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Cosmology

Poor accuracy in facial recognition for dark 
skinned females 

Gender Shades (MIT Media Lab, 2019)

Incorrect classification of Type 
Ia vs non-Ia from photometric 
data leads to cosmological 
parameters systematic bias.

The problem: machine learning classifiers trained on non-representative data 
generalize poorly.
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&

Lightcurve powered by 
radioactive decay of 56Ni.


Higher core density ⇨

Larger mass of 56Ni & IGEs ⇨

Higher luminosity & opacity  ⇨

SNIa brighter, slower to fade 

Supernovae Type Ia: Origin  

Single-degenerate 

(e.g. Hosseinzaden et al, 2017)

PROGENITORS EXPLOSION  LUMINOSITY 

Double-degenerate

(e.g. Roche & Garnavich, 2020) 

CO white dwarf accreting mass. 

Kruger et al (2012)
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Phillips, ApJ 413 (1993) L105-L108 



&Standardization of SNIas  

BRIGHTER

FAINTER

"Brighter SNIa are slow decliners"

Use the empirical 2D linear correlations between absolute magnitude and “stretch” and colour to 
standardise SNIas to within ~0.1 mag residual dispersion at peak 

BEFORE CORRECTION AFTER CORRECTION

Kim et al (2007)

Absolute B-band magnitude Absolute B-band magnitude 



&Constraining Cosmological Parameters 

Measure redshift (z) and distance modulus, : μ

DISTANCE-REDSHIFT RELATION

μ = mB − M + αx1 − βc

μ = 5 log10
DL

Mpc
+ 25

DIFFERENTIAL DISTANCE  
MEASUREMENT 

z = 0.1 z = 0.5 z = 1.0

Contours of constant DL at various redshifts 

D L

Linear standardization Apparent 

magnitude

Absolute  

magnitude



Riess et al, ApJ, 607:665-687 (2004)

FAINT

BRIGHT
Data: Riess+96, Perlmutter+96

COLLECT THE NOBEL PRIZE



&Distance-Redshift Relation Measurement 

~ recession velocity/c 
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Abbott et al  (DES Collaboration, 2019)

~ 0.25 mag

fainter than 

w/o dark 
energy 

Acceleration DecelerationToday ~200 Mpc/h

ΛCDM

Flat, no dark energy 

Spectroscopically 
confirmed Ia’s 

only
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Credit: Julien Guy

Spectra: Type Ia have no H lines

Confirming Ia is easy with 
spectra. 

Much harder with just 
photometry (i.e., low-res 
spectral information): only 
probabilistic classification 

J. Guy et al, SNLS Collaboration: SALT2 11
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Fig. 6 Estimated standard deviation of model photometric errors
as a function of phase, for several rest-frame wavelength ranges
roughly corresponding from top to bottom to U, B, V , R and
I−bands. Those model errors were evaluated from the scatter of
residuals to the single light-curve fit.
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Fig. 7 Difference between observed peakmagnitude in each band
of each SN from table 2 and the model prediction as a function
of the rest-frame effective wavelength of the filter used (gray tri-
angles : SNLS SNe, gray squares : nearby SNe). The large black
symbols represent the estimated dispersion in each wavelength
bin (triangles for SNLS, and squares for nearby SNe). The large
circles show the average difference in each wavelength bin for all
SNe and the solid curve is a polynomial fit to the dispersion used
as an estimate of the K-correction scatter. Since uncertainties on
B and V magnitudes at maximum enter in the normalization and
color evaluation of the model, K-correction uncertainties are set
to zero for B and V− band wavelengths.
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Fig. 8 Observed light-curves points of the SN Ia SNLS-04D3gx
at z=0.91 along with the light-curves derived from the model
(solid line, trained without this SN). The dashed lines represent
the 1 σ uncertainties of the model (both uncorrelated and K-
correction errors).

~ 15 days ~ 20 days

Lightcurves: time-evolution of 
brightness in several colour 
filters  


Used for standardization and 
cosmological inference 


Supernovae Type Ia: Observations 

Riess et al, ApJ, 607:665-687 (2004)

During After Subtracted 

SN1994D in NGC 4526

Treffers et al (1994); imaged by HST

z=0.64 

DETECTION TYPING FOLLOW-UP 

Guy et al (2007)



Supernovae Discoveries Over Time

1990s: CCD cameras and robotic 
methods 

1996: Discovery of cosmic 
acceleration
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&Bayesian Hierarchical Modelling of SNIa data   

“True” values of 
observables

Prior

Cosmological  
parameters

Prior

Population 
parameters

Observed values

Latent variables: 

unknown and unobserved, 
are integrated out during 
the inference  

Intrinsic 
variability of 

SNIas

Noise, 
selection 
effects

Noisy data subject 
to truncation  

Standardization  
parameters

Prior

SNIa population 
distributions

Environmental properties 

(age, metallicity, SFR, host 
type)

For more details, see:


BHM: March, RT et al 
(2011)

Unity: Rubin et al (2015)

BAHAMAS: Shariff, RT et 
al (2016); Rahman, RT et 
al (2022)

Simple-BayeSN: Mandel 
et al (2017)

Steve: Hinton et al (2019)

Upcoming: 

MALFOI: Karchev, RT & 
Weniger (soon) 



The Problem: 

We want to classify Type Ia vs non-Ia reliably and 
efficiently from light-curve data alone.  


BUT: 


Spectroscopic training set is non-representative.

Classification challenges:


The Photometric LSST Astronomical Time-series Classification Challenge PLAsTiCC  (Kessler et al, 2019)


Supernova Photometric Classification Challenge (Kessler et al, 2010) 


Simulated light-curves 


Kessler et al (2019)




&The Future: Photometric SNIa Cosmology

• SNIa identification relies on 
observationally expensive 
spectroscopy 


• In the future, we won’t have 
spectra for all SNIa candidates 
(DES: 3,000 SNIa over 5 yrs; 
LSST: 10,000 SNIa/yr) 


• SNIa classification needed 
from multi-band imaging alone


• “SN Classification 
Challenge” (Kessler+10)


• more recently: LSST Kaggle  
comp (2018)

Example of simulated LC data



&The Future: Photometric SNIa Cosmology

Random training data

(unavailable) 

Biased training data (colour) 

vs Test Set (gray) 

• Problem: Training set is biased. Especially at high z, more SNIa’s than in the population, hence non 
representative  



&Solution 1: data augmentation 
Unrepresentative spectroscopic training set 
leads to poor classification performance  

+ 50-fold data augmentation improves 
massively the AUC 

However:


Succesfull 
augmentation relies 
on a good light-curve 
model (e.g. GPs) 
AND the assumption 
of no astrophysical 
evolution with z 

Carrick et al (2021MNRAS.508….1C)



&A first solution: STACCATO 

Test data partitioning Training set partitioning Propensity Score

Grouping:

• Our first solution (Revsbech, RT, van Dyk, MNRAS, 473, 3, 3969 (2018), arxiv:1706.03811): SynThetically 
Augmented Light Curve ClassificATiOn (STACCATO) approach  


• Fit light curve with Gaussian Process (GP)


• Compute Diffusion Map (to quantify similarities between LCs), Richards+12


• Perform Random Forest Classification on diffusion coordinates  


• New: Group SNs according to Propensity Score (probability of belonging to the training set): bias within groups 
reduced by 90% (Rosenbaum & Rubin, 84) 



&STACCATO: Analysis Details 

1. Fit Gaussian Process (GP) to light curve data 

2. Apply diffusion map technique to map the 

fitted light curve into a covariate space of 
dim~O(100), following Richards et al (2012)


3. Stratify light curve data according to 
propensity scores quantiles 


4. Sample new synthetic light curves from fitted 
GPs in groups with sparse training data 
(requires validation set to optimise 
augmentation scheme)


5. Use Random Forest on the stratified diffusion 
coordinates (group-by-group) for 
classification  

1

2

3



&Augmenting LCs via GP Resampling  

Gold Standard

(unbiased training set) 

STACCATO

dashed (solid) w/o (with) augmentation 


AUC = 0.997 AUC = 0.961

• STACCATO augments the training set by synthetically generating LCs from the GP 
according to the Propensity Scores -> corrects under-sampling where it matters  


• Evaluated using Area under the ROC Curve (AUC)

Ideally we would like:


A better solution that 
does NOT rely on 
data augmentation 
and its assumptions. 



&Covariate Shift, or Biased Training Set 

Given a feature space, X, and a label space, Y (K > 1 classes/dependent variables)
we have ns labelled samples {xs

i , ys
i } from the source domain

nt unlabelled samples from the target domain, {xt
i} .

Covariate shift occurs when: 

ps(y |x) = pt(y |x)

and ps(x) ≠ pt(x)

I.e., the training set is non-
representative of the test set. 


Revsbech, RT, van Dyk (2018)

Task: predict {yt
i}

Features: redshift & apparent mag

Label: Ia or non-Ia

Light-curve data Type Ia or not 

Spectroscopic training set 

Photometric light-curve only 

Is it a Ia? 

Target domain

(Gray dots)

Source domain 

(Coloured dots)

Fe
at

ur
e 

1
Feature 2



&Target Risk Estimation 

Weighted ML estimation of risk Bias correction approach 

Approach: choose the classification/
regression function f(x) so as to to 
minimise the risk (= expected loss) over 
the target domain.


Shimoidara (2000) showed:

E(x,y)∼Dt
[ℓ( f(x), y)] = E(x,y)∼Ds [ pt(x)

ps(x)
ℓ( f(x), y)]

The ratio of densities (weights) can be 
difficult to estimate reliably. 

Let s be a binary indicator variable 
controlling training set selection (s=1). 


Zadrozny (2004) showed:

E(x,y)∼D[ℓ( f(x), y)] = E(x,y)∼D̃ [ℓ( f(x), y |s = 1)]

D̃ =
P(s = 1)

P(s = 1 |x)
D

Estimate p(s = 1 |x) via e.g. logistic regression,
then draw samples from D̃ .

Target (i.e. test data) Source (i.e. 
training data)



&Our Approach: Propensity Score Stratification 
Work by Max Autenrieth (Stats PhD student), in collaboration with David van Dyk (Imperial) & David Stenning (Simon Fraser U.)


Improving on our previous work (“STACCATO”), Revsbech, RT, van Dyk (2018): StratLearn, Autenrieth et al (2021), arXiv 2106.11211  

e(xi) = probability for object i to be 
selected into the source domain, 
using the whole features set: 

e(xi) ≡ P(si = 1 |xs, xt)

Propensity scores

Key idea (StratLearn): 


subdivide (“stratify”) target and source data 
in k subgroups according to quantiles of 
their propensity scores. Then supervised 
learning in each stratum (“stratified learner”)

Propensity scores as balancing scores

Rosenbaum & Rubin (1983, 1984) show that, 
conditional on their propensity scores, the k 
subgroups (“strata”) have approximately 
balanced covariate distribution, i.e.  

psj
(x) ≈ ptj(x) for j = 1,…, k

Since ps(y |x) = pt(y |x), it follows that

psj
(x, y) ≈ ptj(x, y) for j = 1,…, k

Hence covariate shift approximately disappears.

https://arxiv.org/abs/2106.11211


&Toy Example (illustration of StratLearn) 

Source: 
Target: 

xs ∼ N(0.5,0.52)
xt ∼ N(0.2,0.52)

1D simulation (regression): 

Outcome: 
Where  

ys = − x + x3 + ϵ
ϵ ∼ N(0,0.32)

Fit with misspecified (ie wrong) model: 


Ordinary least square regression fit


(For the experts: importance weighting does 
not work in this case)



&Toy Example 

StratLearn solution: 
Subdivide the covariate space (ie. x 
axis) according to quintiles of 
propensity scores and fit the (wrong) 
linear model in each 



&StratLearn on SNIa data  

Conditional on the propensity scores (i.e., within each 
stratum), the source and target outcomes are 
approximately the same. 

This means: inside each stratum, the imbalance has 
been redressed, i.e. source data are approximately 
representative

Important: the underlying theorem only valid if all 
potential confounding covariates (i.e., things the SNIa 
type could depend on) are included in the propensity 
score estimation! 

Propensity score partitioning of 
target domain (test data):

Decreasing 
probability of 
being in 
training set ST

R
AT

A 2 covariates 

102 covariates 👍  Balanced proportions 

👍  Balanced proportions 



&Classification Performance with StratLearn  

SPCC Challenge data (v2):

Tr
ue

 p
os

iti
ve

 ra
te

 

Note: AVOCADO (Boone, 2019), winner of the PLASTiCC challenge 2019, uses an extended version of STACCATO (incl. augmentation).

StratLearn performance 
close to “gold standard” 
of unbiased training set 
(AUC=0.977 vs 0.958) 
without any augmentation 


Cf previous results: 

Lochner et al (2016): 
AUC= 0.855


Pasquet et al (2019): 
AUC=0.939


Revsbech et al 
(“STACCATO”, 2018): 
AUC=0.94 



&StratLearn for regression 

We seek a principled framework for covariate shift adaptation via propensity 
score stratification that does not need augmentation:

1. Augmentation is problem-specific 

2. Augmentation usually requires a validation set (not available)


Propensity score stratification leads to approximately balanced (i.e., unbiased) 
sub-groups, on which to perform supervised classification/regression. 


Classification (2-way) Multivariate regression 
SNIa vs non-Ia, AUC:

Photo-z estimation

(~500,000 source/targets from 

SDSS DR 8) 

Source

Target

Gold standard: 0.977

Best-in-class  : 0.937

STACCATO    : 0.961 

StratLearning : 0.973 



&Conditional Density Estimation Problem 

The problem: estimate the conditional density of redshift, z, given the 
observed covariates (magnitudes in 5 different colour filters), in the presence of 
covariate shift. 

We compare our performance to the estimators in Izbicki et al (2017).


Approach: 


1.“StratLearning” partitions the source and target domain according to propensity scores 
(no augmentation needed)


2.Within each group, we combine two conditional density estimation models from Izbicki et 
al (2017), ker-NN and Series, via a weighted average.

3.Weight is optimised by minimising the empirical loss on a validation set (a sub-set of the 
training set, no test data needed) 



&StratLearn: Photo-z Performance 

Previous methods Combined 

StratLearning

Lower risk = 
better 

performance 

Previous methods Combined

StratLearning

Moderate shift

Low covariate dimensions 

Moderate shift

High covariate dimensions 

StratLearning 
outperforms 
previous 
methods for this 
problem. 


Performance 
improvement is 
larger in the 
presence of 
high-D noisy 
covariate space 
(right panel).



&Conclusions 

1 Covariate shift is an important and recurrent phenomenon in 
supervised learning. In dark energy research, it will affect the next 
generation of large SNIa data.  

2 We propose a general approach (StratLearn) based on stratifying 
source and target domain according to propensity scores (= probability 
of an object to be included in the source domain).

3 Within strata, source and target domains are better balanced: 
StratLearn shows improved performance in regression and 
classification tasks compared to best-in-class alternatives.  

Thanks to my collaborators: Max Autenrieth (PhD student), David van Dyk (Imperial), 
David Stenning (Simon Fraser U.). Paper here: https://arxiv.org/abs/2106.11211

https://arxiv.org/abs/2106.11211


Thank you!

www.robertotrotta.com

@R_Trotta

Check out our new group: 


datascience.sissa.it 


http://www.robertotrotta.com
http://datascience.sissa.it
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