prediction = predict ( network , row)

predictions . append( prediction )

return ( predictions )

# Test Backprop on Seeds dataset

seed ( 1 )

# load and prepare data

filename = ’ data . csv ’

dataset = load_csv ( filename )

for i in range ( len ( dataset [ 0 ] ) −1) :

column_to_float ( dataset , i )

# convert c l a s s column to integers

column_to_int ( dataset , len ( dataset [ 0 ] ) −1)

#normalize input var iables

#minmax = minmax( dataset )

#normalize ( dataset , minmax)

# evaluate algorithm

n_folds = 5 #k=5

l _ r a t e = 0.2 # learning rate

n_epoch = 500 #epochs
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n_hidden = 7 #since the number of inputs are 3*3 , and number of c l asse s

are 6

# t h i s part of the computation i s to f u z z i f y inputs , PI membership function i s taken

for f u z z y f i c a t i o n . each feature vector i s fuzzyf ied into low , meadium and high

degree of membership

center =[[250 ,575 ,900] ,[700 ,1625 ,2550] ,[1800 ,2500 ,3200]]

# print ( center )

rad =[[650 ,325 ,650] , [1850 ,925 ,1850] ,[1400 ,700 ,1400]]

fuzzy= l i s t ( )

for i in range (870) :

data=dataset [ i ]

# print ( data )

l =0

value= l i s t ( )

for j in range ( 3 ) :

d=data [ j ]

for k in range ( 3 ) :

r=rad [ j ] [ k ]/2

eucleanD=math .pow( ( d−center [ j ] [ k ] ) , 2 )

eDist=math . sqrt ( eucleanD )

i f eDist <= r :

val = 1− 2*math .pow( eDist /( r *2) , 2 )

value . i n s e r t ( l , val )

e lse :

y=eDist /rad [ j ] [ k ]

x=(1−( eDist /rad [ j ] [ k ] ) )

val = 2*math .pow( x , 2 )

value . i n s e r t ( l , val )

l = l +1

value . i n s e r t ( l , data [−1])

fuzzy . i n s e r t ( i , value )

#fuzzy i s the modified dataset a f t e r f u z z i f i c a t i o n

# print ( fuzzy )

#This part of the code computes Mean and standard deviation of every feature of a l l

c la sses to f u z z y f i e s the output layer of the network

clas ses =[row[−1] for row in fuzzy ]

Unique=np . unique ( cl asse s )

d a t a s e t _ s p l i t = l i s t ( )

f o l d _ s i z e = i n t ( len ( Unique ) )
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for i in range ( f o l d _ s i z e ) :

fold= l i s t ( )

for row in fuzzy :

i f row[−1] == Unique [ i ] :

fold . append(row)

d a t a s e t _ s p l i t . append( fold )

i =0

mean= l i s t ( )

stdev= l i s t ( )

j =0

for fold in d a t a s e t _ s p l i t :

x= l i s t ( )

y= l i s t ( )

z= l i s t ( )

x1= l i s t ( )

y1= l i s t ( )

z1= l i s t ( )

x2= l i s t ( )

y2= l i s t ( )

z2= l i s t ( )

for row in fold :

i f row[−1] == Unique [ j ] :

x . append(row [ 0 ] )

y . append(row [ 1 ] )

z . append(row [ 2 ] )

x1 . append(row [ 3 ] )

y1 . append(row [ 4 ] )

z1 . append(row [ 5 ] )

x2 . append(row [ 6 ] )

y2 . append(row [ 7 ] )

z2 . append(row [ 8 ] )

m1=sum( x ) / f l o a t ( len ( x ) )

m2=sum( y ) / f l o a t ( len ( y ) )

m3=sum( z ) / f l o a t ( len ( z ) )

m4=sum( x1 ) / f l o a t ( len ( x1 ) )

m5=sum( y1 ) / f l o a t ( len ( y1 ) )

m6=sum( z1 ) / f l o a t ( len ( z1 ) )

m7=sum( x2 ) / f l o a t ( len ( x2 ) )

m8=sum( y2 ) / f l o a t ( len ( y2 ) )

m9=sum( z2 ) / f l o a t ( len ( z2 ) )

mean. append ( [m1,m2,m3,m4,m5,m6,m7,m8,m9] )

st1=sum( [pow( val−m1, 2 ) for val in x ] ) / f l o a t ( len ( x )−1)
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st2=sum( [pow( val−m2, 2 ) for val in y ] ) / f l o a t ( len ( y )−1)

st3=sum( [pow( val−m3, 2 ) for val in z ] ) / f l o a t ( len ( z )−1)

st4=sum( [pow( val−m4, 2 ) for val in x1 ] ) / f l o a t ( len ( x1 )−1)

st5=sum( [pow( val−m5, 2 ) for val in y1 ] ) / f l o a t ( len ( y1 )−1)

st6=sum( [pow( val−m6, 2 ) for val in z1 ] ) / f l o a t ( len ( z1 )−1)

st7=sum( [pow( val−m7, 2 ) for val in x2 ] ) / f l o a t ( len ( x2 )−1)

st8=sum( [pow( val−m8, 2 ) for val in y2 ] ) / f l o a t ( len ( y2 )−1)

st9=sum( [pow( val−m9, 2 ) for val in z2 ] ) / f l o a t ( len ( z2 )−1)

std1=math . sqrt ( st1 )

std2=math . sqrt ( st2 )

std3=math . sqrt ( st3 )

std4=math . sqrt ( st4 )

std5=math . sqrt ( st5 )

std6=math . sqrt ( st6 )

std7=math . sqrt ( st7 )

std8=math . sqrt ( st8 )

std9=math . sqrt ( st9 )

stdev . append ( [ std1 , std2 , std3 , std4 , std5 , std6 , std7 , std8 , std9 ] )

j = j +1

# print (mean)

# print ( stdev )

run_algorithm ( fuzzy , back_propagation , n_folds , l_rate , n_epoch , n_hidden )
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16.2 II (Class dependent fuzzification-after fuzzification the number of

input features is 18, the network has single hidden layer with 10 neu-

rons)

# Backpropogation algorithm implemented on the Vowel Dataset . The dataset i s attached

with the f i l e . Number of input features are three and output cl asses are s i x and

sample s i z e i s 871.

# The f u z z i f i c a t i o n i s c l a s s dependent . The input features are f u z z i f i e d using PI

membership function and fed into the neural network . The output layer i s also

f u z z i f i e d .

# 5−fold cross val idat ion i s used to achieve better accuracy . There are unbalanced

cla sses in training set .

# Confusion matrix , precision , r e c a l l , accuracy and Fscore i s computed using sklearn

package

from random import seed

from random import randrange

from random import random

from csv import reader

from math import exp

from sklearn . metrics import confusion_matrix

import numpy as np

import math

def Fuzzy_input (N) :

fuzzy= l i s t ( )

coeff=pow( 2 ,N−1)

for i in range (871) :

data=dataset [ i ]

# print ( data )

l =0

member= l i s t ( )

value= l i s t ( )

for j in range ( 3 ) :

d=data [ j ]

for k in range ( 6 ) :

i f d<= a [ k ] [ j ] :

member. append ( 0 )

e l i f a [ k ] [ j ] <d<=p[ k ] [ j ] :

member. append( coeff * pow( ( d−a [ k ] [ j ] ) /( r [ k ] [ j ]−a [ k ] [ j
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] ) ,N) )

e l i f p[ k ] [ j ] < d <= r [ k ] [ j ] :

member. append(1−( coeff * pow( ( r [ k ] [ j ]−d) /( r [ k ] [ j ]−a [ k

] [ j ] ) ,N) ) )

e l i f r [ k ] [ j ] < d <= q [ k ] [ j ] :

member. append(1−( coeff * pow( ( d−r [ k ] [ j ] ) /(b[ k ] [ j ]−r [ k

] [ j ] ) ,N) ) )

e l i f q [ k ] [ j ] < d <= b[ k ] [ j ] :

member. append( coeff * pow( ( b[ k ] [ j ]−d) /(b[ k ] [ j ]−r [ k ] [ j

] ) ,N) )

e lse :

member. append ( 0 )

l = l +1

member. append( data [−1])

# print ( "member { } " . format (member) )

fuzzy . append(member)

# print ( fuzzy )

return fuzzy

# Load a CSV f i l e

def load_csv ( filename ) :

dataset = l i s t ( )

with open( filename , ’ r ’ ) as f i l e :

csv_reader = reader ( f i l e )

for row in csv_reader :

i f not row :

continue

dataset . append(row)

return dataset

def minmax( dataset ) :

minmax = l i s t ( )

s t a t s = [ [ min(column) , max(column) ] for column in zip ( * dataset ) ]

return s t a t s

# Rescale dataset columns to the range 0−1

def normalize ( dataset , minmax) :

for row in dataset :

for i in range ( len (row)−1) :

row [ i ] = (row [ i ] − minmax[ i ] [ 0 ] ) / (minmax[ i ] [ 1 ] − minmax[ i

] [ 0 ] )

Page 235 of 316



# Convert s t r i n g column to f l o a t

def column_to_float ( dataset , column) :

for row in dataset :

t r y :

row [ column ] = f l o a t (row [ column ] . s t r i p ( ) )

except ValueError :

print ( " Error with row" ,column , " : " ,row [ column ] )

pass

# Convert s t r i n g column to integer

def column_to_int ( dataset , column) :

for row in dataset :

row [ column ] = i n t (row [ column ] )

# Find the min and max values for each column

# S p l i t a dataset into k folds

def c r o s s _ v a l i d a t i o n _ s p l i t ( dataset , n_folds ) :

s i z e _ c l a s s = l i s t ( )

s i z e _ c l a s s . append( i n t (72/ n_folds ) )

s i z e _ c l a s s . append( i n t (89/ n_folds ) )

s i z e _ c l a s s . append( i n t (172/ n_folds ) )

s i z e _ c l a s s . append( i n t (151/ n_folds ) )

s i z e _ c l a s s . append( i n t (207/ n_folds ) )

s i z e _ c l a s s . append( i n t (180/ n_folds ) )

c l a s s _ i n f o = [ 1 , 2 , 3 , 4 , 5 , 6 ]

# print ( s i z e _ c l a s s )

d a t a s e t _ s p l i t = l i s t ( )

dataset_copy = l i s t ( dataset )

f o l d _ s i z e = i n t ( len ( dataset ) / n_folds )

for k in range ( n_folds ) :

# print ( " k = { } " . format ( k ) )

i =0

fold= l i s t ( )

for j in range ( len ( c l a s s _ i n f o ) ) :

# for j in range ( ) :
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count=0

while ( count < s i z e _ c l a s s [ j ] ) :

data=dataset_copy [ i ]

# print ( " { } " . format ( dataset_copy [ i ] ) )

i f data [−1] == c l a s s _ i n f o [ j ] :

# print ( " { } { } { } { } " . format ( data [−1] ,

count , s i z e _ c l a s s [ j ] , c l a s s _ i n f o [ j ] ) )

item=dataset_copy . pop( i )

fold . append( item )

count=count+1

else :

i = i +1

d a t a s e t _ s p l i t . append( fold )

# print ( " dataset { } \n\n\n " . format ( d a t a s e t _ s p l i t ) )

return d a t a s e t _ s p l i t

# Calculate accuracy percentage

def accuracy_met ( actual , predicted ) :

correct = 0

for i in range ( len ( actual ) ) :

i f actual [ i ] == predicted [ i ] :

correct += 1

return correct / f l o a t ( len ( actual ) ) * 100.0

# Evaluate an algorithm using a cross val idat ion s p l i t

def run_algorithm ( dataset , algorithm , n_folds , * args ) :

# print ( dataset )

folds = c r o s s _ v a l i d a t i o n _ s p l i t ( dataset , n_folds )

# for fold in folds :

# print ( " Fold { } \n \n " . format ( fold ) )

scores = l i s t ( )

for fold in folds :

# print ( " Test Fold { } \n \n " . format ( fold ) )

t r a i n _ s e t = l i s t ( folds )

t r a i n _ s e t . remove ( fold )

t r a i n _ s e t = sum( train_set , [ ] )

t e s t _ s e t = l i s t ( )

for row in fold :

row_copy = l i s t (row)

t e s t _ s e t . append( row_copy )

row_copy[−1] = None
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predicted = algorithm ( train_set , t e s t _ s e t , * args )

actual = [ row[−1] for row in fold ]

# print ( predicted )

# print ( actual )

accuracy = accuracy_met ( actual , predicted )

cm = confusion_matrix ( actual , predicted )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for

row in cm] ) )

#confusionmatrix = np . matrix (cm)

FP = cm.sum( axis =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)

print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )

TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)

print ( ’ ÃĄccuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

scores . append( accuracy )

# Calculate neuron act ivat ion for an input

def a c t i v a t e ( weights , inputs ) :

act ivat ion = weights [−1]

for i in range ( len ( weights )−1) :

act ivat ion += weights [ i ] * inputs [ i ]

return act ivat ion

# Transfer neuron act ivat ion

def function ( act ivat ion ) :

return 1.0 / ( 1 . 0 + exp(−act ivat ion ) )
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# Forward propagate input to a network output

def forward_propagate ( network , row) :

inputs = row

# print ( " input row { } \ n " . format ( inputs ) )

for layer in network :

new_inputs = [ ]

for neuron in layer :

act ivat ion = a c t i v a t e ( neuron [ ’ weights ’ ] , inputs )

neuron [ ’ output ’ ] = function ( act ivat ion )

new_inputs . append( neuron [ ’ output ’ ] )

inputs = new_inputs

# print ( " output row { } \ n " . format ( inputs ) )

return inputs

# Calculate the d e r i v a t i v e of an neuron output

def function_derivative ( output ) :

return output * ( 1 . 0 − output )

# Backpropagate error and store in neurons

def backprop_error ( network , expected ) :

for i in reversed ( range ( len ( network ) ) ) :

layer = network [ i ]

errors = l i s t ( )

i f i ! = len ( network ) −1:

for j in range ( len ( layer ) ) :

error = 0.0

for neuron in network [ i + 1 ] :

error += ( neuron [ ’ weights ’ ] [ j ] * neuron [ ’

delta ’ ] )

errors . append( error )

e lse :

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

errors . append( expected [ j ] − neuron [ ’ output ’ ] )

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

neuron [ ’ delta ’ ] = errors [ j ] * function_derivative ( neuron [ ’

output ’ ] )

# Update network weights with error

def change_weights ( network , row , l _ r a t e ) :
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for i in range ( len ( network ) ) :

inputs = row[: −1]

i f i ! = 0 :

inputs = [ neuron [ ’ output ’ ] for neuron in network [ i − 1 ] ]

for neuron in network [ i ] :

for j in range ( len ( inputs ) ) :

neuron [ ’ weights ’ ] [ j ] += l _ r a t e * neuron [ ’ delta ’ ] *
inputs [ j ]

neuron [ ’ weights ’ ][−1] += l _ r a t e * neuron [ ’ delta ’ ]

#To f u z z i f y the output layer

def fuzzyout (row ,mean, stdev , n_outputs ) :

z= l i s t ( )

mu= l i s t ( )

muINT= l i s t ( )

rowclass=row[−1]−1

# print ( rowclass )

for k in range ( n_outputs ) :

sumz=0

for j in range ( 9 ) :

interm=pow( ( row [ j ]−mean[ k ] [ j ] ) / stdev [ k ] [ j ] , 2 )

sumz=sumz+interm

# print ( "row { } " . format (row [ j ] ) )

# print ( "mean { } " . format (mean[ rowclass ] [ j ] ) )

# print ( "sum { } " . format (sumz) )

weightedZ=math . sqrt (sumz)

memMU=1/(1+( weightedZ /5) )

i f 0 <= memMU <= 0 . 5 :

memMUINT=2*pow(memMU, 2 )

else :

temp=1−memMU

memMUINT=1−(2*pow(temp , 2 ) )

mu. append(memMU)

z . append( weightedZ )

muINT. append(memMUINT)

return muINT

# Train a network for a f ixed number of epochs

def neural_network_train ( network , train , l_rate , n_epoch , n_outputs ) :

# print ( dataset )

for epoch in range ( n_epoch ) :

# print ( t r a i n )

Page 240 of 316



for row in t r a i n :

outputs = forward_propagate ( network , row)

# print ( outputs )

expected = fuzzyout (row ,mean, stdev , n_outputs )

# print ( " input row { } \ n " . format (row) )

#expected [ row[−1]−1] = 1

# print ( " expected row { } \ n " . format ( expected ) )

backprop_error ( network , expected )

change_weights ( network , row , l _ r a t e )

# I n i t i a l i z e a network

def i n i t _ n e t ( n_inputs , n_hidden , n_outputs ) :

network = l i s t ( )

hidden_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_inputs + 1) ] } for i in

range ( n_hidden ) ]

network . append( hidden_layer )

output_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_hidden + 1) ] } for i in

range ( n_outputs ) ]

network . append( output_layer )

return network

# Make a prediction with a network

def predict ( network , row) :

outputs = forward_propagate ( network , row)

# print ( outputs )

indexOut=outputs . index (max( outputs ) ) +1

# print ( indexOut )

return indexOut

# Backpropagation Algorithm With Stochastic Gradient Descent

def back_propagation ( train , test , l_rate , n_epoch , n_hidden ) :

n_inputs = len ( t r a i n [ 0 ] ) − 1

n_outputs = len ( set ( [ row[−1] for row in t r a i n ] ) )

network = i n i t _ n e t ( n_inputs , n_hidden , n_outputs )

# print ( " i n i t i a l i z e network { } \ n " . format ( network ) )

neural_network_train ( network , train , l _rate , n_epoch , n_outputs )

# print ( " network { } \ n " . format ( network ) )

predictions = l i s t ( )

for row in t e s t :

prediction = predict ( network , row)
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predictions . append( prediction )

return ( predictions )

# Test Backprop on Seeds dataset

seed ( 1 )

# load and prepare data

filename = ’ data . csv ’

dataset = load_csv ( filename )

for i in range ( len ( dataset [ 0 ] ) −1) :

column_to_float ( dataset , i )

# convert c l a s s column to integers

column_to_int ( dataset , len ( dataset [ 0 ] ) −1)

#To divide the dataset class−wise ; each fold has individual c l a s s

c las ses =[row[−1] for row in dataset ]

Unique=np . unique ( cl asse s )

d a t a s e t _ s p l i t = l i s t ( )

f o l d _ s i z e = i n t ( len ( Unique ) )

for i in range ( f o l d _ s i z e ) :

fold= l i s t ( )

for row in dataset :

i f row[−1] == Unique [ i ] :

fold . append(row)

d a t a s e t _ s p l i t . append( fold )

# t h i s part of the computation i s to f u z z i f y inputs , PI membership function i s taken

for f u z z y f i c a t i o n . each feature vector i s fuzzyf ied into s i x c l a s s based fuzzy set

a= l i s t ( )

p= l i s t ( )

r= l i s t ( )

q= l i s t ( )

b= l i s t ( )

j =0

for fold in d a t a s e t _ s p l i t :

x= l i s t ( )

y= l i s t ( )

z= l i s t ( )

x =[row [ 0 ] for row in fold ]

y =[row [ 1 ] for row in fold ]
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z =[row [ 2 ] for row in fold ]

m1=sum( x ) / f l o a t ( len ( x ) )

m2=sum( y ) / f l o a t ( len ( y ) )

m3=sum( z ) / f l o a t ( len ( z ) )

r . append ( [m1,m2,m3] )

p1=m1−((max( x )−min( x ) ) /2)

p2=m2−((max( y )−min( y ) ) /2)

p3=m3−((max( z )−min( z ) ) /2)

p . append ( [ p1 , p2 , p3 ] )

q1=m1+ ( (max( x )−min( x ) ) /2)

q2=m2+ ( (max( y )−min( y ) ) /2)

q3=m3+ ( (max( z )−min( z ) ) /2)

q . append ( [ q1 , q2 , q3 ] )

a1=m1−(q1−p1 )

a2=m2−(q2−p2 )

a3=m3−(q3−p3 )

b1=m1+(q1−p1 )

b2=m2+(q2−p2 )

b3=m3+(q3−p3 )

a . append ( [ a1 , a2 , a3 ] )

b . append ( [ b1 , b2 , b3 ] )

N=1

fuzzy= l i s t ( )

fuzzy=Fuzzy_input (N)

#fuzzy i s the modified dataset a f t e r f u z z i f i c a t i o n

# print ( fuzzy )

#This part of the code computes Mean and standard deviation of every feature of a l l

c la sses to f u z z y f i e s the output layer of the network

clas ses =[row[−1] for row in fuzzy ]

Unique=np . unique ( cl asse s )

d a t a s e t _ s p l i t = l i s t ( )

f o l d _ s i z e = i n t ( len ( Unique ) )

for i in range ( f o l d _ s i z e ) :

fold= l i s t ( )

for row in fuzzy :

i f row[−1] == Unique [ i ] :

fold . append(row)

d a t a s e t _ s p l i t . append( fold )

i =0

mean= l i s t ( )

stdev= l i s t ( )
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j =0

for fold in d a t a s e t _ s p l i t :

x= l i s t ( )

y= l i s t ( )

z= l i s t ( )

x1= l i s t ( )

y1= l i s t ( )

z1= l i s t ( )

x2= l i s t ( )

y2= l i s t ( )

z2= l i s t ( )

for row in fold :

i f row[−1] == Unique [ j ] :

x . append(row [ 0 ] )

y . append(row [ 1 ] )

z . append(row [ 2 ] )

x1 . append(row [ 3 ] )

y1 . append(row [ 4 ] )

z1 . append(row [ 5 ] )

x2 . append(row [ 6 ] )

y2 . append(row [ 7 ] )

z2 . append(row [ 8 ] )

m1=sum( x ) / f l o a t ( len ( x ) )

m2=sum( y ) / f l o a t ( len ( y ) )

m3=sum( z ) / f l o a t ( len ( z ) )

m4=sum( x1 ) / f l o a t ( len ( x1 ) )

m5=sum( y1 ) / f l o a t ( len ( y1 ) )

m6=sum( z1 ) / f l o a t ( len ( z1 ) )

m7=sum( x2 ) / f l o a t ( len ( x2 ) )

m8=sum( y2 ) / f l o a t ( len ( y2 ) )

m9=sum( z2 ) / f l o a t ( len ( z2 ) )

mean. append ( [m1,m2,m3,m4,m5,m6,m7,m8,m9] )

st1=sum( [pow( val−m1, 2 ) for val in x ] ) / f l o a t ( len ( x )−1)

st2=sum( [pow( val−m2, 2 ) for val in y ] ) / f l o a t ( len ( y )−1)

st3=sum( [pow( val−m3, 2 ) for val in z ] ) / f l o a t ( len ( z )−1)

st4=sum( [pow( val−m4, 2 ) for val in x1 ] ) / f l o a t ( len ( x1 )−1)

st5=sum( [pow( val−m5, 2 ) for val in y1 ] ) / f l o a t ( len ( y1 )−1)

st6=sum( [pow( val−m6, 2 ) for val in z1 ] ) / f l o a t ( len ( z1 )−1)

st7=sum( [pow( val−m7, 2 ) for val in x2 ] ) / f l o a t ( len ( x2 )−1)

st8=sum( [pow( val−m8, 2 ) for val in y2 ] ) / f l o a t ( len ( y2 )−1)

st9=sum( [pow( val−m9, 2 ) for val in z2 ] ) / f l o a t ( len ( z2 )−1)

std1=math . sqrt ( st1 )
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std2=math . sqrt ( st2 )

std3=math . sqrt ( st3 )

std4=math . sqrt ( st4 )

std5=math . sqrt ( st5 )

std6=math . sqrt ( st6 )

std7=math . sqrt ( st7 )

std8=math . sqrt ( st8 )

std9=math . sqrt ( st9 )

stdev . append ( [ std1 , std2 , std3 , std4 , std5 , std6 , std7 , std8 , std9 ] )

j = j +1

# print (mean)

# print ( stdev )

n_folds = 5 #k=5

l _ r a t e = 0.2 # learning rate

n_epoch = 500 #epochs

n_hidden = 10 #since the number of inputs are 18 , and number of c la sses are 6

run_algorithm ( fuzzy , back_propagation , n_folds , l_rate , n_epoch , n_hidden )

***************************************************************************

Github Repository: https://github.com/mathurarchana77/neuralnetwork

Data Set: Vowel Dataset - 871 rows, 3 input features and 6 output classes. Classes are unbal-

anced in original dataset and the code balances the data to keep the distribution of every

class in every fold uniform.

16.3 Code III (Quick Reduct Algorithm)

#QuickReduct i s an algorithm for feature select ion that computes degree of

dependencies of a set of features on another set

#Rough set theory deals with concepts that are vague and creates an approximate

description of patterns for data processing . I t b a s i c a l l y defines the crisp set

with rough representation . The quick reduct s t a r t s with the complete i n i t i a l set

and removes one feature at a time by ensuring i d e n t i c a l predict ive c a p a b i l i t y of

the decision feature as that of the o r i g i n a l feature set .

from random import seed

from random import randrange

from random import random

from csv import reader

from math import exp

from sklearn . metrics import confusion_matrix
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import numpy as np

import math

from i t e r t o o l s import combinations

def load_csv ( filename ) :

dataset = l i s t ( )

with open( filename , ’ r ’ ) as f i l e :

csv_reader = reader ( f i l e )

for row in csv_reader :

i f not row :

continue

dataset . append(row)

return dataset

# Convert s t r i n g column to f l o a t

def str_column_to_float ( dataset , column) :

for row in dataset :

t r y :

row [ column ] = f l o a t (row [ column ] . s t r i p ( ) )

except ValueError :

print ( " Error with row" ,column , " : " ,row [ column ] )

pass

# Convert s t r i n g column to integer

def str_column_to_int ( dataset , column) :

for row in dataset :

row [ column ] = i n t (row [ column ] )

def dependency ( dataset ,num) :

t o t a l =0

dependency=0

for j in range ( 3 ) :

fold= l i s t ( )

for i in range ( len ( dataset ) ) :

data=dataset [ i ]

# print ( i )

i f data[−1]== j :

fold . append( dataset [ i ] )

# print ( " Fold { } " . format ( fold ) )

count=len ( fold )

# print ( " count { } " . format ( count ) )
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for k in range ( len ( fold ) ) :

l i s t 1 =fold [ k ]

for l in range ( len ( dataset ) ) :

# print ( " len { } " . format ( len ( fold ) ) )

l i s t 2 =dataset [ l ]

i f l i s t 1 [ :num]== l i s t 2 [ :num] and l i s t 1 [−1]!= l i s t 2 [ −1]:

count = count−1

# print ( " Count inside { } " . format ( count ) )

break

t o t a l = t o t a l +count

# print ( " t o t a l { } " , format ( t o t a l ) )

dependency= t o t a l / len ( dataset )

# print ( " { } " . format ( dependency ) )

return dependency

def generate_new_dataset (row , l ) :

# print (row)

X = np . empty ( ( 8 , 0) ) # there are 8 samples in the dataset

# print (X)

for i in range ( len (row) ) :

col=row [ i ]

x =[row_new[ col ] for row_new in dataset ]

x=np . array ( [ x ] )

# print (np . transpose ( x ) )

# print ( x )

x=x . T

X=np . append(X , x , axis =1)

x =[row[−1] for row in dataset ]

X=np . append(X , [ [ x [ 0 ] ] , [ x [ 1 ] ] , [ x [ 2 ] ] , [ x [ 3 ] ] , [ x [ 4 ] ] , [ x [ 5 ] ] , [ x [ 6 ] ] , [ x [ 7 ] ] ] ,

ax is =1)

X=np . array (X) . t o l i s t ( )

print ( "X { } " . format (X) )

return X

filename = ’ TestData . csv ’

dataset = load_csv ( filename )

for i in range ( len ( dataset [ 0 ] ) −1) :

str_column_to_float ( dataset , i )

# convert c l a s s column to integers

str_column_to_int ( dataset , len ( dataset [ 0 ] ) −1)

# print ( dataset )
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# t h i s i s f u z z i f y inpput based on c l a s s belongin granulation

dp=dependency ( dataset , 4 )

# print ( "dp { } " . format (dp) )

n=4 # the number of features are 4

i n i t i a l _ v a l = [ 0 , 1 , 2 , 3 ]

comb=combinations ( [ 0 , 1 , 2 , 3 ] , 3 )

while n>1:

for row in comb:

# print (row)

data_X=generate_new_dataset (row , len (row) )

# print ( data_X )

dp_data_X=dependency ( data_X , len (row) )

# print ( "new dp { } " . format ( dp_data_X ) )

i f dp > dp_data_X :

continue

else :

n=n−1

break

# print (row)

comb=combinations (row , n)

print ( " f i n a l reduct { } " . format (row) )

*****************************************************************************************

Github repository : https://github.com/mathurarchana77/QuickReduct

*************************************************************************************************

16.4 Code IV (Multi Layer Perceptron)

# Multi layer Perceptron on the Vowel Dataset

from random import seed

from random import randrange

from random import random

from csv import reader

from math import exp

from sklearn . metrics import confusion_matrix

from sklearn . metrics import cohen_kappa_score

import numpy as np

import csv

# Load a CSV f i l e
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def loadCsv ( filename ) :

t r a i n S e t = [ ]

l i n e s = csv . reader (open( filename , ’ r ’ ) )

dataset = l i s t ( l i n e s )

for i in range ( len ( dataset ) ) :

for j in range ( 4 ) :

# print ( "DATA { } " . format ( dataset [ i ] ) )

dataset [ i ] [ j ] = f l o a t ( dataset [ i ] [ j ] )

t r a i n S e t . append( dataset [ i ] )

return t r a i n S e t

def minmax( dataset ) :

minmax = l i s t ( )

s t a t s = [ [ min(column) , max(column) ] for column in zip ( * dataset ) ]

return s t a t s

# Rescale dataset columns to the range 0−1

def normalize ( dataset , minmax) :

for row in dataset :

for i in range ( len (row)−1) :

row [ i ] = (row [ i ] − minmax[ i ] [ 0 ] ) / (minmax[ i ] [ 1 ] − minmax[ i

] [ 0 ] )

# Convert s t r i n g column to f l o a t

def column_to_float ( dataset , column) :

for row in dataset :

t r y :

row [ column ] = f l o a t (row [ column ] )

except ValueError :

print ( " Error with row" ,column , " : " ,row [ column ] )

pass

# Convert s t r i n g column to integer

def column_to_int ( dataset , column) :

class_values = [ row [ column ] for row in dataset ]

unique = set ( class_values )

lookup = d i c t ( )

for i , value in enumerate ( unique ) :

lookup [ value ] = i

for row in dataset :

row [ column ] = lookup [ row [ column ] ]

Page 249 of 316



return lookup

# Find the min and max values for each column

# S p l i t a dataset into k folds

def c r o s s _ v a l i d a t i o n _ s p l i t ( dataset , n_folds ) :

d a t a s e t _ s p l i t = l i s t ( )

dataset_copy = l i s t ( dataset )

f o l d _ s i z e = i n t ( len ( dataset ) / n_folds )

for i in range ( n_folds ) :

fold = l i s t ( )

while len ( fold ) < f o l d _ s i z e :

index = randrange ( len ( dataset_copy ) )

fold . append( dataset_copy . pop( index ) )

d a t a s e t _ s p l i t . append( fold )

return d a t a s e t _ s p l i t

# Calculate accuracy percentage

def accuracy_met ( actual , predicted ) :

correct = 0

for i in range ( len ( actual ) ) :

i f actual [ i ] == predicted [ i ] :

correct += 1

return correct / f l o a t ( len ( actual ) ) * 100.0

# Evaluate an algorithm using a cross val idat ion s p l i t

def run_algorithm ( dataset , algorithm , n_folds , * args ) :

fo lds = c r o s s _ v a l i d a t i o n _ s p l i t ( dataset , n_folds )

# for fold in folds :

# print ( " Fold { } \n \n " . format ( fold ) )

scores = l i s t ( )

for fold in folds :

# print ( " Test Fold { } \n \n " . format ( fold ) )

t r a i n _ s e t = l i s t ( folds )

t r a i n _ s e t . remove ( fold )

t r a i n _ s e t = sum( train_set , [ ] )

t e s t _ s e t = l i s t ( )

for row in fold :

row_copy = l i s t (row)

t e s t _ s e t . append( row_copy )
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row_copy[−1] = None

predicted = algorithm ( train_set , t e s t _ s e t , * args )

actual = [ row[−1] for row in fold ]

accuracy = accuracy_met ( actual , predicted )

cm = confusion_matrix ( actual , predicted )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for

row in cm] ) )

#confusionmatrix = np . matrix (cm)

FP = cm.sum( axis =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)

print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )

TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)

print ( ’ ÃĄccuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

k=cohen_kappa_score ( actual , predicted )

print ( ’ÃĞohen Kappa \n { } ’ . format ( k ) )

scores . append( accuracy )

return scores

# Calculate neuron act ivat ion for an input

def a c t i v a t e ( weights , inputs ) :

act ivat ion = weights [−1]

for i in range ( len ( weights )−1) :

act ivat ion += weights [ i ] * inputs [ i ]

return act ivat ion

# Transfer neuron act ivat ion

def t r a n s f e r ( act ivat ion ) :
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return 1.0 / ( 1 . 0 + exp(−act ivat ion ) )

# Forward propagate input to a network output

def forward_propagate ( network , row) :

inputs = row

for layer in network :

new_inputs = [ ]

for neuron in layer :

act ivat ion = a c t i v a t e ( neuron [ ’ weights ’ ] , inputs )

neuron [ ’ output ’ ] = t r a n s f e r ( act ivat ion )

new_inputs . append( neuron [ ’ output ’ ] )

inputs = new_inputs

return inputs

# Calculate the d e r i v a t i v e of an neuron output

def t r a n s f e r _ d e r i v a t i v e ( output ) :

return output * ( 1 . 0 − output )

# Backpropagate error and store in neurons

def backward_propagate_error ( network , expected ) :

for i in reversed ( range ( len ( network ) ) ) :

layer = network [ i ]

errors = l i s t ( )

i f i ! = len ( network ) −1:

for j in range ( len ( layer ) ) :

error = 0.0

for neuron in network [ i + 1 ] :

error += ( neuron [ ’ weights ’ ] [ j ] * neuron [ ’

delta ’ ] )

errors . append( error )

e lse :

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

errors . append( expected [ j ] − neuron [ ’ output ’ ] )

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

neuron [ ’ delta ’ ] = errors [ j ] * t r a n s f e r _ d e r i v a t i v e ( neuron [ ’

output ’ ] )

# Update network weights with error

def update_weights ( network , row , l _ r a t e ) :

for i in range ( len ( network ) ) :
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inputs = row[: −1]

i f i ! = 0 :

inputs = [ neuron [ ’ output ’ ] for neuron in network [ i − 1 ] ]

for neuron in network [ i ] :

for j in range ( len ( inputs ) ) :

temp = l _ r a t e * neuron [ ’ delta ’ ] * inputs [ j ] + mu *
neuron [ ’ prev ’ ] [ j ]

neuron [ ’ weights ’ ] [ j ] += temp

# print ( " neuron weight { } \n " . format ( neuron [ ’ weights ’ ] [

j ] ) )

neuron [ ’ prev ’ ] [ j ] = temp

temp = l _ r a t e * neuron [ ’ delta ’ ] + mu * neuron [ ’ prev ’ ][−1]

neuron [ ’ weights ’ ][−1] += temp

neuron [ ’ prev ’ ][−1] = temp

# Train a network for a f ixed number of epochs

def train_network ( network , train , l_rate , n_epoch , n_outputs ) :

for epoch in range ( n_epoch ) :

for row in t r a i n :

outputs = forward_propagate ( network , row)

# print ( network )

expected = [0 for i in range ( n_outputs ) ]

expected [ row[−1]] = 1

# print ( " expected row { } \ n " . format ( expected ) )

backward_propagate_error ( network , expected )

update_weights ( network , row , l _ r a t e )

# I n i t i a l i z e a network

def i n i t i a l i z e _ n e t w o r k ( n_inputs , n_hidden , n_outputs ) :

network = l i s t ( )

hidden_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_inputs + 1) ] , ’ prev ’ : [ 0

for i in range ( n_inputs +1) ] } for i in range ( n_hidden ) ]

network . append( hidden_layer )

hidden_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_inputs + 1) ] , ’ prev ’ : [ 0

for i in range ( n_inputs +1) ] } for i in range ( n_hidden ) ]

network . append( hidden_layer )

output_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_hidden + 1) ] , ’ prev ’ : [ 0

for i in range ( n_hidden+1) ] } for i in range ( n_outputs ) ]

network . append( output_layer )

# print ( network )
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return network

# Make a prediction with a network

def predict ( network , row) :

outputs = forward_propagate ( network , row)

return outputs . index (max( outputs ) )

# Backpropagation Algorithm With Stochastic Gradient Descent

def back_propagation ( train , test , l_rate , n_epoch , n_hidden ) :

n_inputs = len ( t r a i n [ 0 ] ) − 1

n_outputs = len ( set ( [ row[−1] for row in t r a i n ] ) )

network = i n i t i a l i z e _ n e t w o r k ( n_inputs , n_hidden , n_outputs )

train_network ( network , train , l_rate , n_epoch , n_outputs )

# print ( " network { } \ n " . format ( network ) )

predictions = l i s t ( )

for row in t e s t :

prediction = predict ( network , row)

predictions . append( prediction )

return ( predictions )

# Test Backprop on Seeds dataset

seed ( 1 )

# load and prepare data

filename = ’ data . csv ’

dataset = loadCsv ( filename )

for i in range ( len ( dataset [ 0 ] ) −1) :

column_to_float ( dataset , i )

# convert c l a s s column to integers

column_to_int ( dataset , len ( dataset [ 0 ] ) −1)

# normalize input var iables

minmax = minmax( dataset )

normalize ( dataset , minmax)

# evaluate algorithm

n_folds = 5

l _ r a t e = 0.1

mu=0.001

n_epoch = 1500

n_hidden = 4

scores = run_algorithm ( dataset , back_propagation , n_folds , l_rate , n_epoch , n_hidden )

# print ( ’ Scores : %s ’ % scores )

# print ( ’Mean Accuracy : %.3 f%%’ % (sum( scores ) / f l o a t ( len ( scores ) ) ) )
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16.5 Code V (k Nearest Neighbors)

import math

import operator

import numpy as np

from sklearn . metrics import confusion_matrix

#from pandas_ml import ConfusionMatrix

def loaddata ( filename , f i l e 1 ) :

t r a i n S e t = [ ]

t e s t S e t = [ ]

l i n e s = csv . reader (open( filename , ’ r ’ ) )

dataset = l i s t ( l i n e s )

for i in range ( len ( dataset ) ) :

for j in range ( 4 ) :

dataset [ i ] [ j ] = f l o a t ( dataset [ i ] [ j ] )

t r a i n S e t . append( dataset [ i ] )

l i n e s = csv . reader (open( f i l e 1 , ’ r ’ ) )

dataset = l i s t ( l i n e s )

for i in range ( len ( dataset ) ) :

for j in range ( 4 ) :

dataset [ i ] [ j ] = f l o a t ( dataset [ i ] [ j ] )

t e s t S e t . append( dataset [ i ] )

return trainSet , t e s t S e t

def eud ( i1 , i2 , length ) :

d i s t = 0

for x in range ( length ) :

d i s t += pow( ( i1 [ x ] − i2 [ x ] ) , 2)

return math . sqrt ( d i s t )

def nb( train , test , k ) :

d = [ ]

length = len ( t e s t )−1

# print ( trainingSet )

for x in range ( len ( t r a i n ) ) :

# print ( ’ Test { } \ n ’ . format ( testInstance ) )

d i s t = eud ( test , t r a i n [ x ] , length )

d . append ( ( t r a i n [ x ] , d i s t ) )

# print ( distances )

d . sort ( key=operator . itemgetter ( 1 ) )

# print ( distances )

nei = [ ]
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for x in range ( k ) :

nei . append(d[ x ] [ 0 ] )

# print ( neighbors )

return nei

def res ( neighbors ) :

classVotes = { }

for x in range ( len ( neighbors ) ) :

response = neighbors [ x ][−1]

i f response in classVotes :

classVotes [ response ] += 1

else :

classVotes [ response ] = 1

# print ( classVotes )

sortedVotes = sorted ( classVotes . items ( ) , key=operator . itemgetter ( 1 ) , reverse=

True )

return sortedVotes [ 0 ] [ 0 ]

def main ( ) :

filename = ’ DataBalancedcsv . csv ’

f i l e 1 = ’ Databalancedtest . csv ’

#sRatio = 0.80

train , t e s t = loaddata ( filename , f i l e 1 )

predictions = [ ]

k = 7

trueValue = [ ]

for x in range ( len ( t e s t ) ) :

nei = nb( train , t e s t [ x ] , k )

r e s u l t = res ( nei )

predictions . append( r e s u l t )

trueValue . append( t e s t [ x ] [ −1])

# print ( ’ > predicted = ’ + repr ( predictions ) + ’ , actual = ’ + repr ( trueValue ) )

cm = confusion_matrix ( trueValue , predictions )

# for i in range ( 6 ) :

# for j in range ( 6 ) :

# print ( ’ { : 4 } ’ . format (cm[ i ] [ j ] ) ) ,

# print

print ( ’ k = { } ’ . format ( k ) )

print ( ’ \n\n Confusion Matrix \n ’ )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for row in cm

] ) )

#confusionmatrix = np . matrix (cm)
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FP = cm.sum( axi s =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)

print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )

TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)

print ( ’ Accuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

main ( )
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16.6 VI (Bayesian Classification0

import csv

import random

import math

import numpy as np

from sklearn . metrics import confusion_matrix

#from pandas_ml import ConfusionMatrix

def loadCsv ( filename ) :

l i n e s = csv . reader (open( filename , ’ r ’ ) )

dataset = l i s t ( l i n e s )

for i in range ( len ( dataset ) ) :

dataset [ i ] = [ f l o a t ( x ) for x in dataset [ i ] ]

return dataset

def mean(numbers) :

return sum(numbers) / f l o a t ( len (numbers) )

def std (numbers) :

avg = mean(numbers)

variance = sum( [pow( x−avg , 2 ) for x in numbers ] ) / f l o a t ( len (numbers)−1)

return math . sqrt ( variance )

def spl i tData ( dataset , sRatio ) :

t r a i n S i z e = i n t ( len ( dataset ) * sRatio )

t r a i n S e t = [ ]

copy = l i s t ( dataset )

while len ( t r a i n S e t ) < t r a i n S i z e :

index = random . randrange ( len ( copy ) )

t r a i n S e t . append( copy . pop( index ) )

return [ trainSet , copy ]

def process ( dataset ) :

fo r e v e r y cl a s s = [ ]

for a t t r i b u t e in zip ( * dataset ) :

x = mean( a t t r i b u t e )

y = std ( a t t r i b u t e )

fo r e v e r y cl a s s . append ( [ x , y ] )

del fo r e v e ry cl a ss [−1]

return fo r e v e r y cl a s s

def ClassData ( dataset ) :
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c l a s s d i v i s i o n = { }

for i in range ( len ( dataset ) ) :

vector = dataset [ i ]

i f ( vector [−1] not in c l a s s d i v i s i o n ) :

c l a s s d i v i s i o n [ vector [−1]] = [ ]

c l a s s d i v i s i o n [ vector [ −1 ] ] . append( vector )

return c l a s s d i v i s i o n

def summary( dataset ) :

divided = ClassData ( dataset )

# print ( separated )

PValues = { } # a dictionary to store mean stdev of a l l a t t r i b u t e s classwise

for classValue , instances in divided . items ( ) : #returns a l i s t of key , value

pairs for tuples

PValues [ classValue ] = process ( instances )

return PValues

def Prob ( x , mean, stdev ) :

exponent = math . exp(−(math .pow( x−mean, 2 ) /(2*math .pow( stdev , 2 ) ) ) )

return (1 / (math . sqrt (2*math . pi ) * stdev ) ) * exponent

def ClassProb ( ProcessValues , inputVector ) :

p r o b a b i l i t i e s = { }

for classValue , classSummaries in ProcessValues . items ( ) :

p r o b a b i l i t i e s [ classValue ] = 1

for i in range ( len ( classSummaries ) ) :

mean, stdev = classSummaries [ i ]

x = inputVector [ i ]

p r o b a b i l i t i e s [ classValue ] *= Prob ( x , mean, stdev )

# print ( p r o b a b i l i t i e s )

return p r o b a b i l i t i e s

def predict ( ProcessValues , inputVector ) :

p r o b a b i l i t i e s = ClassProb ( ProcessValues , inputVector )

bestLabel , bestProb = None, −1

for classValue , probabi l i ty in p r o b a b i l i t i e s . items ( ) :

i f bestLabel i s None or probabi l i ty > bestProb :

bestProb = probabi l i ty

bestLabel = classValue

return bestLabel
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def getPredictions ( ProcessValues , t e s t S e t ) :

predictions = [ ]

y_true = [ ]

for i in range ( len ( t e s t S e t ) ) :

r e s u l t = predict ( ProcessValues , t e s t S e t [ i ] )

predictions . append( r e s u l t )

# print ( predictions )

for i in range ( len ( t e s t S e t ) ) :

vector= t e s t S e t [ i ]

y_true . append( vector [−1])

# print ( y_true )

return [ y_true , predictions ]

def getAccuracy ( testSet , predictions ) :

correct = 0

for i in range ( len ( t e s t S e t ) ) :

i f t e s t S e t [ i ][−1] == predictions [ i ] :

correct += 1

return ( correct / f l o a t ( len ( t e s t S e t ) ) ) * 100.0

def main ( ) :

#filename = ’ DataBalancedcsv . csv ’

f i l e = ’ data . csv ’

sRatio = 0.80

dataset = loadCsv ( f i l e )

training , t e s t = spli tData ( dataset , sRatio )

# print ( ’ S p l i t { } rows into t r a i n = { } and t e s t = { } rows ’ . format ( len ( dataset ) ,

len ( trainingSet ) , len ( t e s t S e t ) ) )

# prepare model

PV = summary( training )

# t e s t model

y_true , predictions = getPredictions (PV, t e s t )

cm = confusion_matrix ( y_true , predictions )

print ( ’ \n\n Confusion Matrix \n ’ )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for row in cm

] ) )

#confusionmatrix = np . matrix (cm)

FP = cm.sum( axi s =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)
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print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )

TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)

print ( ’ ÃĄccuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

main ( )

********************************************************

Figure 49: Output of Bayesian classification showing a confusion matrix and computation of precison,
recall, Specificity, Accuracy and Fscore.
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16.7 VII (K Means Clustering)

from PIL import Image , ImageStat

import numpy

from scipy . s p a t i a l import distance

def get_Minimum( pixel , centroids ) :

minDist = 9999

minIndex = 0

for i in range ( 0 , len ( centroids ) ) :

d = numpy. sqrt ( i n t ( ( centroids [ i ] [ 0 ] − p i x e l [ 0 ] ) ) **2 + i n t ( ( centroids [

i ] [ 1 ] − p i x e l [ 1 ] ) ) **2 + i n t ( ( centroids [ i ] [ 2 ] − p i x e l [ 2 ] ) ) * * 2 )

i f d < minDist :

minDist = d

minIndex = i

return minIndex

def converged ( centroids , old_centroids ) :

i f len ( old_centroids ) == 0 :

return False

i f len ( centroids ) <= 5 :

a = 1

e l i f len ( centroids ) <= 10:

a = 2

else :

a = 4

for i in range ( 0 , len ( centroids ) ) :

cent = centroids [ i ]

old_cent = old_centroids [ i ]

i f ( ( i n t ( old_cent [ 0 ] ) − a ) <= cent [ 0 ] <= ( i n t ( old_cent [ 0 ] ) + a ) ) and

( ( i n t ( old_cent [ 1 ] ) − a ) <= cent [ 1 ] <= ( i n t ( old_cent [ 1 ] ) + a ) ) and

( ( i n t ( old_cent [ 2 ] ) − a ) <= cent [ 2 ] <= ( i n t ( old_cent [ 2 ] ) + a ) ) :

continue

else :

return False
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return True

def Pixel_ass ( centroids ) :

c l u s t e r s = { }

for x in range ( 0 , img_width ) :

for y in range ( 0 , img_height ) :

p = px [ x , y ]

minIndex = get_Minimum( px [ x , y ] , centroids )

t r y :

c l u s t e r s [ minIndex ] . append(p)

except KeyError :

c l u s t e r s [ minIndex ] = [p]

# print ( c l u s t e r s )

return c l u s t e r s

def ad_Cent ( centroids , c l u s t e r s ) :

new_centroids = [ ]

keys = sorted ( c l u s t e r s . keys ( ) )

# print ( keys )

for k in keys :

n = numpy.mean( c l u s t e r s [ k ] , axis =0) # axis =0 indicates means to be

computed across each column

new = ( i n t (n [ 0 ] ) , i n t (n [ 1 ] ) , i n t (n [ 2 ] ) )

print ( s t r ( k ) + " : " + s t r (new) )

new_centroids . append(new)

return new_centroids

def startKmeans (someK) :

centroids = [ ]

old_centroids = [ ]

rgb_range = ImageStat . Stat (im) . extrema

# print ( rgb_range )

i = 1
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# I n i t i a l i z e s someK number of centroids for the c l u s t e r i n g

for k in range ( 0 , someK) :

cent = px [numpy. random . randint ( 0 , img_width ) , numpy. random . randint ( 0 ,

img_height ) ]

centroids . append( cent )

# print ( centroids )

print ( " Centroids I n i t i a l i z e d . " )

while not converged ( centroids , old_centroids ) and i <= 20:

print ( " I t e r a t i o n #" + s t r ( i ) )

i += 1

old_centroids = centroids

#

Make the current centroids into the old centroids

c l u s t e r s = Pixel_ass ( centroids )

#Assign each p i x e l in

the image to t h e i r respective centroids

centroids = ad_Cent ( old_centroids , c l u s t e r s ) #Adjust the centroids

to the center of t h e i r assigned p i x e l s

print ( "Converged" )

print ( centroids )

# print ( " { } : { } " . format ( 1 , c l u s t e r s [ 0 ] ) )

return centroids , c l u s t e r s

def drawWindow( r e s u l t ) :

img = Image .new( ’RGB ’ , ( img_width , img_height ) , " white " )

p = img . load ( )

for x in range (img . s i z e [ 0 ] ) :

for y in range (img . s i z e [ 1 ] ) :

RGB_value = r e s u l t [get_Minimum( px [ x , y ] , r e s u l t ) ]

p[ x , y ] = RGB_value

img . show ( )

def compute_beta_index ( img_width , img_height , px , centroids , c lusters , nc ) :

# print x

beta_R = 0.0

val = [ ]

numerator=0

Page 264 of 316



denom=0

sum1=0

sq_sum_num=0

for k in c l u s t e r s . keys ( ) :

sq_sum=0

n = numpy.mean( c l u s t e r s [ k ] , axis =0)

new = ( i n t (n [ 0 ] ) , i n t (n [ 1 ] ) , i n t (n [ 2 ] ) )

# print ( s t r ( k ) + " : " + s t r (new) )

for l in range ( 0 , len ( c l u s t e r s [ k ] ) ) :

val= c l u s t e r s [ k ] [ l ]

d i f f =( val [0]−n [ 0 ] ) **2

sq_sum=sq_sum+ d i f f

denom=denom+sq_sum

# print (denom)

s i z e =img_width * img_height

for x in range ( img_width ) :

for y in range ( img_height ) :

sum1=sum1+px [ x , y ] [ 0 ]

num_mean=sum1/ s i z e

# print (num_mean)

for x in range ( img_width ) :

for y in range ( img_height ) :

d i f f =(px [ x , y ][0]−num_mean) **2

sq_sum_num=sq_sum_num+ d i f f

print (sq_sum_num)

beta_index = sq_sum_num/denom

return beta_index

k_input = i n t ( input ( " Enter K value : " ) )

img = " flower . jpg "

im = Image . open(img)

img_width , img_height = im . s i z e

px = im . load ( )

c l u s t e r s = { }

centroids , c l u s t e r s = startKmeans ( k_input )

drawWindow( centroids )

# print ( "The c l u s t e r { } " . format ( c l u s t e r s [ 0 ] ) )
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index_beta_val = compute_beta_index ( img_width , img_height , px , centroids , c lusters ,

k_input )

print ( "The value of Davies Bouldin index for a K−Means c l u s t e r of s i z e { } { } " . format

( s t r ( k_input ) , s t r ( index_beta_val ) ) )

Figure 50: Output of K means clustering with k=9.
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16.8 VIII (Fuzzy MLP with initial encoding)

This is an implementation of 3 layered MLP using rough-set-theoretic concepts for initial

weight encoding of neurons of input, hidden and output layer. The code runs on Vowel

Dataset. The features are fuzzy-coded using PI membership function, and n dimensional

pattern is represented in 3n dimensional vector. The fuzzy MLP uses rough set concepts

and a methodology using rough sets is formulated for encoding initial knowledge of the

information system. The initial connection weights of fuzzy MLP are computed using the

concepts of Dependency factor and rule generation. D reducts are computed using method

described in rough sets, discernibility matrix is derived, discernibility function is obtained and

corresponding rules are generated. These rules help in deciding the connection of neurons

in the hidden layer and dependency factor calculates the initial weights of the connection

and also computes the number of neurons in the hidden layer.

from random import seed

from random import randrange

import random

from csv import reader

from math import exp

from sklearn . metrics import confusion_matrix

import numpy as np

import math

import i t e r t o o l s

from c o l l e c t i o n s import Counter

def load_csv ( filename ) :

dataset = l i s t ( )

with open( filename , ’ r ’ ) as f i l e :

csv_reader = reader ( f i l e )

for row in csv_reader :

i f not row :

continue

dataset . append(row)

return dataset

# Convert s t r i n g column to f l o a t

def str_column_to_float ( dataset , column) :

for row in dataset :

t r y :

row [ column ] = f l o a t (row [ column ] . s t r i p ( ) )

except ValueError :
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print ( " Error with row" ,column , " : " ,row [ column ] )

pass

# Convert s t r i n g column to integer

def str_column_to_int ( dataset , column) :

for row in dataset :

row [ column ] = i n t (row [ column ] )

def spl i tData ( dataset , sRatio ) :

t r a i n S i z e = i n t ( len ( dataset ) * sRatio )

t r a i n S e t = [ ]

copy = l i s t ( dataset )

seed ( 8 )

while len ( t r a i n S e t ) < t r a i n S i z e :

index = random . randrange ( len ( copy ) )

t r a i n S e t . append( copy . pop( index ) )

return [ trainSet , copy ]

def generate_new_dataset (new_sam, row) :

# print (row)

X = np . empty ( ( len (new_sam) , 0) )

# print (X)

for i in range ( len (row) ) :

col=row [ i ]

x =[row_new[ col −1] for row_new in new_sam]

x=np . array ( [ x ] )

# print (np . transpose ( x ) )

# print ( x )

x=x . T

X=np . append(X , x , axis =1)

x =[row[−1] for row in new_sam]

x=np . array ( [ x ] )

x=x . T

X=np . append(X , x , axis =1)

X=np . array (X) . t o l i s t ( )

# print ( "X { } " . format (X) )

return X

def f u z z i f y ( trainingSet , t e s t S e t ) :

center= l i s t ( )
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rad= l i s t ( )

for i in range ( 3 ) :

feature1= l i s t ( )

feature1 =[row [ i ] for row in trainingSet ]

# print ( " feature { } " . format ( feature1 ) )

maxi=max( feature1 )

mini=min( feature1 )

radius_medium =0 .5 *( maxi−mini )

# print ( " rad { } " . format ( radius_medium ) )

center_medium= mini + radius_medium

radius_low= 2*( center_medium−mini )

center_low=center_medium−(0.5* radius_low )

radius_high = 2*( maxi − center_medium )

center_high = center_medium + ( 0 . 5 * radius_high )

center . append ( [ center_low , center_medium , center_high ] ) rad .

append ( [ radius_low , radius_medium , radius_high ] )

fuzzy= l i s t ( )

for i in range ( len ( trainingSet ) ) :

data=trainingSet [ i ]

# print ( data )

l =0

value= l i s t ( )

for j in range ( 3 ) :

d=data [ j ]

for k in range ( 3 ) :

r=rad [ j ] [ k ]/2

eucleanD=math .pow( ( d−center [ j ] [ k ] ) , 2 )

eDist=math . sqrt ( eucleanD )

i f eDist <= r :

val = 1− 2*math .pow( eDist /( r *2) , 2 )

value . i n s e r t ( l , val )

e lse :

y=eDist /rad [ j ] [ k ]

x=(1−( eDist /rad [ j ] [ k ] ) )

val = 2*math .pow( x , 2 )

value . i n s e r t ( l , val )

l = l +1

value . i n s e r t ( l , data [−1])

fuzzy . i n s e r t ( i , value )

# print ( fuzzy )

fuzzy_test= l i s t ( )
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for i in range ( len ( t e s t S e t ) ) :

data= t e s t S e t [ i ]

# print ( data )

l =0

value= l i s t ( )

for j in range ( 3 ) :

d=data [ j ]

for k in range ( 3 ) :

r=rad [ j ] [ k ]/2

eucleanD=math .pow( ( d−center [ j ] [ k ] ) , 2 )

eDist=math . sqrt ( eucleanD )

i f eDist <= r :

val = 1− 2*math .pow( eDist /( r *2) , 2 )

value . i n s e r t ( l , val )

e lse :

y=eDist /rad [ j ] [ k ]

x=(1−( eDist /rad [ j ] [ k ] ) )

val = 2*math .pow( x , 2 )

value . i n s e r t ( l , val )

l = l +1

value . i n s e r t ( l , data [−1])

fuzzy_test . i n s e r t ( i , value )

fuzzy_threshold= l i s t ( )

for i in range ( len ( trainingSet ) ) :

row= l i s t ( )

temp=0

data= fuzzy [ i ]

for j in range ( len ( data )−1) :

d=data [ j ]

i f d < 0 . 8 :

temp=0

else :

temp=1

row . append(temp)

row . append( data [−1])

fuzzy_threshold . append(row)

# print ( fuzzy_threshold , len ( fuzzy_threshold ) )

return [ fuzzy_threshold , fuzzy , fuzzy_test ]

def process ( trainingSet , fuzzy_threshold ) :

folds = l i s t ( )
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for j in range ( 6 ) :

fold= l i s t ( )

for i in range ( len ( trainingSet ) ) :

data=fuzzy_threshold [ i ]

i f data[−1]== j +1:

fold . append( fuzzy_threshold [ i ] )

folds . append( fold )

# print ( folds )

f i n a l _ f e a t u r e = l i s t ( )

for fold in folds :

fold . sort ( )

# print ( " { } \n\n " . format ( fold ) )

output=set ( tuple ( i ) for i in fold )

tup =( l i s t (o) for o in output )

largest_count=0

for ele in tup :

# print ( ele )

count=0

for i in range ( len ( fold ) ) :

e l e _fol d =fold [ i ]

compare = lambda a , b : len ( a ) ==len (b) and len ( a ) ==sum

( [ 1 for i , j in zip ( a , b) i f i == j ] )

i f compare( ele , e l e_ fo l d ) :

count=count+1

i f count > largest_count :

largest_count=count

rep_feature=ele

f i n a l _ f e a t u r e . append( rep_feature )

# for i in range ( 6 ) :

# print ( f i n a l _ f e a t u r e [ i ] )

return f i n a l _ f e a t u r e

def dependency ( new_data ,num) :

count=len ( new_data )

dependency=0

for row in new_data :

del row[−1]

no_dupes = [ x for n , x in enumerate ( new_data ) i f x in new_data [ : n ] ]

# print ( no_dupes )

for i in range ( len ( no_dupes ) ) :
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while no_dupes [ i ] in new_data :

new_data . remove ( no_dupes [ i ] )

# print ( new_data )

dependency=len ( new_data ) /count

return dependency

def compute_minterm ( sample_set ) :

total_minterm= l i s t ( )

for i in range ( 6 ) :

j = i +1

temp1 = sample_set [ i ]

# print ( len (temp1) )

while ( j <6) :

temp2 = sample_set [ j ]

# print ("1 2 { } { } " . format (temp1 , temp2) )

minterm= l i s t ( )

for k in range ( len (temp1)−1) :

i f temp1 [ k ] != temp2 [ k ] :

minterm . i n s e r t ( k , k+1)

# print ( " minterm { } " . format ( minterm ) )

total_minterm . i n s e r t ( i , minterm )

j = j +1

# print ( total_minterm )

s= l i s t ( )

# t h i s part of the code removes duplicate e n t r i e s

for i in total_minterm :

i f i not in s :

s . append( i )

## t h i s part of the code removes null set

s1 = [ x for x in s i f x ]

# t h i s part of the code captures a l l minterms that should be removed because

of the absorption law

#The minterms are col lected in ’rem ’

s1 . sort ( key=len )

# print ( " \n\n { } " . format ( s1 ) )

rem= l i s t ( )

for i in range ( len ( s1 ) ) :
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one=s1 [ i ]

# print ( " one { } " . format ( one ) )

j = i +1

while j <len ( s1 ) :

two=s1 [ j ]

# print ( " j = { } two { } " . format ( j , two ) )

i f a l l ( x in two for x in one ) and two not in rem :

rem . append( two )

# print (rem)

j = j +1

#The minterms are now removed

for item in rem :

s1 . remove ( item )

return s1

def minterm_for_rules ( sample_set , x ) :

mint= l i s t ( )

inp_neuron_count=0

dict_weight = { }

#hidden = [ ]

dict_wei_output = { }

#output_layer = [ ]

count_n=0

for i in range ( 6 ) :

total_minterm= l i s t ( )

j =0

temp1 = sample_set [ i ]

print ( len (temp1) )

while ( j <6) :

temp2 = sample_set [ j ]

# print ( " { } { } " . format (temp1 , temp2) )

minterm= l i s t ( )

for k in range ( len (temp1)−1) :

i f temp1 [ k ] != temp2 [ k ] :

minterm . i n s e r t ( k , x [ k ] )

# print ( " minterm { } " . format ( minterm ) )

total_minterm . i n s e r t ( i , minterm )

j = j +1

s= l i s t ( )

# t h i s part of the code removes duplicate e n t r i e s
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for p in total_minterm :

i f p not in s :

s . append(p)

s1 = [ x for x in s i f x ]

# t h i s part of the code captures a l l minterms that should be removed

because of the absorption law

#The minterms are col lected in ’rem ’

s1 . sort ( key=len )

# print ( " \n\n { } " . format ( s1 ) )

rem= l i s t ( )

for w in range ( len ( s1 ) ) :

one=s1 [w]

# print ( " one { } " . format ( one ) )

j =w+1

while j <len ( s1 ) :

two=s1 [ j ]

# print ( " j = { } two { } " . format ( j , two ) )

i f a l l ( x in two for x in one ) and two not in rem :

rem . append( two )

# print (rem)

j = j +1

#The minterms are now removed

for item in rem :

s1 . remove ( item )

# print ( s1 )

inp_neuron_count=inp_neuron_count+len ( s1 )

i f i ==0:

dep_one=0

class_one . append( s1 )

for j in i t e r t o o l s . product ( * s1 ) :

# print ( i )

new_s=generate_new_dataset ( final_sample , j )

dep=dependency ( new_s , len ( j ) )

dep_one=dep_one+dep

# print ( " dep_one { } " . format ( dep_one ) )

wei=dep_one/ len ( s1 )

print ( final_sample [ i ] )

wt_output =[0 for i in range (12) ]

for p in range ( len ( s1 ) ) :

wt=[0 for i in range ( 9 ) ]
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for j in range ( len ( s1 [p ] ) ) :

pos=s1 [p ] [ j ]

i f final_sample [ i ] [ pos−1] ==1:

wt [ pos−1]=wei/ len ( s1 [p ] )

e lse :

wt [ pos−1]=−wei/ len ( s1 [p ] )

dict_weight [ ’ weights ’ ]=wt

wt_output [ count_n ]= wei

count_n=count_n+1

hidden_layer . append( dict_weight )

dict_weight = { }

#dict_wei_output = { }

dict_wei_output [ ’ weights ’ ]= wt_output

output_layer . append( dict_wei_output )

dict_wei_output = { }

# print ( hidden_layer )

# print ( "OUTPUT { } " . format ( output_layer ) )

e l i f i ==1:

dep_two=0

class_two . append( s1 )

for j in i t e r t o o l s . product ( * s1 ) :

new_s=generate_new_dataset ( final_sample , j )

dep=dependency ( new_s , len ( j ) )

dep_two=dep_two+dep

# print ( " dep_two { } " . format ( dep_two ) )

wei=dep_two/ len ( s1 )

wt_output =[0 for i in range (12) ]

for p in range ( len ( s1 ) ) :

wt=[0 for i in range ( 9 ) ]

for j in range ( len ( s1 [p ] ) ) :

pos=s1 [p ] [ j ]

i f final_sample [ i ] [ pos−1] ==1:

wt [ pos−1]=wei/ len ( s1 [p ] )

e lse :

wt [ pos−1]=−wei/ len ( s1 [p ] )

dict_weight [ ’ weights ’ ]=wt

wt_output [ count_n ]= wei

count_n=count_n+1

Page 275 of 316



hidden_layer . append( dict_weight )

dict_weight = { }

dict_wei_output [ ’ weights ’ ]= wt_output

output_layer . append( dict_wei_output )

dict_wei_output = { }

# print ( hidden_layer )

# print ( "OUTPUT { } " . format ( output_layer ) )

e l i f i ==2:

dep_three=0

class_three . append( s1 )

for j in i t e r t o o l s . product ( * s1 ) :

new_s=generate_new_dataset ( final_sample , j )

dep=dependency ( new_s , len ( j ) )

dep_three=dep_three+dep

# print ( " dep_three { } " . format ( dep_three ) )

wei=dep_three / len ( s1 )

wt_output =[0 for i in range (12) ]

for p in range ( len ( s1 ) ) :

wt=[0 for i in range ( 9 ) ]

wt_output =[0 for i in range (12) ]

for j in range ( len ( s1 [p ] ) ) :

pos=s1 [p ] [ j ]

i f final_sample [ i ] [ pos−1] ==1:

wt [ pos−1]=wei/ len ( s1 [p ] )

e lse :

wt [ pos−1]=−wei/ len ( s1 [p ] )

dict_weight [ ’ weights ’ ]=wt

wt_output [ count_n ]= wei

count_n=count_n+1

hidden_layer . append( dict_weight )

dict_weight = { }

dict_wei_output [ ’ weights ’ ]= wt_output

output_layer . append( dict_wei_output )

dict_wei_output = { }

# print ( hidden_layer )

# print ( "OUTPUT { } " . format ( output_layer ) )

e l i f i ==3:
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dep_four=0

class_four . append( s1 )

for j in i t e r t o o l s . product ( * s1 ) :

new_s=generate_new_dataset ( final_sample , j )

dep=dependency ( new_s , len ( j ) )

dep_four=dep_four+dep

# print ( " dep_four { } " . format ( dep_four ) )

wei=dep_four/ len ( s1 )

wt_output =[0 for i in range (12) ]

for p in range ( len ( s1 ) ) :

wt=[0 for i in range ( 9 ) ]

for j in range ( len ( s1 [p ] ) ) :

pos=s1 [p ] [ j ]

i f final_sample [ i ] [ pos−1] ==1:

wt [ pos−1]=wei/ len ( s1 [p ] )

e lse :

wt [ pos−1]=−wei/ len ( s1 [p ] )

dict_weight [ ’ weights ’ ]=wt

wt_output [ count_n ]= wei

count_n=count_n+1

hidden_layer . append( dict_weight )

dict_weight = { }

dict_wei_output [ ’ weights ’ ]= wt_output

output_layer . append( dict_wei_output )

dict_wei_output = { }

# print ( hidden_layer )

# print ( "OUTPUT { } " . format ( output_layer ) )

e l i f i ==4:

dep_five=0

c l a s s _ f i v e . append( s1 )

for j in i t e r t o o l s . product ( * s1 ) :

new_s=generate_new_dataset ( final_sample , j )

dep=dependency ( new_s , len ( j ) )

dep_five=dep_five+dep

# print ( " dep_five { } " . format ( dep_five ) )

wei=dep_five / len ( s1 )

wt_output =[0 for i in range (12) ]

for p in range ( len ( s1 ) ) :
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wt=[0 for i in range ( 9 ) ]

for j in range ( len ( s1 [p ] ) ) :

pos=s1 [p ] [ j ]

i f final_sample [ i ] [ pos−1] ==1:

wt [ pos−1]=wei/ len ( s1 [p ] )

e lse :

wt [ pos−1]=−wei/ len ( s1 [p ] )

dict_weight [ ’ weights ’ ]=wt

wt_output [ count_n ]= wei

count_n=count_n+1

hidden_layer . append( dict_weight )

dict_weight = { }

dict_wei_output [ ’ weights ’ ]= wt_output

output_layer . append( dict_wei_output )

dict_wei_output = { }

# print ( hidden_layer )

# print ( "OUTPUT { } " . format ( output_layer ) )

e l i f i ==5:

dep_six=0

c l a s s _ s i x . append( s1 )

for j in i t e r t o o l s . product ( * s1 ) :

new_s=generate_new_dataset ( final_sample , j )

dep=dependency ( new_s , len ( j ) )

dep_six=dep_six+dep

# print ( " dep_six { } " . format ( dep_six ) )

wei=dep_six / len ( s1 )

wt_output =[0 for i in range (12) ]

for p in range ( len ( s1 ) ) :

wt=[0 for i in range ( 9 ) ]

for j in range ( len ( s1 [p ] ) ) :

pos=s1 [p ] [ j ]

i f final_sample [ i ] [ pos−1] ==1:

wt [ pos−1]=wei/ len ( s1 [p ] )

e lse :

wt [ pos−1]=−wei/ len ( s1 [p ] )

dict_weight [ ’ weights ’ ]=wt

wt_output [ count_n ]= wei

count_n=count_n+1
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hidden_layer . append( dict_weight )

dict_weight = { }

dict_wei_output [ ’ weights ’ ]= wt_output

output_layer . append( dict_wei_output )

dict_wei_output = { }

# print ( hidden_layer )

# print ( "OUTPUT { } " . format ( output_layer ) )

# print ( class_one )

# print ( class_two )

# print ( class_three )

# print ( class_four )

# print ( c l a s s _ f i v e )

# print ( c l a s s _ s i x )

# print ( inp_neuron_count )

return inp_neuron_count

def accuracy_met ( actual , predicted ) :

correct = 0

for i in range ( len ( actual ) ) :

i f actual [ i ] == predicted [ i ] :

correct += 1

return correct / f l o a t ( len ( actual ) ) * 100.0

# Evaluate an algorithm using a cross val idat ion s p l i t

def run_algorithm ( fuzzy , testSet , algorithm , * args ) :

# print ( dataset )

predicted = algorithm ( fuzzy , testSet , * args )

actual = [ row[−1] for row in t e s t S e t ]

# print ( predicted )

# print ( actual )

accuracy = accuracy_met ( actual , predicted )

cm = confusion_matrix ( actual , predicted )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for row in cm

] ) )

#confusionmatrix = np . matrix (cm)

FP = cm.sum( axi s =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)
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print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )

TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)

print ( ’ ÃĄccuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

# Calculate neuron act ivat ion for an input

def a c t i v a t e ( weights , inputs ) :

# print ( " weight neuorn { } { } " . format ( weights , inputs ) )

act ivat ion = weights [−1]

for i in range ( len ( weights )−1) :

act ivat ion += weights [ i ] * inputs [ i ]

return act ivat ion

# Transfer neuron act ivat ion

def function ( act ivat ion ) :

return 1.0 / ( 1 . 0 + exp(−act ivat ion ) )

# Forward propagate input to a network output

def forward_propagate ( network , row) :

inputs = row

# print ( " input row { } \ n " . format ( inputs ) )

for layer in network :

new_inputs = [ ]

for neuron in layer :

act ivat ion = a c t i v a t e ( neuron [ ’ weights ’ ] , inputs )

neuron [ ’ output ’ ] = function ( act ivat ion )
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new_inputs . append( neuron [ ’ output ’ ] )

inputs = new_inputs

# print ( " output row { } \ n " . format ( inputs ) )

return inputs

# Calculate the d e r i v a t i v e of an neuron output

def function_derivative ( output ) :

return output * ( 1 . 0 − output )

# Backpropagate error and store in neurons

def backprop_error ( network , expected ) :

for i in reversed ( range ( len ( network ) ) ) :

layer = network [ i ]

errors = l i s t ( )

i f i ! = len ( network ) −1:

for j in range ( len ( layer ) ) :

error = 0.0

for neuron in network [ i + 1 ] :

error += ( neuron [ ’ weights ’ ] [ j ] * neuron [ ’

delta ’ ] )

errors . append( error )

e lse :

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

# print ( " neuron { } { } " . format ( j , neuron ) )

errors . append( expected [ j ] − neuron [ ’ output ’ ] )

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

neuron [ ’ delta ’ ] = errors [ j ] * function_derivative ( neuron [ ’

output ’ ] )

# Update network weights with error

def change_weights ( network , row , l _ r a t e ) :

for i in range ( len ( network ) ) :

inputs = row[: −1]

i f i ! = 0 :

inputs = [ neuron [ ’ output ’ ] for neuron in network [ i − 1 ] ]

for neuron in network [ i ] :

for j in range ( len ( inputs ) ) :

neuron [ ’ weights ’ ] [ j ] += l _ r a t e * neuron [ ’ delta ’ ] *
inputs [ j ]

neuron [ ’ weights ’ ][−1] += l _ r a t e * neuron [ ’ delta ’ ]
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#To f u z z i f y the output layer

def fuzzyout (row , n_outputs ) :

z= l i s t ( )

mu= l i s t ( )

muINT= l i s t ( )

rowclass=row[−1]−1

# print ( rowclass )

for k in range ( n_outputs ) :

sumz=0

for j in range ( 9 ) :

interm=pow( ( row [ j ]−mean[ k ] [ j ] ) / stdev [ k ] [ j ] , 2 )

sumz=sumz+interm

# print ( "row { } " . format (row [ j ] ) )

# print ( "mean { } " . format (mean[ rowclass ] [ j ] ) )

# print ( "sum { } " . format (sumz) )

weightedZ=math . sqrt (sumz)

memMU=1/(1+( weightedZ /5) )

i f 0 <= memMU <= 0 . 5 :

memMUINT=2*pow(memMU, 2 )

else :

temp=1−memMU

memMUINT=1−(2*pow(temp , 2 ) )

mu. append(memMU)

z . append( weightedZ )

muINT. append(memMUINT)

return muINT

# Train a network for a f ixed number of epochs

def neural_network_train ( network , train , l_rate , n_epoch , n_outputs ) :

# print ( dataset )

for epoch in range ( n_epoch ) :

# print ( t r a i n )

for row in t r a i n :

# print ( " epochs { } { } " . format ( epoch , row) )

outputs = forward_propagate ( network , row)

# print ( outputs )

expected = fuzzyout (row , n_outputs )

# print ( " input row { } \ n " . format (row) )

#expected = [0 for i in range ( n_outputs ) ]

#expected [ row[−1]−1] = 1

# print ( " expected row { } \ n " . format ( expected ) )
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backprop_error ( network , expected )

change_weights ( network , row , l _ r a t e )

# I n i t i a l i z e a network

def i n i t _ n e t ( n_inputs , n_hidden , n_outputs ) :

network = l i s t ( )

#hidden_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_inputs + 1) ] } for i in

range ( n_hidden ) ]

print ( hidden_layer )

network . append( hidden_layer )

#output_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_hidden + 1) ] } for i in

range ( n_outputs ) ]

network . append( output_layer )

return network

# Make a prediction with a network

def predict ( network , row) :

outputs = forward_propagate ( network , row)

# print ( outputs )

indexOut=outputs . index (max( outputs ) ) +1

# print ( indexOut )

return indexOut

# Backpropagation Algorithm With Stochastic Gradient Descent

def back_propagation ( train , test , l_rate , n_epoch , n_hidden ) :

n_inputs = len ( t r a i n [ 0 ] ) − 1

n_outputs = len ( set ( [ row[−1] for row in t r a i n ] ) )

network = i n i t _ n e t ( n_inputs , n_hidden , n_outputs )

# print ( " i n i t i a l i z e network { } \ n " . format ( network ) )

neural_network_train ( network , train , l _rate , n_epoch , n_outputs )

# print ( " network { } \ n " . format ( network ) )

predictions = l i s t ( )

for row in t e s t :

prediction = predict ( network , row)

predictions . append( prediction )

return ( predictions )

l _ r a t e = 0.2

n_epoch = 100

Page 283 of 316



filename = ’ data . csv ’

sRatio = 0.60

dataset = load_csv ( filename )

for i in range ( len ( dataset [ 0 ] ) −1) :

str_column_to_float ( dataset , i )

#convert c l a s s column to integers

str_column_to_int ( dataset , len ( dataset [ 0 ] ) −1)

trainingSet , t e s t S e t = splitData ( dataset , sRatio )

fuzzy_threshold , fuzzy , fuzzy_test= f u z z i f y ( trainingSet , t e s t S e t )

final_sample=process ( trainingSet , fuzzy_threshold )

# for the computation of output c l a s s f u z z i f i c a t i o n

clas ses =[row[−1] for row in fuzzy ]

Unique=np . unique ( cl asse s )

d a t a s e t _ s p l i t = l i s t ( )

f o l d _ s i z e = i n t ( len ( Unique ) )

for i in range ( f o l d _ s i z e ) :

fold= l i s t ( )

for row in fuzzy :

i f row[−1] == Unique [ i ] :

fold . append(row)

d a t a s e t _ s p l i t . append( fold )

i =0

mean= l i s t ( )

stdev= l i s t ( )

j =0

for fold in d a t a s e t _ s p l i t :

x= l i s t ( )

y= l i s t ( )

z= l i s t ( )

x1= l i s t ( )

y1= l i s t ( )

z1= l i s t ( )

x2= l i s t ( )

y2= l i s t ( )

z2= l i s t ( )

for row in fold :

i f row[−1] == Unique [ j ] :

x . append(row [ 0 ] )

y . append(row [ 1 ] )
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z . append(row [ 2 ] )

x1 . append(row [ 3 ] )

y1 . append(row [ 4 ] )

z1 . append(row [ 5 ] )

x2 . append(row [ 6 ] )

y2 . append(row [ 7 ] )

z2 . append(row [ 8 ] )

m1=sum( x ) / f l o a t ( len ( x ) )

m2=sum( y ) / f l o a t ( len ( y ) )

m3=sum( z ) / f l o a t ( len ( z ) )

m4=sum( x1 ) / f l o a t ( len ( x1 ) )

m5=sum( y1 ) / f l o a t ( len ( y1 ) )

m6=sum( z1 ) / f l o a t ( len ( z1 ) )

m7=sum( x2 ) / f l o a t ( len ( x2 ) )

m8=sum( y2 ) / f l o a t ( len ( y2 ) )

m9=sum( z2 ) / f l o a t ( len ( z2 ) )

mean. append ( [m1,m2,m3,m4,m5,m6,m7,m8,m9] )

st1=sum( [pow( val−m1, 2 ) for val in x ] ) / f l o a t ( len ( x )−1)

st2=sum( [pow( val−m2, 2 ) for val in y ] ) / f l o a t ( len ( y )−1)

st3=sum( [pow( val−m3, 2 ) for val in z ] ) / f l o a t ( len ( z )−1)

st4=sum( [pow( val−m4, 2 ) for val in x1 ] ) / f l o a t ( len ( x1 )−1)

st5=sum( [pow( val−m5, 2 ) for val in y1 ] ) / f l o a t ( len ( y1 )−1)

st6=sum( [pow( val−m6, 2 ) for val in z1 ] ) / f l o a t ( len ( z1 )−1)

st7=sum( [pow( val−m7, 2 ) for val in x2 ] ) / f l o a t ( len ( x2 )−1)

st8=sum( [pow( val−m8, 2 ) for val in y2 ] ) / f l o a t ( len ( y2 )−1)

st9=sum( [pow( val−m9, 2 ) for val in z2 ] ) / f l o a t ( len ( z2 )−1)

std1=math . sqrt ( st1 )

std2=math . sqrt ( st2 )

std3=math . sqrt ( st3 )

std4=math . sqrt ( st4 )

std5=math . sqrt ( st5 )

std6=math . sqrt ( st6 )

std7=math . sqrt ( st7 )

std8=math . sqrt ( st8 )

std9=math . sqrt ( st9 )

stdev . append ( [ std1 , std2 , std3 , std4 , std5 , std6 , std7 , std8 , std9 ] )

j = j +1

# print ( trainingSet , len ( trainingSet ) )

# t h i s i s f u z z i f y input based on c l a s s belongin granulation
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s1=compute_minterm ( final_sample )

# print ( s1 )

#The cartesian product of the minterms (POS) i s computed here , the product gathers a l l

the

#terms in SOP form . The products thus obtained are reducts .

xyz= l i s t ( )

for i in i t e r t o o l s . product ( * s1 ) :

# print ( i )

xyz . append( set ( i ) )

new_xyz= l i s t ( )

for i in xyz :

i f i not in new_xyz :

new_xyz . append( i )

x ={1 , 2 ,4 , 7 }

new_set=generate_new_dataset ( final_sample , l i s t ( x ) )

# print ( " \n\n { } " . format ( new_set ) )

class_one= l i s t ( )

class_two= l i s t ( )

c lass_three= l i s t ( )

c lass_four= l i s t ( )

c l a s s _ f i v e = l i s t ( )

c l a s s _ s i x = l i s t ( )

hidden_layer = [ ]

output_layer = [ ]

n_hidden=minterm_for_rules ( new_set , l i s t ( x ) )

run_algorithm ( fuzzy , fuzzy_test , back_propagation , l_rate , n_epoch , n_hidden )
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16.9 Code IX (Saha Bora Activation Function)

from random import seed

from random import uniform

from random import randrange

from random import random

from csv import reader

from math import exp

from sklearn . metrics import confusion_matrix

from sklearn . metrics import cohen_kappa_score

import numpy as np

import csv

from decimal import Decimal

# Load a CSV f i l e

def loadCsv ( filename ) :

t r a i n S e t = [ ]

l i n e s = csv . reader (open( filename , ’ r ’ ) )

dataset = l i s t ( l i n e s )

for i in range ( len ( dataset ) ) :

for j in range ( 4 ) :

# print ( "DATA { } " . format ( dataset [ i ] ) )

dataset [ i ] [ j ] = f l o a t ( dataset [ i ] [ j ] )

t r a i n S e t . append( dataset [ i ] )

return t r a i n S e t

# Convert s t r i n g column to f l o a t

def str_column_to_float ( dataset , column) :

for row in dataset :

t r y :

row [ column ] = f l o a t (row [ column ] )

except ValueError :

print ( " Error with row" ,column , " : " ,row [ column ] )

pass

# Convert s t r i n g column to integer

def str_column_to_int ( dataset , column) :

class_values = [ row [ column ] for row in dataset ]

unique = set ( class_values )
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lookup = d i c t ( )

for i , value in enumerate ( unique ) :

lookup [ value ] = i +1

for row in dataset :

row [ column ] = lookup [ row [ column ] ]

print ( lookup )

return lookup

# Find the min and max values for each column

def dataset_minmax ( dataset ) :

minmax = l i s t ( )

s t a t s = [ [ min(column) , max(column) ] for column in zip ( * dataset ) ]

return s t a t s

# Rescale dataset columns to the range 0−1

def normalize_dataset ( dataset , minmax) :

for row in dataset :

for i in range ( len (row)−1) :

row [ i ] = (row [ i ] − minmax[ i ] [ 0 ] ) / (minmax[ i ] [ 1 ] − minmax[ i

] [ 0 ] )

def spl i tData ( dataset , sRatio ) :

t r a i n S e t = [ ]

copy = l i s t ( dataset )

t r a i n S i z e = i n t ( len ( dataset ) * sRatio )

seed ( 8 )

while len ( t r a i n S e t ) < t r a i n S i z e :

index = randrange ( len ( copy ) )

t r a i n S e t . append( copy . pop( index ) )

return [ trainSet , copy ]

# Calculate accuracy percentage

def accuracy_metric ( actual , predicted ) :

correct = 0

for i in range ( len ( actual ) ) :

i f actual [ i ] == predicted [ i ] :

correct += 1

return correct / f l o a t ( len ( actual ) ) * 100.0

# Evaluate an algorithm using a cross val idat ion s p l i t

def evaluate_algorithm ( train_set , t e s t _ s e t , algorithm , * args ) :
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# print ( t e s t _ s e t )

predicted = algorithm ( train_set , t e s t _ s e t , * args )

print ( predicted )

actual = [ row[−1] for row in t e s t _ s e t ]

print ( actual )

accuracy = accuracy_metric ( actual , predicted )

cm = confusion_matrix ( actual , predicted )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for

row in cm] ) )

#confusionmatrix = np . matrix (cm)

FP = cm.sum( axis =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)

print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )

TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)

print ( ’ ÃĄccuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

k=cohen_kappa_score ( actual , predicted )

print ( ’ÃĞohen Kappa \n { } ’ . format ( k ) )

# Calculate neuron act ivat ion for an input

def a c t i v a t e ( weights , inputs ) :

act ivat ion = weights [−1]

for i in range ( len ( weights )−1) :

act ivat ion += weights [ i ] * inputs [ i ]

return act ivat ion
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# Transfer neuron act ivat ion

def t r a n s f e r ( act ) :

val = 0.5

y = 1.0 / ( 1 . 0 + (0.91 * (pow( act , val ) *pow(1−act ,1−val ) ) ) )

y = abs ( y )

return y

# Forward propagate input to a network output

def forward_propagate ( network , row) :

inputs = row

for layer in network :

new_inputs = [ ]

for neuron in layer :

act ivat ion = a c t i v a t e ( neuron [ ’ weights ’ ] , inputs )

# print ( " weight { } " . format ( neuron [ ’ weights ’ ] ) )

# print ( " x { } " . format ( act ivat ion ) )

neuron [ ’ input ’ ] = act ivat ion

neuron [ ’ output ’ ] = t r a n s f e r ( act ivat ion )

# print ( " y { } " . format ( neuron [ ’ output ’ ] ) )

new_inputs . append( neuron [ ’ output ’ ] )

#new_inputs . append( neuron [ ’ input ’ ] )

inputs = new_inputs

return inputs

# Calculate the d e r i v a t i v e of an neuron output

def t r a n s f e r _ d e r i v a t i v e ( output , inp ) :

derv = output * ( 1 . 0 − output ) / ( inp * ( 1.0 − inp ) )

derv = derv * ( inp − 0 . 5 )

return derv

# Backpropagate error and store in neurons

def backward_propagate_error ( network , expected ) :

for i in reversed ( range ( len ( network ) ) ) :

layer = network [ i ]

errors = l i s t ( )

i f i ! = len ( network ) −1:

for j in range ( len ( layer ) ) :

error = 0.0

for neuron in network [ i + 1 ] :

error += ( neuron [ ’ weights ’ ] [ j ] * neuron [ ’

delta ’ ] )

errors . append( error )
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else :

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

errors . append( expected [ j ] − neuron [ ’ output ’ ] )

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

neuron [ ’ delta ’ ] = errors [ j ] * t r a n s f e r _ d e r i v a t i v e ( neuron [ ’

output ’ ] , neuron [ ’ input ’ ] )

# Update network weights with error

def update_weights ( network , row , l _ r a t e ) :

for i in range ( len ( network ) ) :

inputs = row[: −1]

i f i ! = 0 :

inputs = [ neuron [ ’ output ’ ] for neuron in network [ i − 1 ] ]

for neuron in network [ i ] :

for j in range ( len ( inputs ) ) :

temp = l _ r a t e * neuron [ ’ delta ’ ] * inputs [ j ] + mu *
neuron [ ’ prev ’ ] [ j ]

neuron [ ’ weights ’ ] [ j ] += temp

# print ( " neuron weight { } \n " . format ( neuron [ ’ weights ’ ] [

j ] ) )

neuron [ ’ prev ’ ] [ j ] = temp

temp = l _ r a t e * neuron [ ’ delta ’ ] + mu * neuron [ ’ prev ’ ][−1]

neuron [ ’ weights ’ ][−1] += temp

neuron [ ’ prev ’ ][−1] = temp

# print ( " neuron { } " . format ( neuron [ ’ weights ’ ] ) )

# Train a network for a f ixed number of epochs

def train_network ( network , train , l_rate , n_epoch , n_outputs ) :

for epoch in range ( n_epoch ) :

for row in t r a i n :

outputs = forward_propagate ( network , row)

# print ( network )

expected = [0 for i in range ( n_outputs ) ]

expected [ row[−1]−1] = 1

# print ( " expected row { } \ n " . format ( expected ) )

backward_propagate_error ( network , expected )

update_weights ( network , row , l _ r a t e )
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# I n i t i a l i z e a network

def i n i t i a l i z e _ n e t w o r k ( n_inputs , n_hidden , n_outputs ) :

network = l i s t ( )

hidden_layer = [ { ’ weights ’ : [ round ( uniform ( 0 . 0 0 , 0 . 1 ) , 4 ) for i in range (

n_inputs + 1) ] , ’ prev ’ : [ 0 for i in range ( n_inputs +1) ] } for i in range (

n_hidden ) ]

network . append( hidden_layer )

#hidden_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_hidden + 1) ] , ’ prev

’ : [ 0 for i in range ( n_hidden+1) ] } for i in range ( n_hidden ) ]

#network . append( hidden_layer )

output_layer = [ { ’ weights ’ : [ round ( uniform ( 0 . 0 , 0 . 1 ) , 4 ) for i in range ( n_hidden

+ 1) ] , ’ prev ’ : [ 0 for i in range ( n_hidden+1) ] } for i in range ( n_outputs ) ]

network . append( output_layer )

print ( network )

return network

# Make a prediction with a network

def predict ( network , row) :

outputs = forward_propagate ( network , row)

# print ( outputs )

value = outputs . index (max( outputs ) ) + 1

return value

# Backpropagation Algorithm With Stochastic Gradient Descent

def back_propagation ( train , test , l_rate , n_epoch , n_hidden ) :

n_inputs = len ( t r a i n [ 0 ] ) − 1

n_outputs = len ( set ( [ row[−1] for row in t r a i n ] ) )

# print ( " output { } " . format ( n_outputs ) )

network = i n i t i a l i z e _ n e t w o r k ( n_inputs , n_hidden , n_outputs )

train_network ( network , train , l_rate , n_epoch , n_outputs )

# print ( " network { } \ n " . format ( network ) )

predictions = l i s t ( )

for row in t e s t :

prediction = predict ( network , row)

predictions . append( prediction )

return ( predictions )

# Test Backprop on Seeds dataset

seed ( 8 )

# load and prepare data

filename = ’ data . csv ’

dataset = loadCsv ( filename )
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for i in range ( len ( dataset [ 0 ] ) −1) :

str_column_to_float ( dataset , i )

# convert c l a s s column to integers

str_column_to_int ( dataset , len ( dataset [ 0 ] ) −1)

# normalize input var iables

minmax = dataset_minmax ( dataset )

normalize_dataset ( dataset , minmax)

# evaluate algorithm

sRatio = 0.80

trainingSet , t e s t S e t = splitData ( dataset , sRatio )

l _ r a t e = 0.1

mu=0.001

n_epoch = 1000

n_hidden = 4

evaluate_algorithm ( trainingSet , testSet , back_propagation , l _rate , n_epoch , n_hidden )
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16.10 Code X (Stacked Autoencoder)

from random import seed

from random import randrange

from random import random

from csv import reader

from math import exp

import math

from sklearn . metrics import confusion_matrix

from sklearn . metrics import cohen_kappa_score

import numpy as np

import csv

import copy

def loadNew( f i l e ) :

t r a i n S e t = [ ]

l i n e s = csv . reader (open( f i l e , ’ r ’ ) )

dataset = l i s t ( l i n e s )

# print ( " training set { } " . format ( dataset ) )

for i in range ( len ( dataset [ 0 ] ) −1) :

for row in dataset :

t r y :

row [ i ] = f l o a t (row [ i ] )

except ValueError :

print ( " Error with row" ,column , " : " ,row [ i ] )

pass

t r a i n S e t = dataset

return t r a i n S e t

# Load a CSV f i l e

def loadCsv ( filename , f i l e 1 ) :

t r a i n S e t = [ ]

t e s t S e t = [ ]

l i n e s = csv . reader (open( filename , ’ r ’ ) )

dataset = l i s t ( l i n e s )

# print ( " training set { } " . format ( dataset ) )

for i in range ( len ( dataset [ 0 ] ) −1) :

for row in dataset :

t r y :

row [ i ] = f l o a t (row [ i ] )
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except ValueError :

print ( " Error with row" ,column , " : " ,row [ i ] )

pass

t r a i n S e t = dataset

l i n e s = csv . reader (open( f i l e 1 , ’ r ’ ) )

dataset = l i s t ( l i n e s )

for i in range ( len ( dataset [ 0 ] ) −1) :

for row in dataset :

t r y :

row [ i ] = f l o a t (row [ i ] )

except ValueError :

print ( " Error with row" ,column , " : " ,row [ i ] )

pass

t e s t S e t = dataset

# print ( " training set { } " . format ( t r a i n S e t ) )

return trainSet , t e s t S e t

# Convert s t r i n g column to f l o a t

def str_column_to_float ( dataset , column) :

for row in dataset :

t r y :

row [ column ] = f l o a t (row [ column ] )

except ValueError :

print ( " Error with row" ,column , " : " ,row [ column ] )

pass

# Convert s t r i n g column to integer

def str_column_to_int ( dataset , column) :

class_values = [ row [ column ] for row in dataset ]

unique = set ( class_values )

lookup = d i c t ( )

for i , value in enumerate ( unique ) :

lookup [ value ] = i

for row in dataset :

row [ column ] = lookup [ row [ column ] ]

return lookup

# Find the min and max values for each column

def dataset_minmax ( dataset ) :

minmax = l i s t ( )

s t a t s = [ [ min(column) , max(column) ] for column in zip ( * dataset ) ]

return s t a t s
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# Rescale dataset columns to the range 0−1

def normalize_dataset ( dataset , minmax) :

for row in dataset :

for i in range ( len (row)−1) :

row [ i ] = (row [ i ] − minmax[ i ] [ 0 ] ) / (minmax[ i ] [ 1 ] − minmax[ i

] [ 0 ] )

# Calculate accuracy percentage

def accuracy_metric ( actual , predicted ) :

correct = 0

for i in range ( len ( actual ) ) :

i f actual [ i ] == predicted [ i ] :

correct += 1

return correct / f l o a t ( len ( actual ) ) * 100.0

# Evaluate an algorithm using a cross val idat ion s p l i t

def evaluate_algorithm ( train_set , t e s t _ s e t , algorithm , * args ) :

t e s t _ s e t _ f o r _ c l a s s = copy . deepcopy ( t e s t _ s e t )

test_set_again = copy . deepcopy ( t e s t _ s e t )

for row in t e s t _ s e t :

del row[−1]

# print ( t e s t _ s e t _ f o r _ c l a s s )

network_one , new_train , new_test = algorithm ( train_set , t e s t _ s e t ,

t e s t _ s e t _ f o r _ c l a s s , * args )

t e s t _ s e t _ f o r _ c l a s s = copy . deepcopy ( new_test )

for row in new_test :

del row[−1]

network_two , second_train , second_test = backpropagation_two (

new_train , new_test , t e s t _ s e t _ f o r _ c l a s s , * args )

network_three , predicted=back_prop_for_classi f icat ion ( second_train ,

second_test , * args )

new_network = l i s t ( )

for layer in network_one :

Page 296 of 316



new_network . append( layer )

for layer in network_two :

new_network . append( layer )

for layer in network_three :

new_network . append( layer )

## for layer in new_network :

## print ( " \n\n { } \ n\n " . format ( layer ) )

n_inputs = len ( test_set_again [ 0 ] ) − 1

n_outputs = len ( set ( [ row[−1] for row in test_set_again ] ) )

# print ( " For C l a s s i f i c a t i o n { } " . format ( network ) )

predictions = l i s t ( )

for row in test_set_again :

prediction = predict ( new_network , row)

predictions . append( prediction )

#predicted = back_prop_for_classi f ication ( train_set ,

t e s t _ s e t _ f o r _ c l a s s , network , * args )

actual = [ i n t (row[−1]) for row in test_set_again ]

# print ( " { } \n\n { } \n\n " . format ( actual , predicted ) )

accuracy = accuracy_metric ( actual , predictions )

cm = confusion_matrix ( actual , predictions )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for

row in cm] ) )

#confusionmatrix = np . matrix (cm)

FP = cm.sum( axis =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)

print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )

TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)
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print ( ’ ÃĄccuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

re_train_network ( new_network , train_set , l _rate , n_epoch , n_outputs )

# print ( " For C l a s s i f i c a t i o n { } " . format ( network ) )

predictions = l i s t ( )

for row in test_set_again :

prediction = predict ( new_network , row)

predictions . append( prediction )

actual = [ i n t (row[−1]) for row in test_set_again ]

# print ( " { } \n\n { } \n\n " . format ( actual , predicted ) )

accuracy = accuracy_metric ( actual , predictions )

cm = confusion_matrix ( actual , predictions )

print ( ’ \n ’ . join ( [ ’ ’ . join ( [ ’ { : 4 } ’ . format ( item ) for item in row ] ) for

row in cm] ) )

#confusionmatrix = np . matrix (cm)

FP = cm.sum( axis =0) − np . diag (cm)

FN = cm.sum( axis =1) − np . diag (cm)

TP = np . diag (cm)

TN = cm.sum( ) − (FP + FN + TP)

print ( ’ False P o s i t i v e s \n { } ’ . format (FP) )

print ( ’ False Negetives \n { } ’ . format (FN) )

print ( ’ True P o s i t i v e s \n { } ’ . format (TP) )

print ( ’ True Negetives \n { } ’ . format (TN) )

TPR = TP/(TP+FN)

print ( ’ S e n s i t i v i t y \n { } ’ . format (TPR) )

TNR = TN/(TN+FP)

print ( ’ S p e c i f i c i t y \n { } ’ . format (TNR) )

Precision = TP/ (TP+FP)

print ( ’ Precision \n { } ’ . format ( Precision ) )

Recal l = TP/(TP+FN)

print ( ’ Recal l \n { } ’ . format ( Recall ) )

Acc = (TP+TN) /(TP+TN+FP+FN)

print ( ’ ÃĄccuracy \n { } ’ . format ( Acc ) )

Fscore = 2*( Precision * Recal l ) /( Precision+Recall )

print ( ’ FScore \n { } ’ . format ( Fscore ) )

#return scores

# Calculate neuron act ivat ion for an input
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def a c t i v a t e ( weights , inputs ) :

act ivat ion = weights [−1]

for i in range ( len ( weights )−1) :

act ivat ion += weights [ i ] * inputs [ i ]

return act ivat ion

# Transfer neuron act ivat ion

def t r a n s f e r ( act ivat ion ) :

return 1.0 / ( 1 . 0 + exp(−act ivat ion ) )

# Forward propagate input to a network output

def forward_propagate ( network , row) :

inputs = row

for layer in network :

new_inputs = [ ]

for neuron in layer :

act ivat ion = a c t i v a t e ( neuron [ ’ weights ’ ] , inputs )

neuron [ ’ output ’ ] = t r a n s f e r ( act ivat ion )

new_inputs . append( neuron [ ’ output ’ ] )

inputs = new_inputs

return inputs

# Calculate the d e r i v a t i v e of an neuron output

def t r a n s f e r _ d e r i v a t i v e ( output ) :

return output * ( 1 . 0 − output )

# Backpropagate error and store in neurons

def backward_propagate_error ( network , expected ) :

for i in reversed ( range ( len ( network ) ) ) :

layer = network [ i ]

errors = l i s t ( )

i f i ! = len ( network ) −1:

for j in range ( len ( layer ) ) :

error = 0.0

for neuron in network [ i + 1 ] :

error += ( neuron [ ’ weights ’ ] [ j ] * neuron [ ’

delta ’ ] )

errors . append( error )

e lse :

for j in range ( len ( layer ) ) :

neuron = layer [ j ]

errors . append( expected [ j ] − neuron [ ’ output ’ ] )
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for j in range ( len ( layer ) ) :

neuron = layer [ j ]

neuron [ ’ delta ’ ] = errors [ j ] * t r a n s f e r _ d e r i v a t i v e ( neuron [ ’

output ’ ] )

# Update network weights with error

def update_weights ( network , row , l _ r a t e ) :

for i in range ( len ( network ) ) :

inputs = row[: −1]

i f i ! = 0 :

inputs = [ neuron [ ’ output ’ ] for neuron in network [ i − 1 ] ]

for neuron in network [ i ] :

for j in range ( len ( inputs ) ) :

temp = l _ r a t e * neuron [ ’ delta ’ ] * inputs [ j ] + mu *
neuron [ ’ prev ’ ] [ j ]

neuron [ ’ weights ’ ] [ j ] += temp

# print ( " neuron weight { } \n " . format ( neuron [ ’ weights ’ ] [

j ] ) )

neuron [ ’ prev ’ ] [ j ] = temp

temp = l _ r a t e * neuron [ ’ delta ’ ] + mu * neuron [ ’ prev ’ ][−1]

neuron [ ’ weights ’ ][−1] += temp

neuron [ ’ prev ’ ][−1] = temp

# Train a network for a f ixed number of epochs

def train_network ( network , train , l_rate , n_epoch , n_outputs ) :

for epoch in range ( n_epoch ) :

for row in t r a i n :

outputs = forward_propagate ( network , row)

expected=row

backward_propagate_error ( network , expected )

update_weights ( network , row , l _ r a t e )

def re_train_network ( network_two , train_set , l_rate , n_epoch , n_outputs ) :

for epoch in range ( n_epoch ) :

for row in t r a i n _ s e t :

outputs = forward_propagate ( network_two , row)

# print ( outputs )

expected = [0 for i in range ( n_outputs ) ]

# print (row)

expected [ i n t (row[−1])−1] = 1
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# print ( " expected row { } \ n " . format ( expected ) )

backward_propagate_error ( network_two , expected )

update_weights ( network_two , row , l _ r a t e )

def prepare_dataset ( network , test_wi th_class ) :

new_data_train = l i s t ( )

for row in trainingSet :

outputs = forward_propagate ( network , row)

outputs . append( i n t (row[−1]) )

# print ( " { } \n " . format (row) )

new_data_train . append( outputs )

new_data_test = l i s t ( )

for row in te st_wi th_class :

outputs = forward_propagate ( network , row)

outputs . append( i n t (row[−1]) )

# print ( " { } \n " . format (row) )

new_data_test . append( outputs )

return new_data_train , new_data_test

def prepare_dataset_two ( network , train , test , test_with_cl ass ) :

second_data_train = l i s t ( )

for row in t r a i n :

outputs = forward_propagate ( network , row)

outputs . append(row[−1])

# print ( " { } \n " . format (row) )

second_data_train . append( outputs )

## c s v f i l e = " newdata_train_two . csv "

## with open( c s v f i l e , "w" ) as output :

## writer = csv . writer ( output , l ineterminator = ’\n ’ )

## writer . writerows ( second_data_train )

second_data_test = l i s t ( )

for row in te st_wi th_class :

outputs = forward_propagate ( network , row)

outputs . append(row[−1])

# print ( " { } \n " . format (row) )
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second_data_test . append( outputs )

## c s v f i l e = " newdata_test_two . csv "

## with open( c s v f i l e , "w" ) as output :

## writer = csv . writer ( output , l ineterminator = ’\n ’ )

## writer . writerows ( second_data_test )

## return second_data_train , second_data_test

# I n i t i a l i z e a network

def i n i t i a l i z e _ n e t w o r k ( n_inputs , n_hidden , n_outputs ) :

network = l i s t ( )

hidden_layer = [ { ’ weights ’ : [ np . random . uniform ( 0 . 0 , 0 . 2 ) for i in range (

n_inputs + 1) ] , ’ prev ’ : [ 0 for i in range ( n_inputs +1) ] } for i in range (

n_hidden ) ]

network . append( hidden_layer )

## hidden_layer = [ { ’ weights ’ : [ random ( ) for i in range ( n_hidden + 1) ] , ’ prev

’ : [ 0 for i in range ( n_hidden+1) ] } for i in range ( n_hidden ) ]

## network . append( hidden_layer )

output_layer = [ { ’ weights ’ : [ np . random . uniform ( 0 , 0 . 2 ) for i in range ( n_hidden

+ 1) ] , ’ prev ’ : [ 0 for i in range ( n_hidden+1) ] } for i in range ( n_outputs ) ]

network . append( output_layer )

# print ( " FIRST { } \n\n " . format ( network ) )

return network

def r e i n i t i a l i z e _ t o _ c l a s s i f y ( n_inputs , n_outputs ) :

network_two = l i s t ( )

output_layer = [ { ’ weights ’ : [ np . random . uniform ( 0 , 0 . 2 ) for i in range ( n_inputs

+ 1) ] , ’ prev ’ : [ 0 for i in range ( n_inputs + 1) ] } for i in range ( n_outputs ) ]

network_two . append( output_layer )

# print ( network )

return network_two

# Make a prediction with a network

def predict ( network , row) :

outputs = forward_propagate ( network , row)

return outputs . index (max( outputs ) ) + 1
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# Backpropagation Algorithm With Stochastic Gradient Descent

def back_propagation ( train , test , test_with_class , l_rate , n_epoch , n_hidden ) :

n_inputs = len ( t r a i n [ 0 ] ) − 1

n_outputs = n_inputs

network = i n i t i a l i z e _ n e t w o r k ( n_inputs , n_hidden , n_outputs )

train_network ( network , train , l_rate , n_epoch , n_outputs )

# print ( " network { } \ n " . format ( network ) )

avg_msq=0

for row in t e s t :

output = forward_propagate ( network , row)

# print ( " row { } −−−− output { } " . format (row , output ) )

r = np . array (row)

o = np . array ( output )

err = r − o

mssq = np .sum( err * * 2 ) / len ( err )

# print ( "MSE = { } " . format (mssq) )

avg_msq=avg_msq+ mssq

avg_msq=avg_msq/ len ( t e s t )

print ( "MSE F i r s t { } " . format ( avg_msq ) )

# print ( " FIRST { } \n\n " . format ( network ) )

#network = transform_auto ( network , train , test , l_rate , n_epoch , n_hidden ,

n_outputs )

network = network [: −1]

new_train , new_test = prepare_dataset ( network , test_wi th_class )

# print ( network )

return network , new_train , new_test

def backpropagation_two ( t r a i n , test , test_with_class , * args ) :

n_inputs = len ( t r a i n [ 0 ] ) − 1

n_outputs = n_inputs

n_hidden_two = 9

network_two = i n i t i a l i z e _ n e t w o r k ( n_inputs , n_hidden_two , n_outputs )

train_network ( network_two , train , l_rate , n_epoch , n_outputs )

# print ( " network { } \ n " . format ( network ) )

avg_msq=0

for row in t e s t :

output = forward_propagate ( network_two , row)

# print ( " row { } −−−− output { } " . format (row , output ) )
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r = np . array (row)

o = np . array ( output )

err = r − o

mssq = np .sum( err * * 2 ) / len ( err )

# print ( "MSE = { } " . format (mssq) )

avg_msq=avg_msq+ mssq

avg_msq=avg_msq/ len ( t e s t )

print ( " MSE Second { } " . format ( avg_msq ) )

network_two = network_two [: −1]

second_train , second_test = prepare_dataset_two ( network_two , train , test ,

te st_w ith_class )

# print ( network )

return network_two , second_train , second_test

def back_prop_for_classi f icat ion ( train_set , t e s t _ s e t _ f o r _ c l a s s , * args ) :

n_inputs = len ( t r a i n _ s e t [ 0 ] ) − 1

n_outputs = len ( set ( [ row[−1] for row in t r a i n _ s e t ] ) )

# print ( n_outputs )

network_three = r e i n i t i a l i z e _ t o _ c l a s s i f y ( n_inputs , n_outputs )

re_train_network ( network_three , train_set , l_rate , n_epoch , n_outputs )

# print ( " For C l a s s i f i c a t i o n { } " . format ( network ) )

predictions = l i s t ( )

for row in t e s t _ s e t _ f o r _ c l a s s :

prediction = predict ( network_three , row)

predictions . append( prediction )

# print ( predictions )

return network_three , predictions

# Test Backprop on Seeds dataset

seed ( 1 )

# load and prepare data

filename = ’ sat_train_new . csv ’

f i l e 1 = ’ sat_test_new . csv ’

#sRatio = 0.80

trainingSet , t e s t S e t = loadCsv ( filename , f i l e 1 )

# normalize input var iables

minmax = dataset_minmax ( trainingSet )

normalize_dataset ( trainingSet , minmax)
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# normalize input var iables

minmax = dataset_minmax ( t e s t S e t )

normalize_dataset ( testSet , minmax)

# evaluate algorithm

l _ r a t e = 0.3

mu=0.1

n_epoch = 300

n_hidden = 19

scores = evaluate_algorithm ( trainingSet , testSet , back_propagation , l_rate , n_epoch ,

n_hidden )
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Figure 51: Sample outputs to illustrate the effect of running k means clustering with K=9 and k=20 on
initial image
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Figure 52: Output showing confusion matrix and other parameters

Figure 53: Output showing confusion matrix and other parameters
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