

StratLearn:

A general-purpose statistical method for improved learning under Covariate Shift

Max Autenrieth

Imperial (Statistics Section)

Roberto Trotta

Imperial &

&
International
School for
Advanced Study
(SISSA)

David Stenning

Simon Fraser University

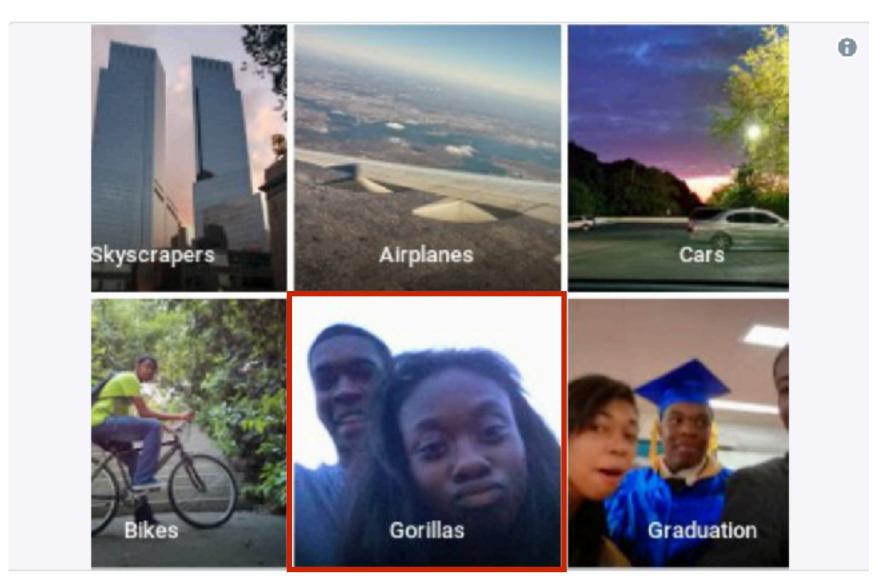
David van Dyk

Imperial (Statistics Section)

June 14th 2022

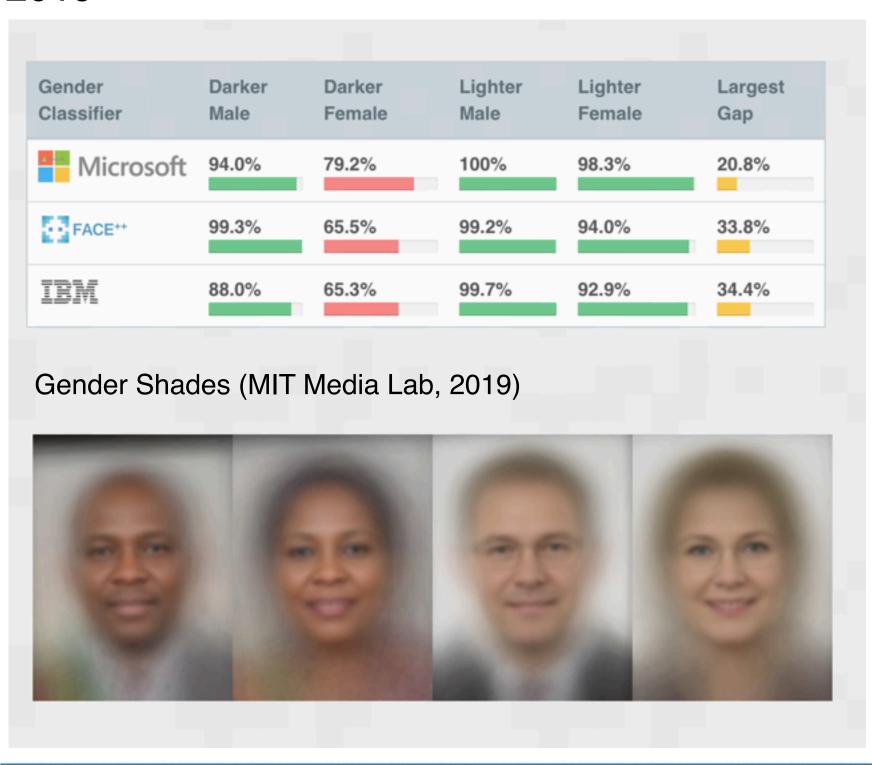
The problem: machine learning classifiers trained on non-representative data generalize poorly.

2015



Jacky lives on @jalcine@playvicious.social now.

2019



Cosmology

Incorrect classification of Type la vs non-la from photometric data leads to cosmological parameters systematic bias.

Poor accuracy in facial recognition for dark skinned females

2018

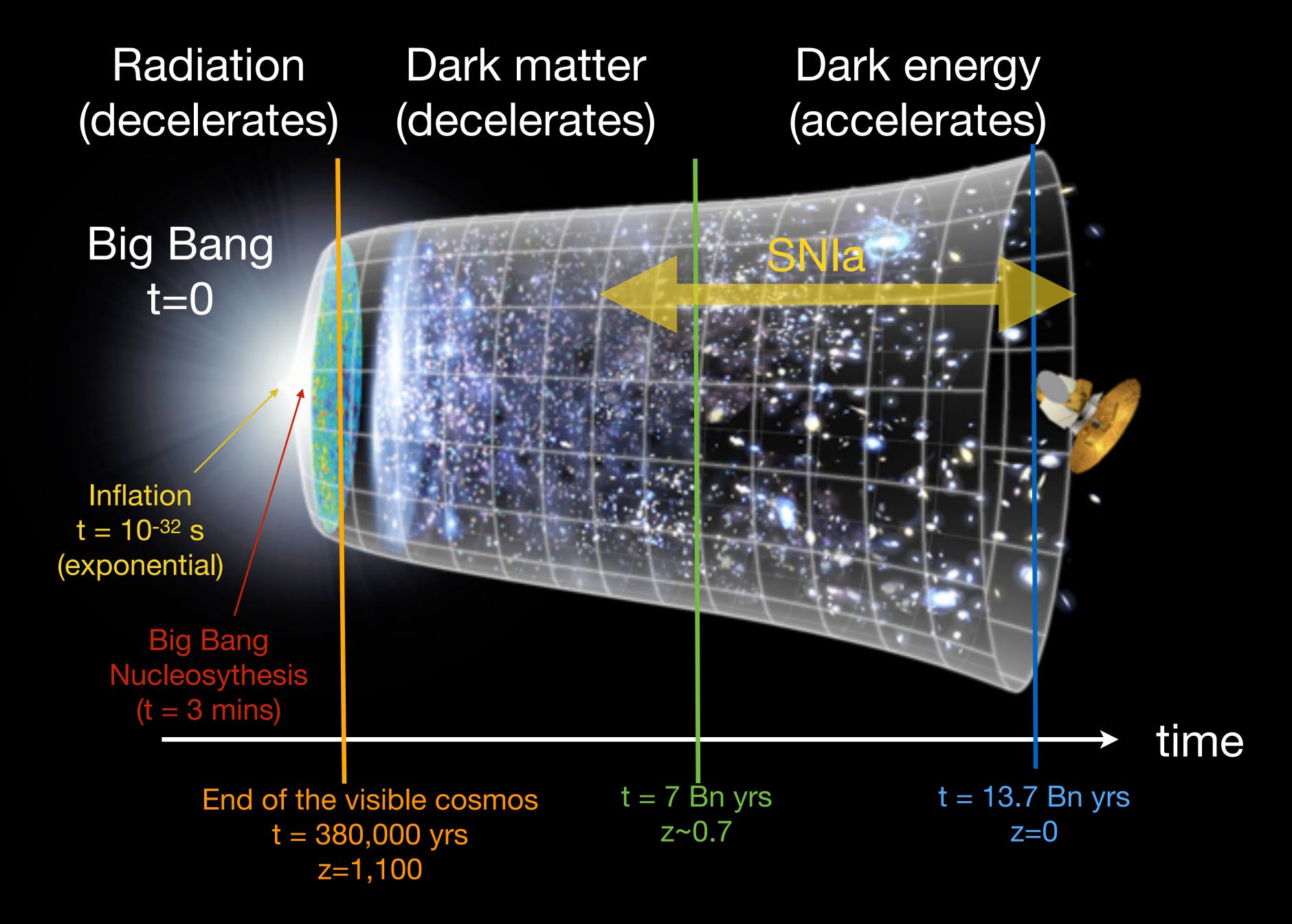
TOM SIMONITE

@jackyalcine

BUSINESS 01.11.2018 07:00 AM

When It Comes to Gorillas, Google Photos Remains Blind

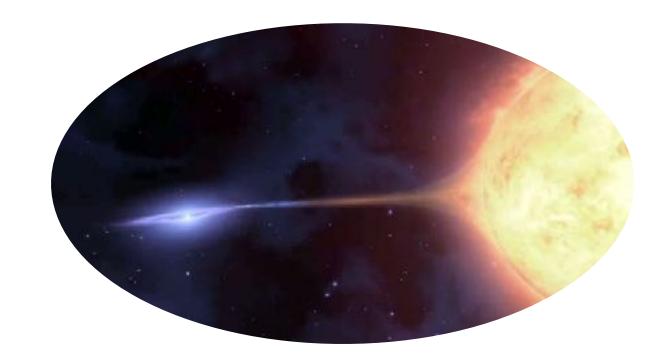
Google promised a fix after its photo-categorization software labeled black people as gorillas in 2015. More than two years later, it hasn't found one.



Supernovae Type Ia: Origin

PROGENITORS

CO white dwarf accreting mass.

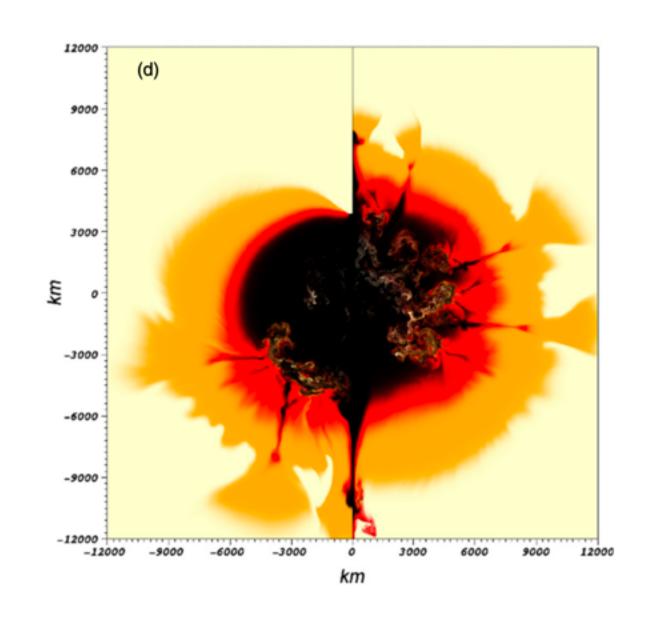


Single-degenerate (e.g. Hosseinzaden et al, 2017)

Double-degenerate (e.g. Roche & Garnavich, 2020)

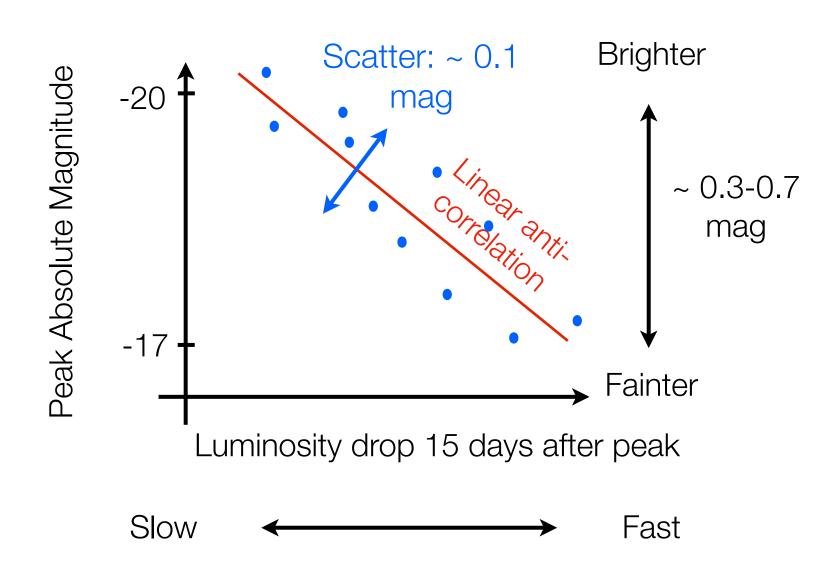
EXPLOSION

C detonation creates thermonuclear explosion.



Kruger et al (2012)

LUMINOSITY



Lightcurve powered by radioactive decay of ⁵⁶Ni.

Higher core density

Larger mass of ⁵⁶Ni & IGEs

Higher luminosity & opacity

SNIa brighter, slower to fade

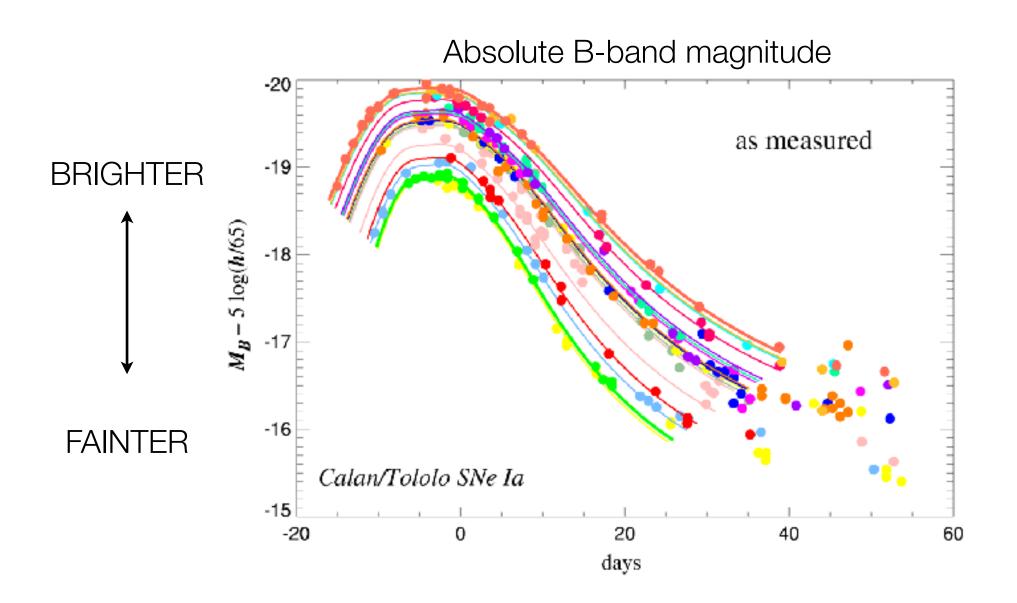
Phillips, ApJ 413 (1993) L105-L108

Standardization of SNIas

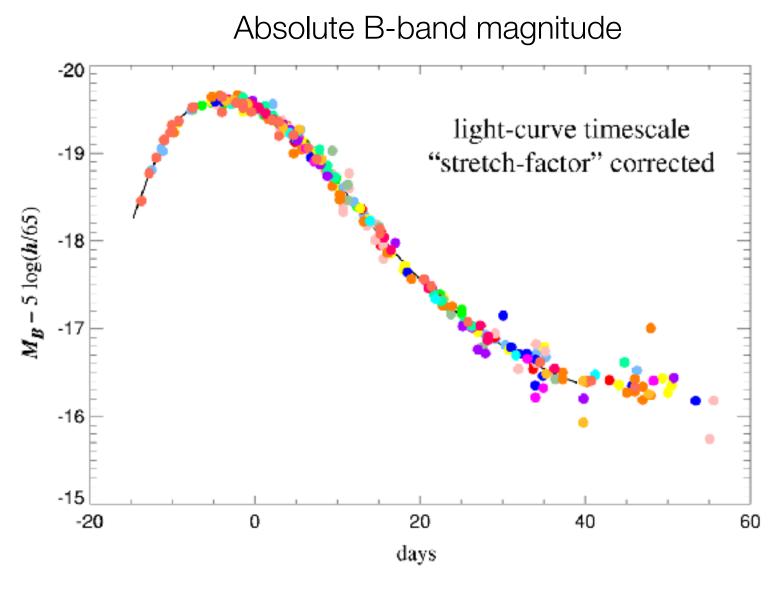
"Brighter SNIa are slow decliners"

Use the empirical 2D linear correlations between absolute magnitude and "stretch" and colour to standardise SNIas to within ~0.1 mag residual dispersion at peak

BEFORE CORRECTION



AFTER CORRECTION



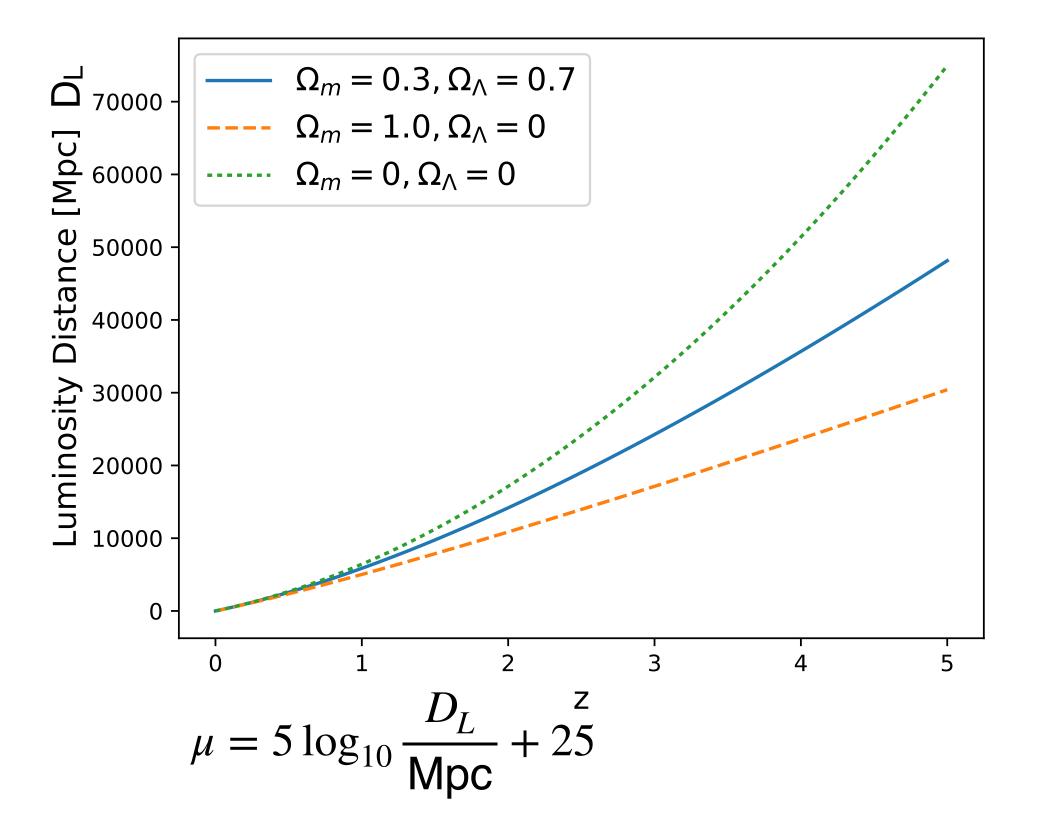
Kim et al (2007)

Constraining Cosmological Parameters

DISTANCE-REDSHIFT RELATION

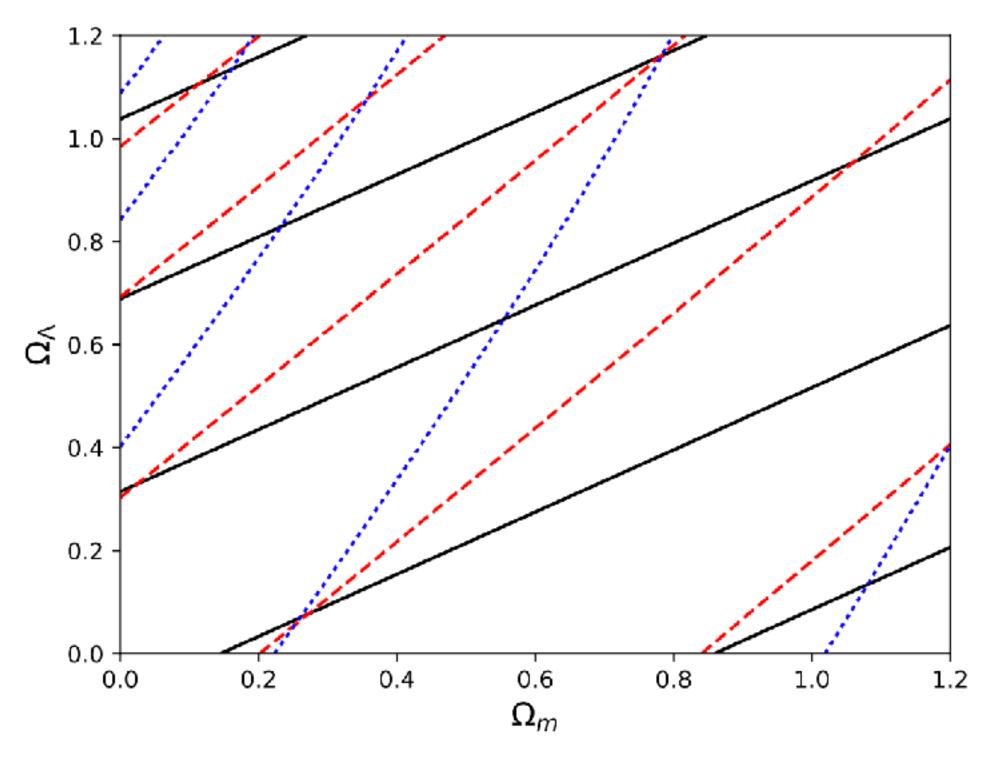
Measure redshift (z) and distance modulus, μ :

$$\mu = m_B - M + \alpha x_1 - \beta c$$
Apparent Magnitude Absolute Magnitude Magnitude Absolute Magnitude Magnitude



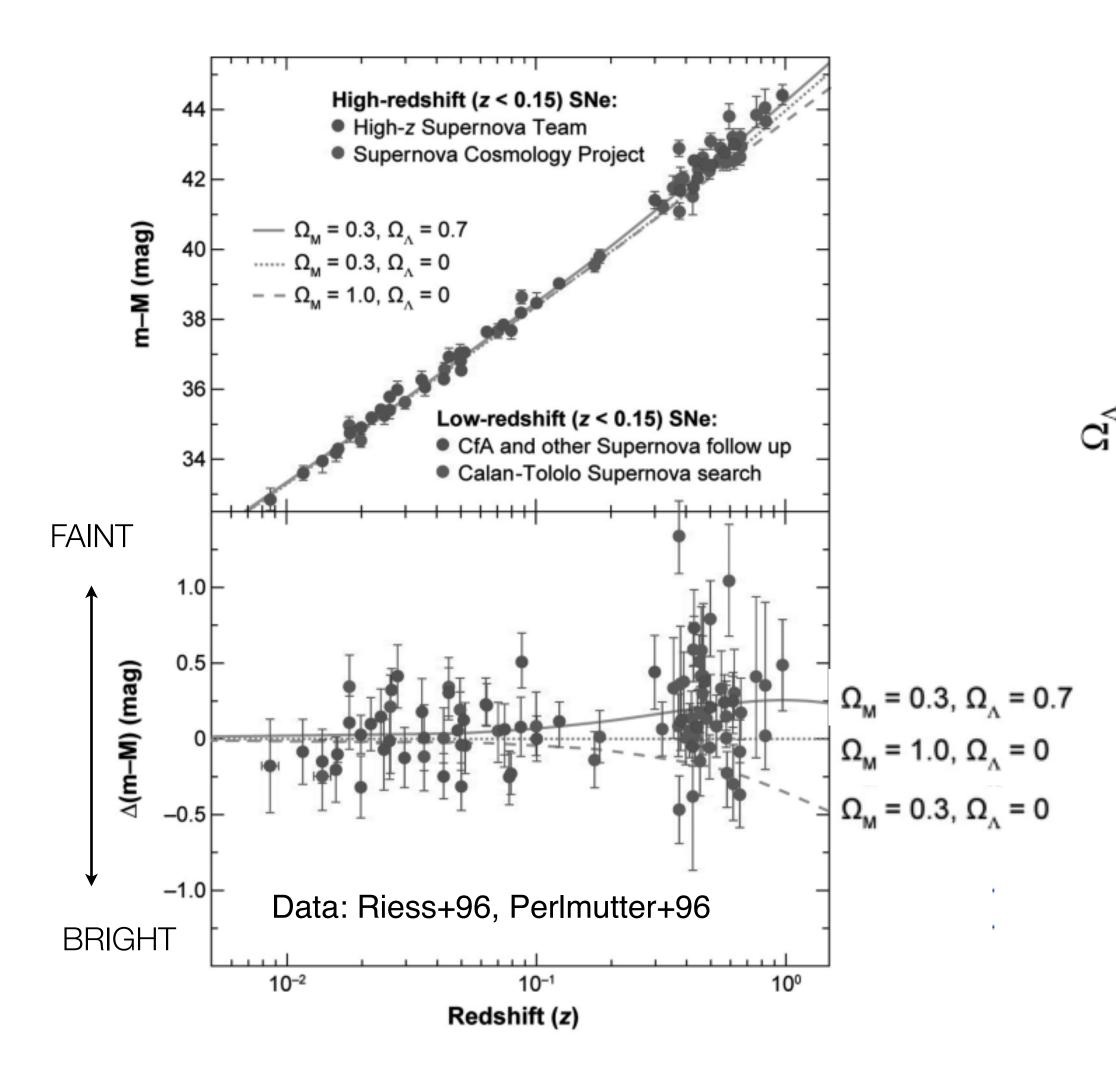
DIFFERENTIAL DISTANCE MEASUREMENT

$$z = 0.1$$
 $z = 0.5$ $z = 1.0$

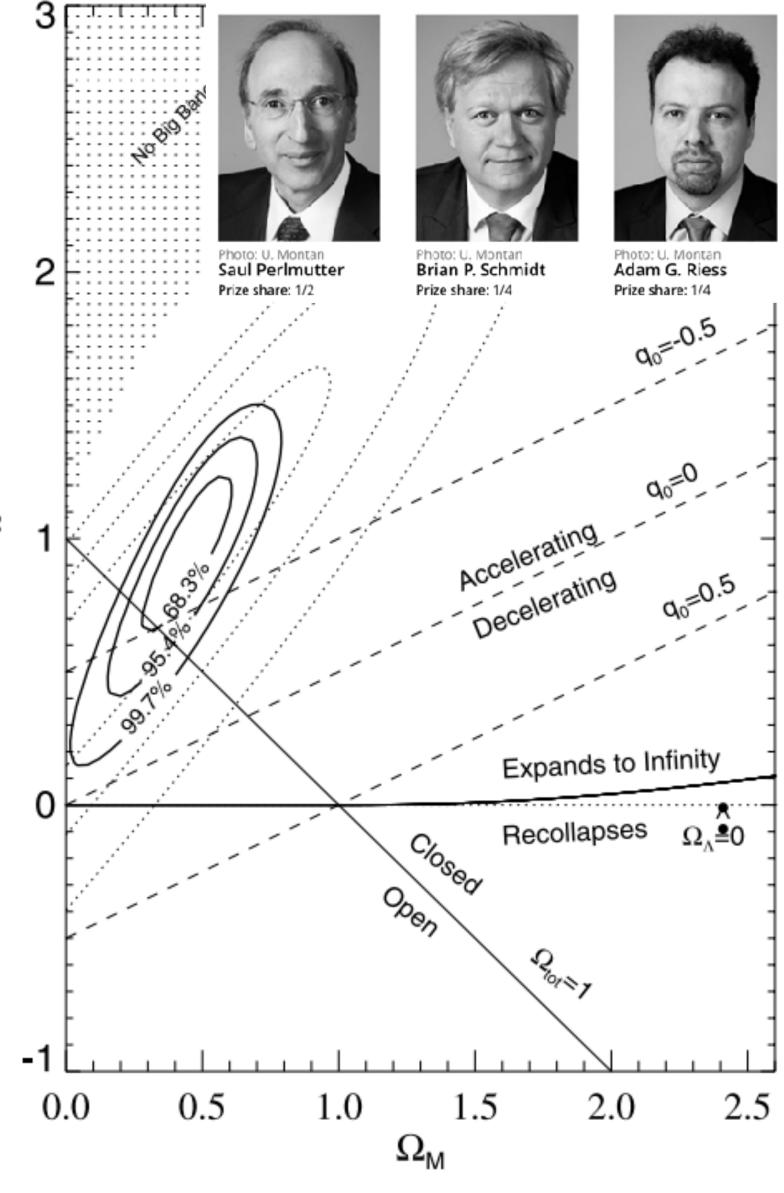


Contours of constant D_L at various redshifts

COLLECT THE NOBEL PRIZE

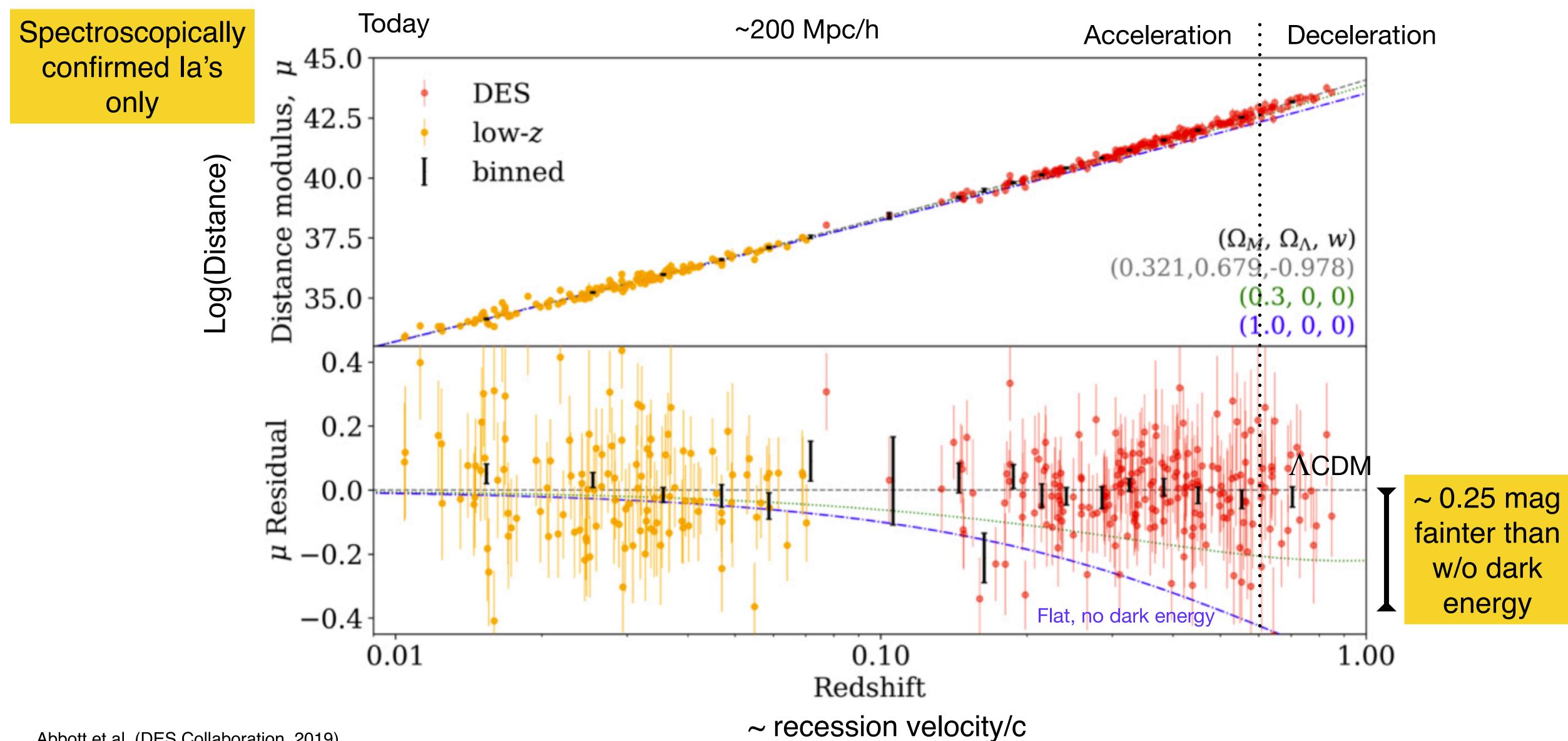


The Nobel Prize in Physics 2011



Riess et al, ApJ, 607:665-687 (2004)

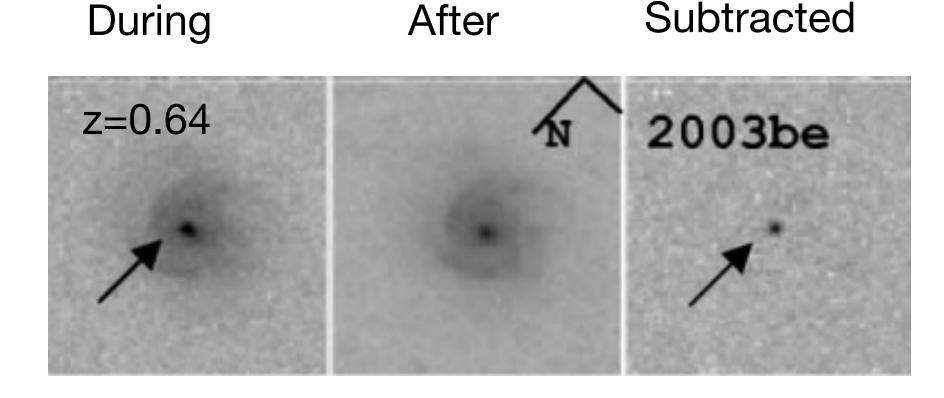
Distance-Redshift Relation Measurement



Supernovae Type Ia: Observations

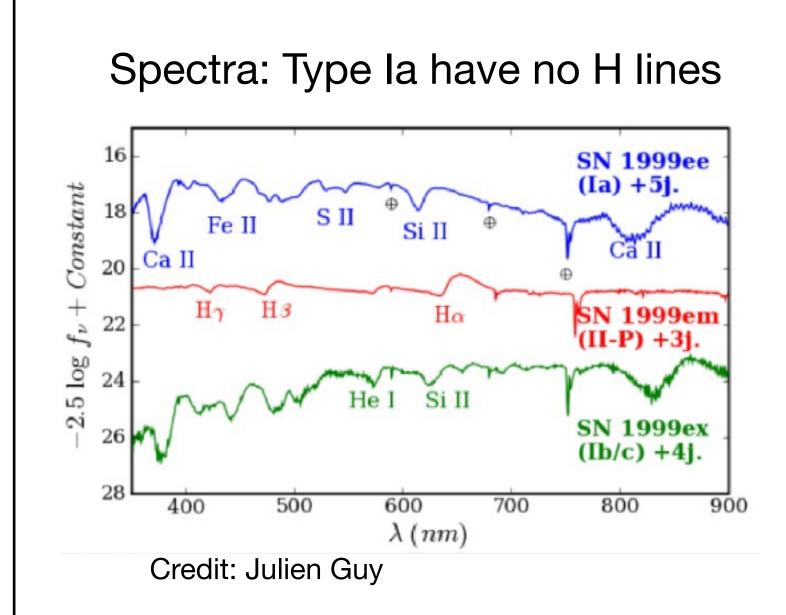
DETECTION

Treffers et al (1994); imaged by HST



Riess et al, ApJ, 607:665-687 (2004)

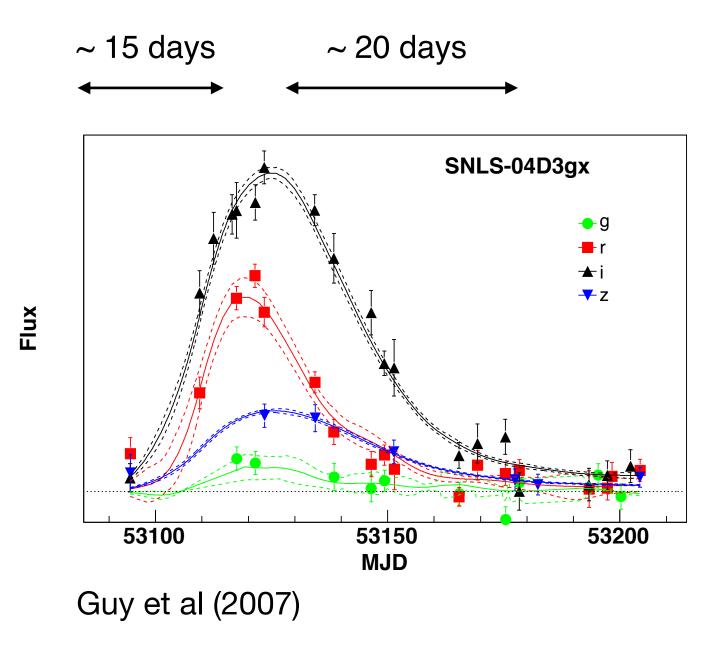
TYPING



Confirming Ia is easy with spectra.

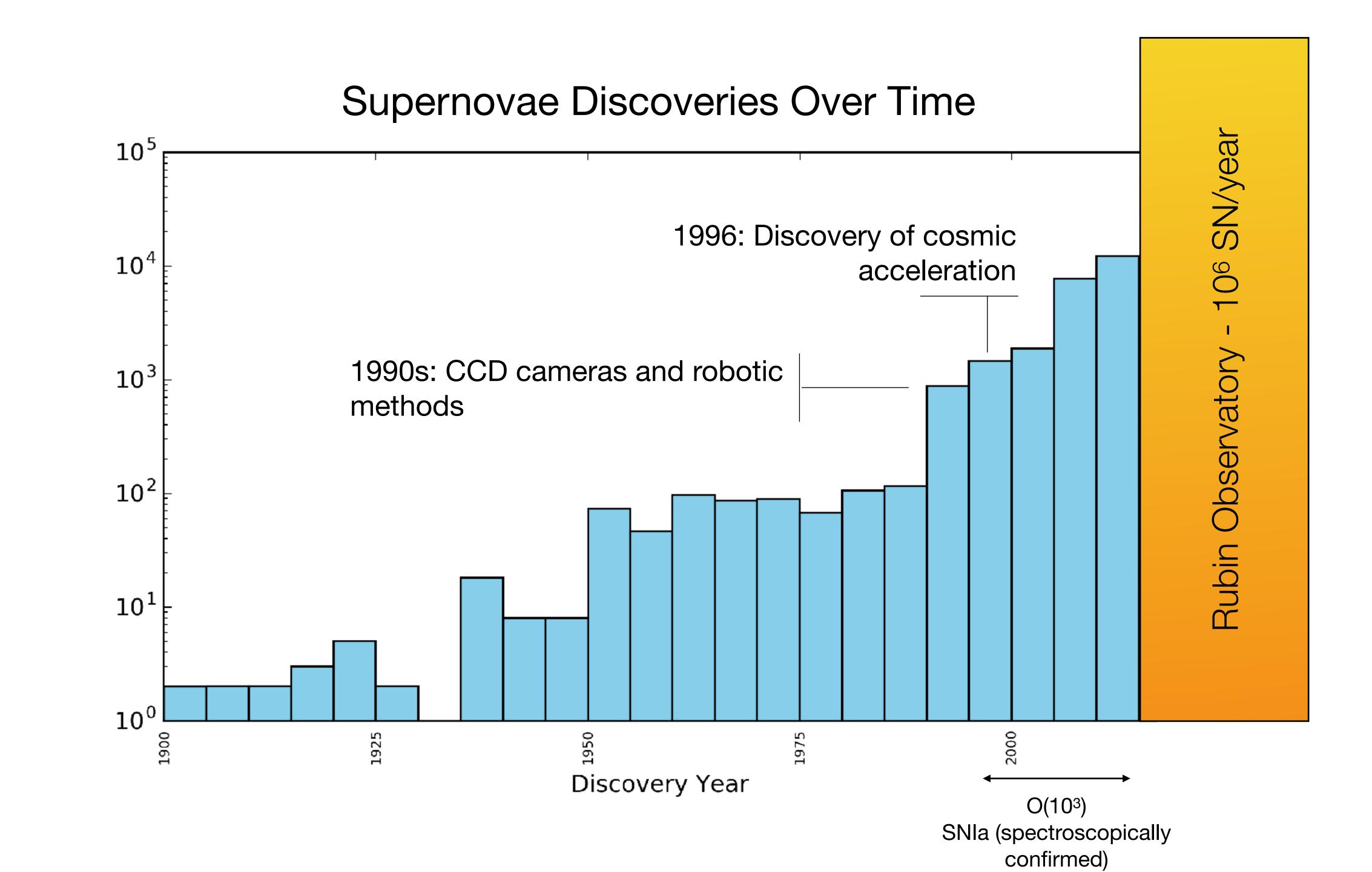
Much harder with just photometry (i.e., low-res spectral information): only probabilistic classification

FOLLOW-UP



Lightcurves: time-evolution of brightness in several colour filters

Used for standardization and cosmological inference



Bayesian Hierarchical Modelling of SNIa data

For more details, see:

BHM: March, RT et al

(2011)

Unity: Rubin et al (2015)

BAHAMAS: Shariff, RT et al (2016); Rahman, RT et

al (2022)

Simple-BayeSN: Mandel

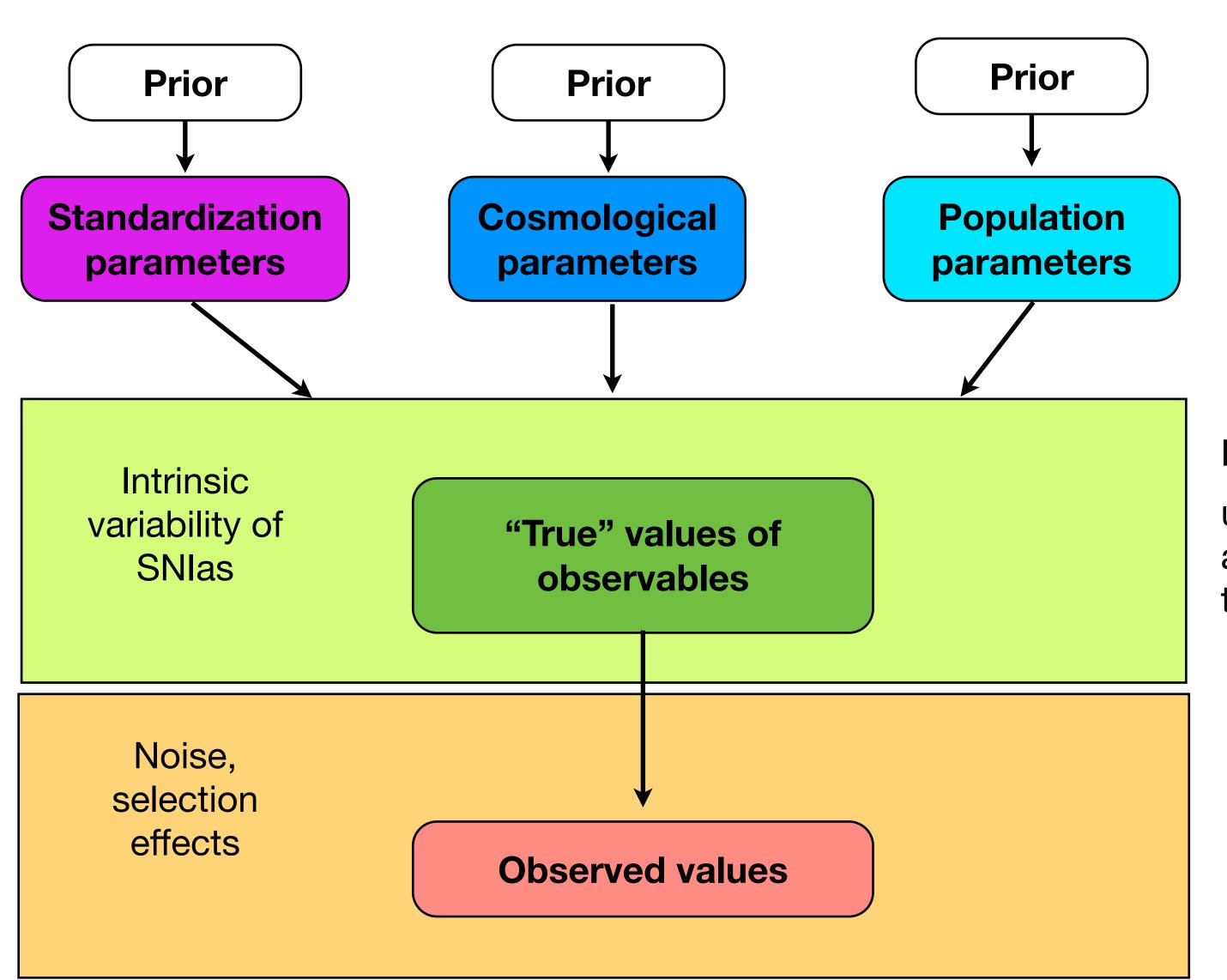
et al (2017)

Steve: Hinton et al (2019)

Upcoming:

MALFOI: Karchev, RT &

Weniger (soon)



SNIa population distributions Environmental properties (age, metallicity, SFR, host type)

Latent variables:

unknown and unobserved, are integrated out during the inference

Noisy data subject to truncation

The Problem:

We want to classify Type Ia vs non-la **reliably** and **efficiently** from light-curve data alone.

BUT:

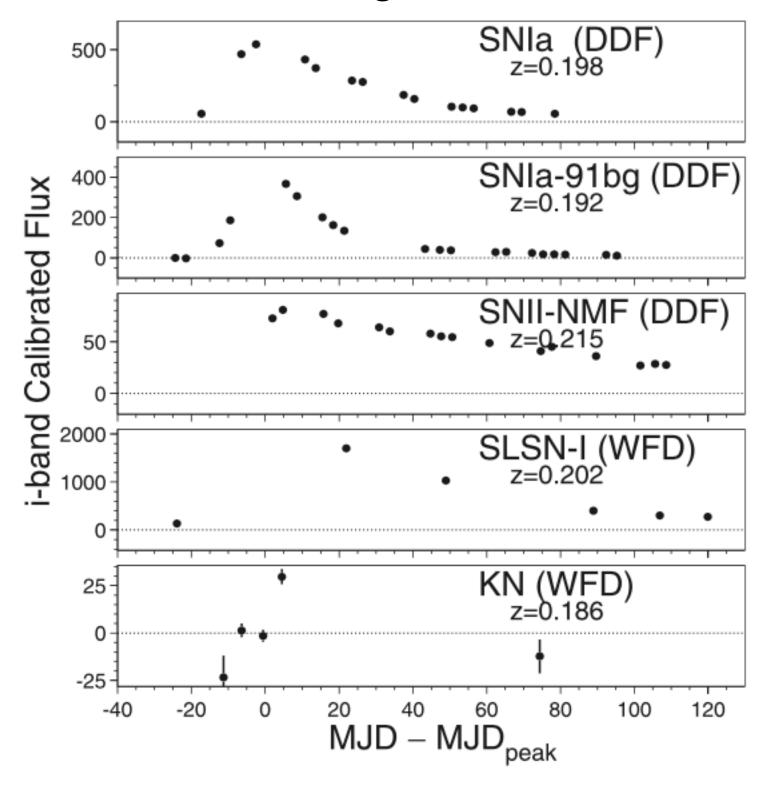
Spectroscopic training set is non-representative.

Classification challenges:

The Photometric LSST Astronomical Time-series Classification Challenge PLAsTiCC (Kessler et al, 2019)

Supernova Photometric Classification Challenge (Kessler et al, 2010)

Simulated light-curves

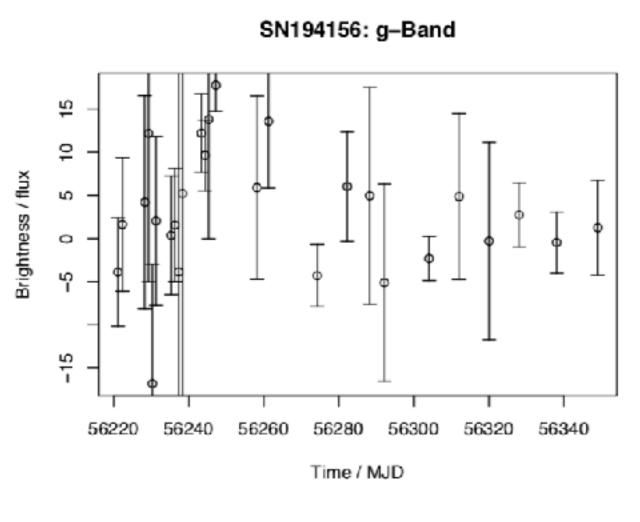


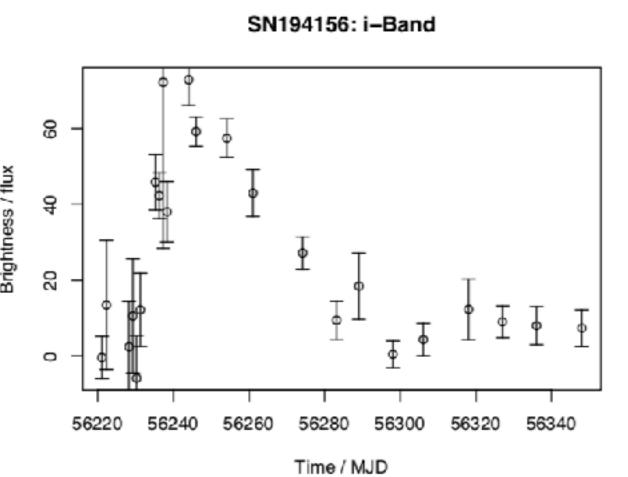
Kessler et al (2019)

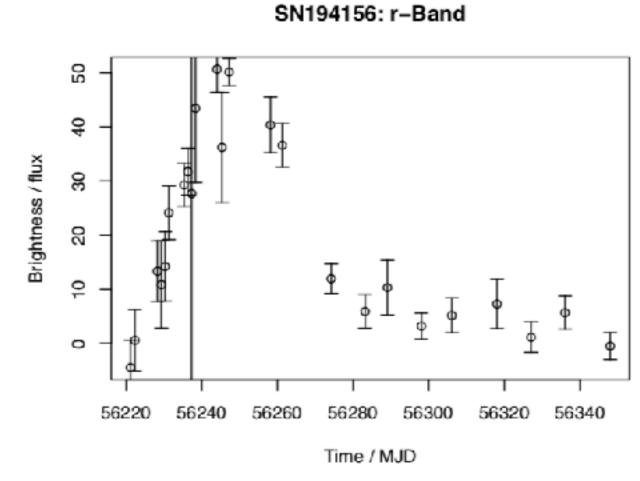
The Future: Photometric SNIa Cosmology

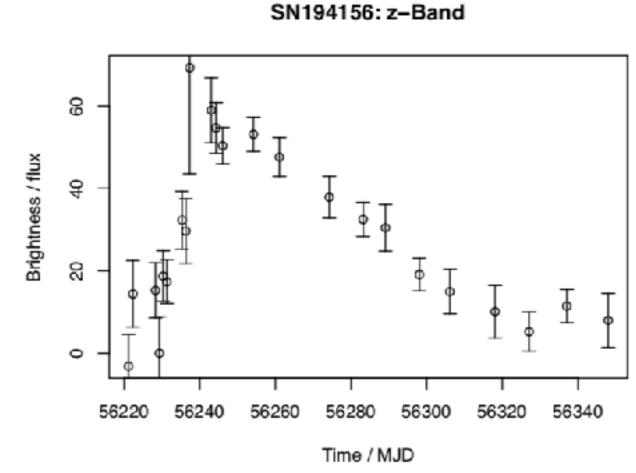
Example of simulated LC data

- SNIa identification relies on observationally expensive spectroscopy
- In the future, we won't have spectra for all SNIa candidates (DES: 3,000 SNIa over 5 yrs; LSST: 10,000 SNIa/yr)
- SNIa classification needed from multi-band imaging alone
 - "SN Classification Challenge" (Kessler+10)
 - more recently: LSST Kaggle comp (2018)



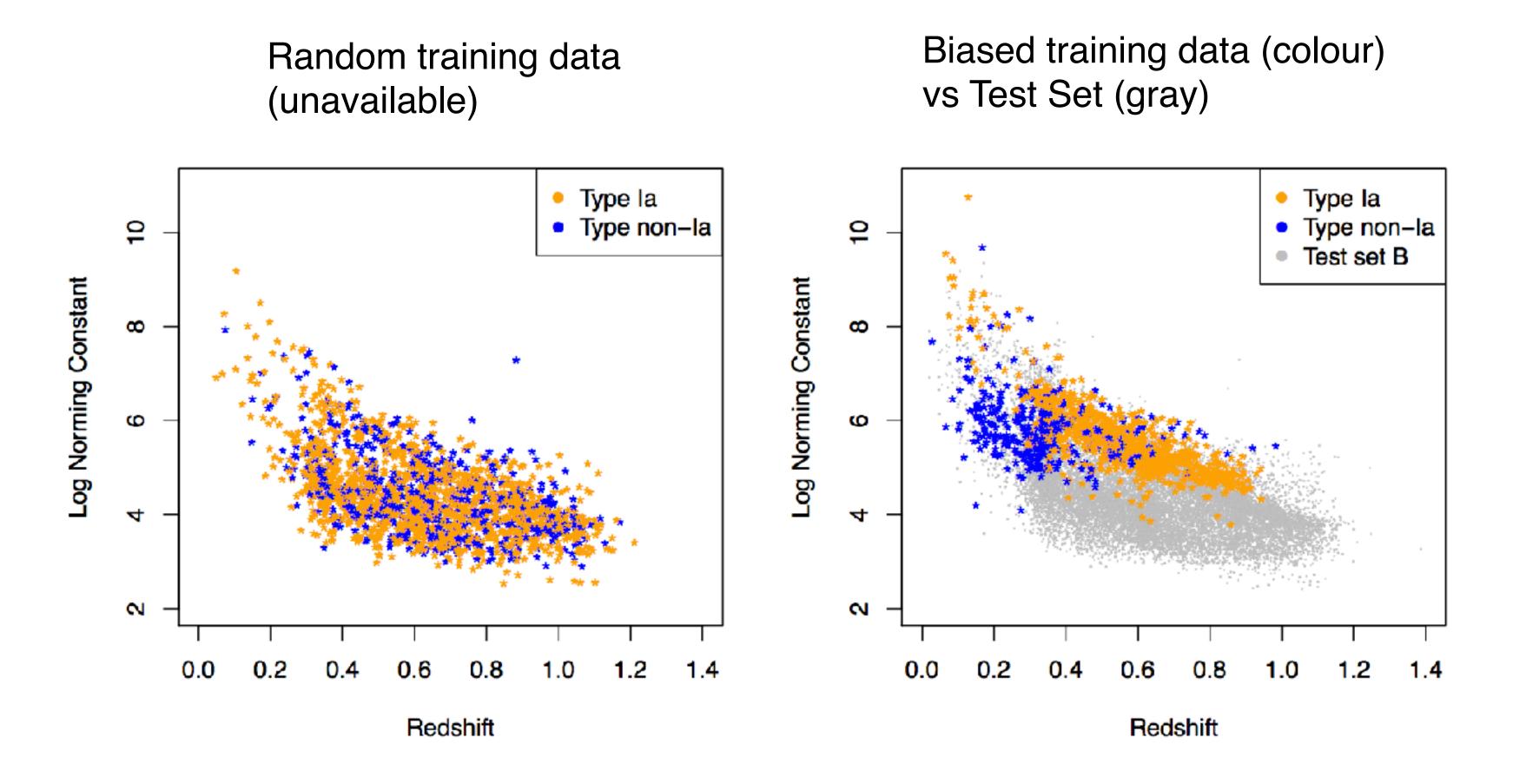






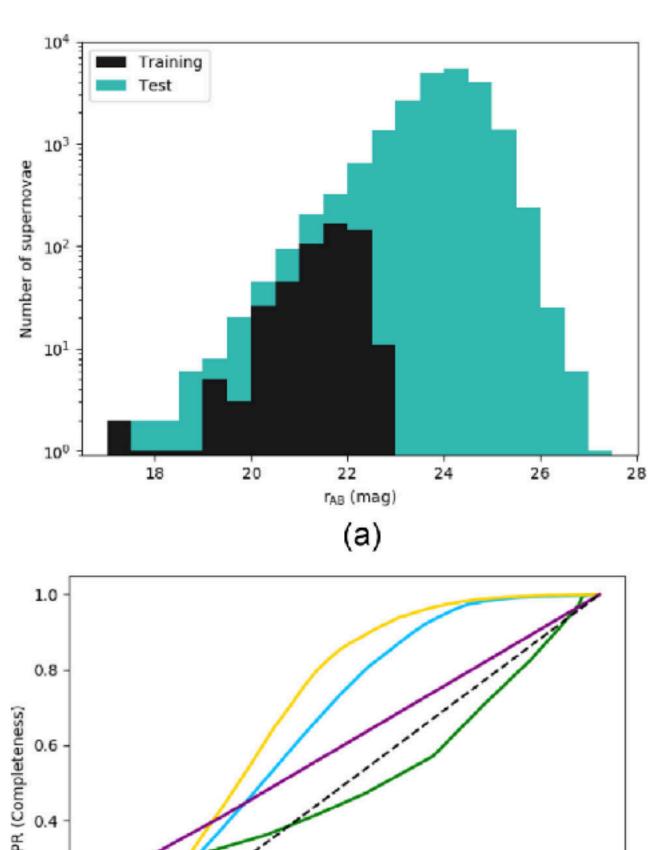
The Future: Photometric SNIa Cosmology

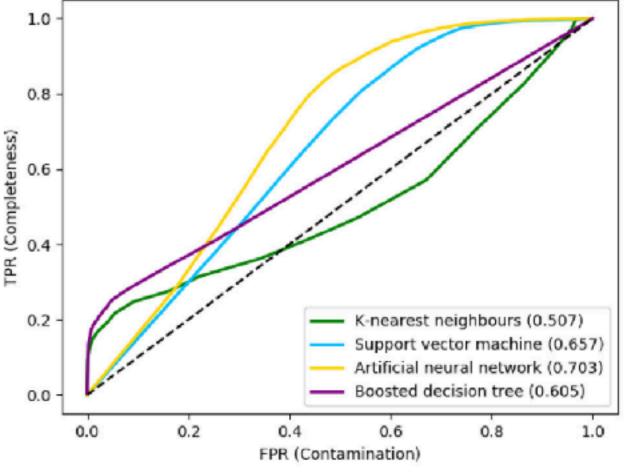
• **Problem:** Training set is biased. Especially at high *z*, more SNIa's than in the population, hence non representative



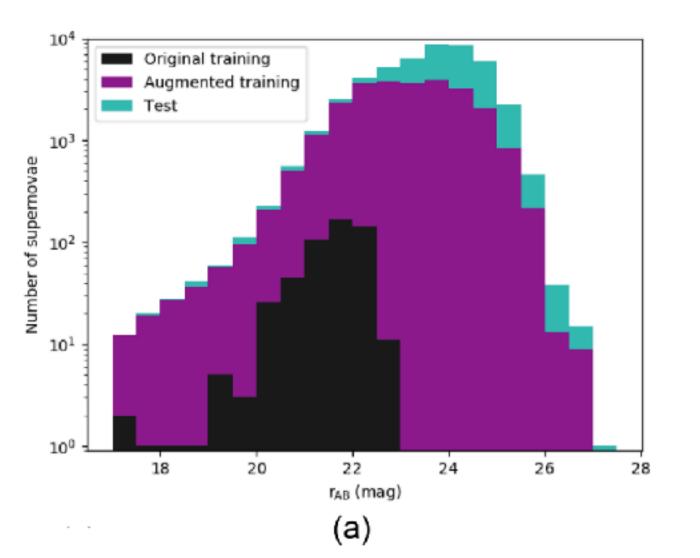
Solution 1: data augmentation

Unrepresentative spectroscopic training set leads to poor classification performance



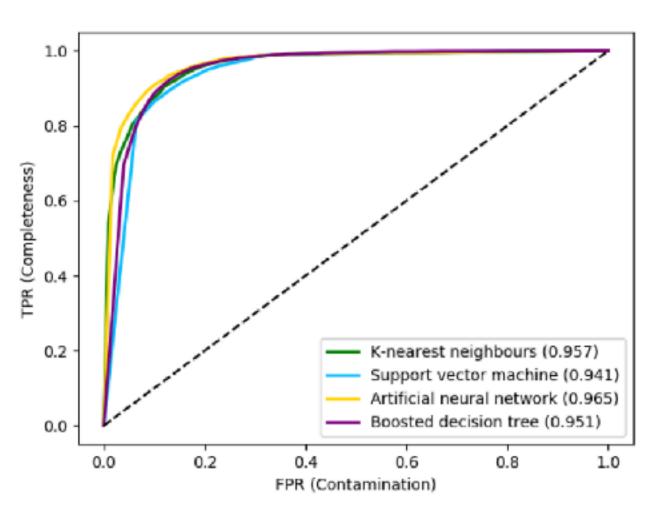


+ 50-fold data augmentation improves massively the AUC



However:

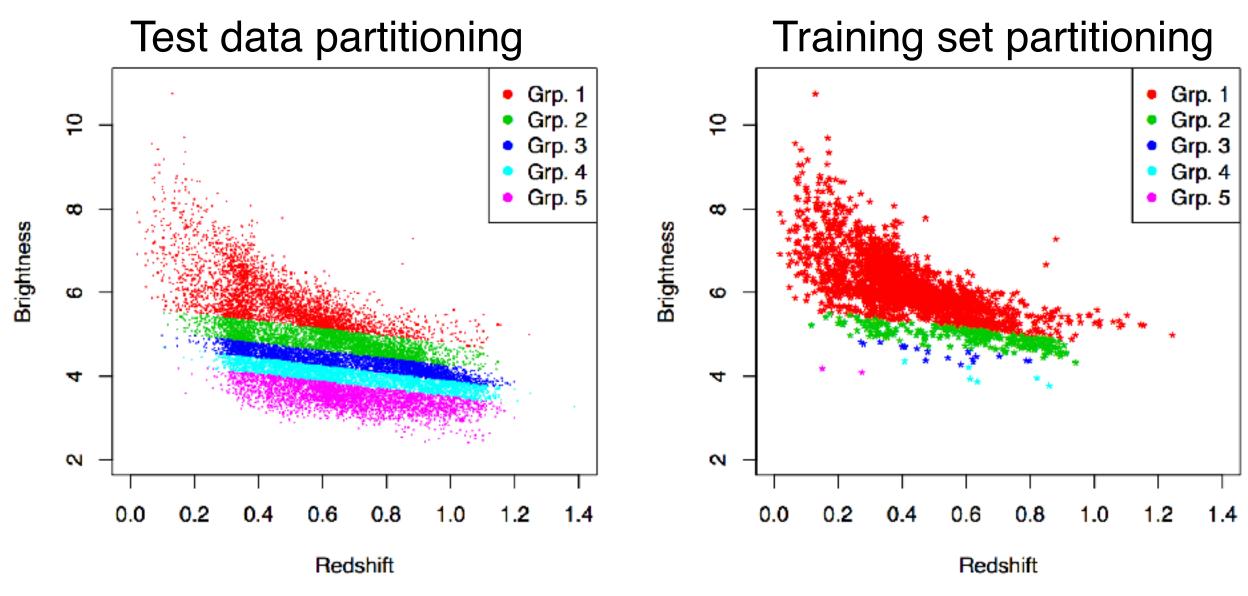
Succesfull augmentation relies on a good light-curve model (e.g. GPs) AND the assumption of no astrophysical evolution with z



A first solution: STACCATO

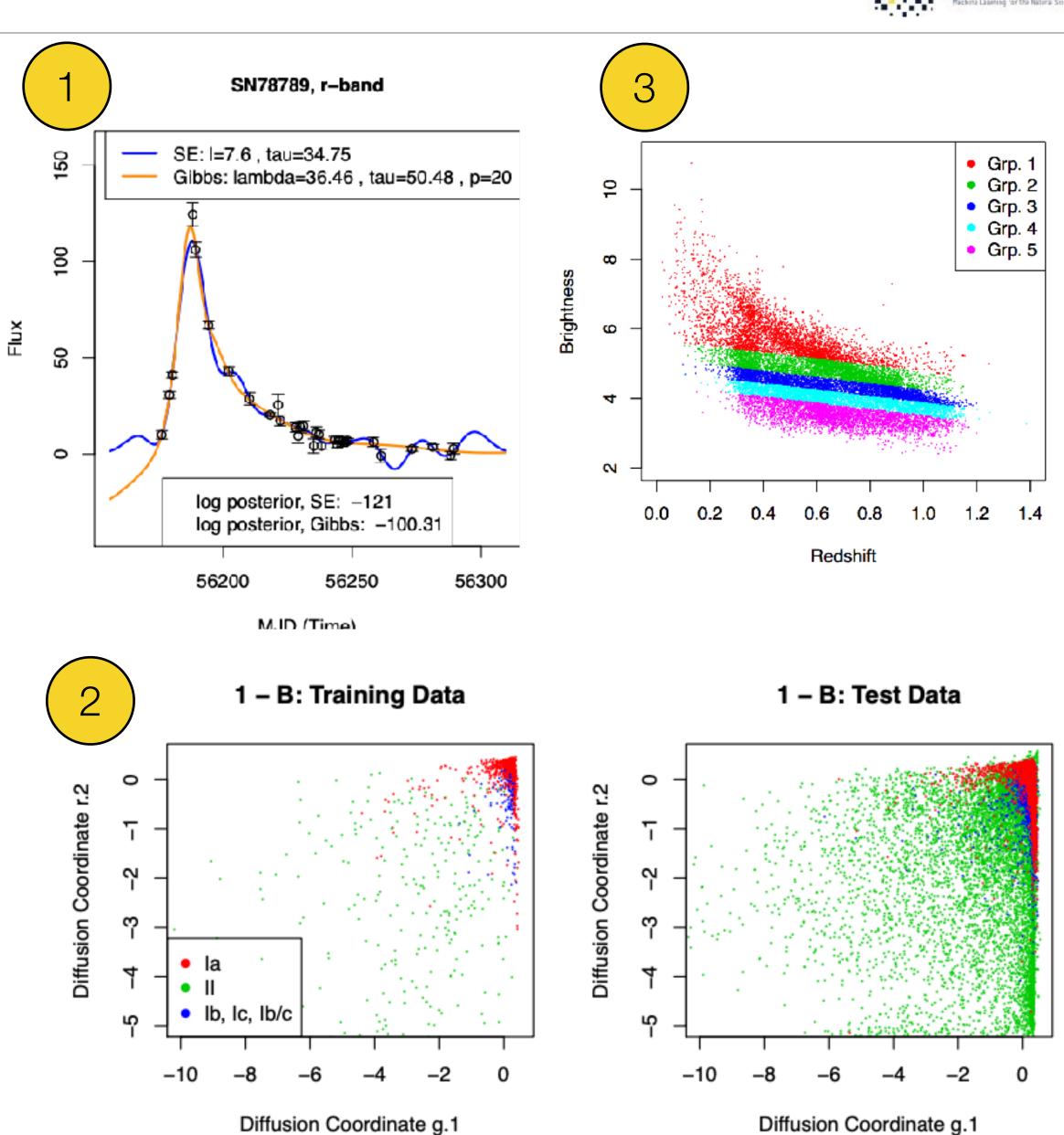
- Our first solution (Revsbech, RT, van Dyk, MNRAS, 473, 3, 3969 (2018), arxiv:1706.03811): SynThetically
 Augmented Light Curve ClassificATiOn (STACCATO) approach
 - Fit light curve with Gaussian Process (GP)
 - Compute Diffusion Map (to quantify similarities between LCs), Richards+12
 - Perform Random Forest Classification on diffusion coordinates
 - New: Group SNs according to **Propensity Score** (probability of belonging to the training set): bias within groups reduced by 90% (Rosenbaum & Rubin, 84)

Propensity Score Grouping:



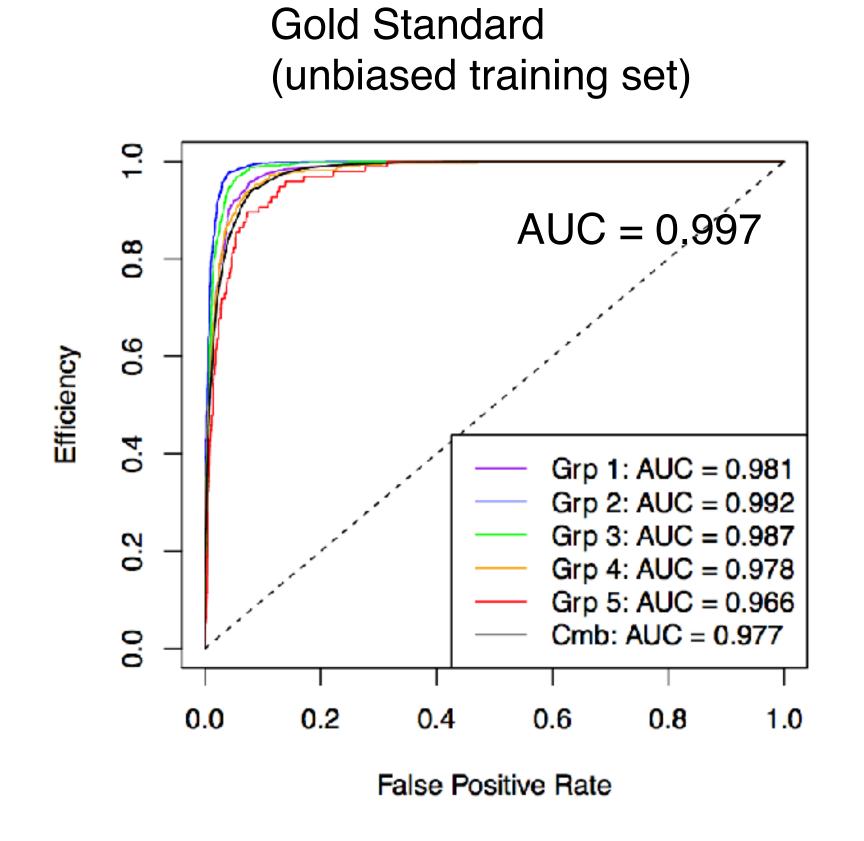
STACCATO: Analysis Details

- 1. Fit Gaussian Process (GP) to light curve data
- 2. Apply diffusion map technique to map the fitted light curve into a covariate space of dim~O(100), following Richards et al (2012)
- 3. Stratify light curve data according to propensity scores quantiles
- 4. Sample new synthetic light curves from fitted GPs in groups with sparse training data (requires validation set to optimise augmentation scheme)
- 5. Use Random Forest on the stratified diffusion coordinates (group-by-group) for classification

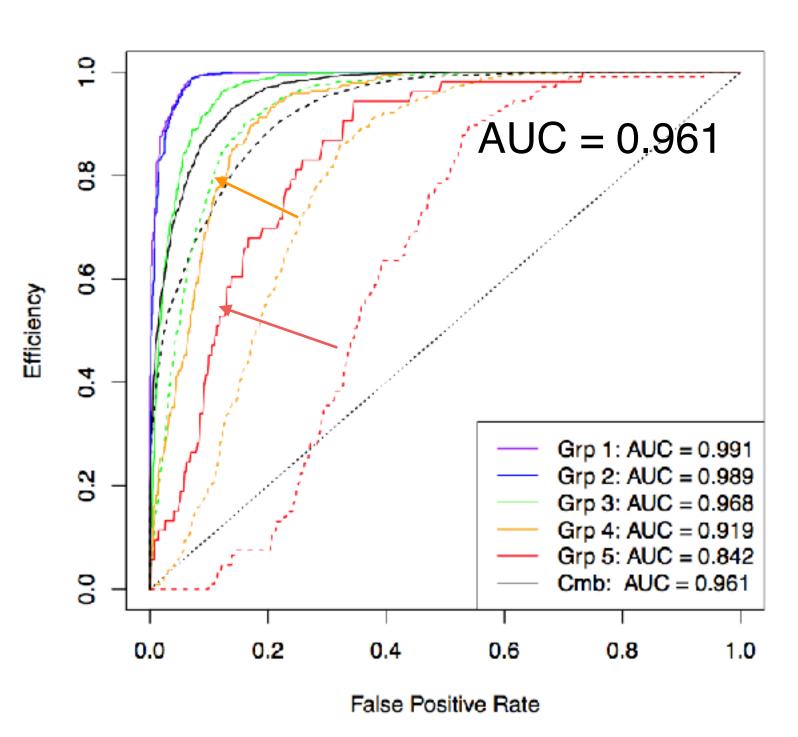


Augmenting LCs via GP Resampling

- STACCATO augments the training set by synthetically generating LCs from the GP according to the Propensity Scores -> corrects under-sampling where it matters
- Evaluated using Area under the ROC Curve (AUC)



STACCATO dashed (solid) w/o (with) augmentation



Ideally we would like:

A better solution that does NOT rely on data augmentation and its assumptions.

Covariate Shift, or Biased Training Set

Light-curve dat

Type la or not

Given a feature space, X, and a label space, Y(K > 1 classes/dependent variables) we have n_s labelled samples $\{x_i^s, y_i^s\}$ from the source domain

Photometric light-curve only

 n_t unlabelled samples from the target domain, $\{x_i^t\}$.

ls it a la?

Task: predict $\{y_i^t\}$

Features: redshift & apparent mag

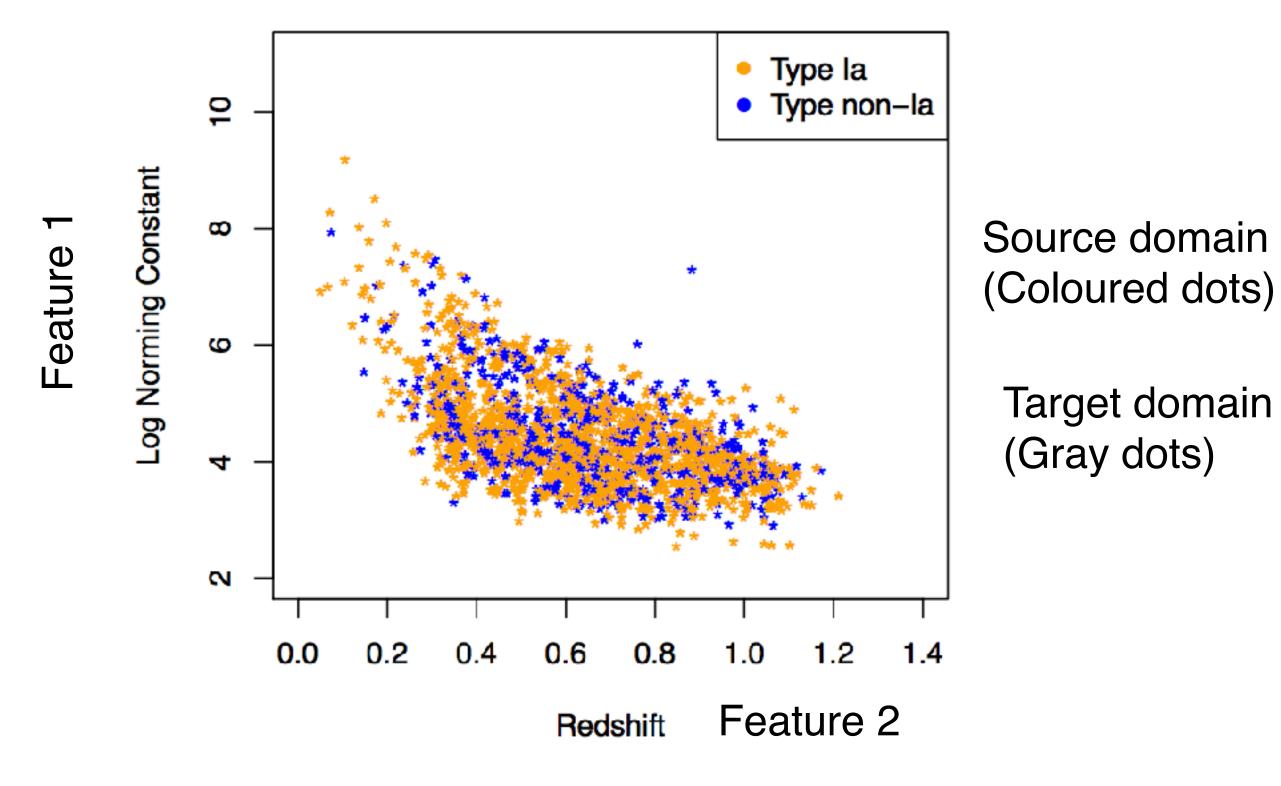
Label: la or non-la

Covariate shift occurs when:

$$p_{s}(y \mid x) = p_{t}(y \mid x)$$

and
$$p_s(x) \neq p_t(x)$$

I.e., the training set is nonrepresentative of the test set.



Revsbech, RT, van Dyk (2018)

Target Risk Estimation

Weighted ML estimation of risk

Approach: choose the classification/ regression function f(x) so as to to minimise the risk (= expected loss) over the target domain.

Shimoidara (2000) showed:

$$E_{(x,y)\sim D_t}[\mathcal{E}(f(x),y)] = E_{(x,y)\sim D_s} \begin{bmatrix} p_t(x) \\ p_s(x) \end{bmatrix}$$
Target (i.e. test data)
Source (i.e. training data)

The ratio of densities (weights) can be difficult to estimate reliably.

Bias correction approach

Let *s* be a binary indicator variable controlling training set selection (s=1).

Zadrozny (2004) showed:

$$E_{(x,y)\sim D}[\mathcal{E}(f(x),y)] = E_{(x,y)\sim \tilde{D}} \left[\mathcal{E}(f(x),y \mid s=1)\right]$$
$$\tilde{D} = \frac{P(s=1)}{P(s=1 \mid x)}D$$

Estimate $p(s=1\,|\,x)$ via e.g. logistic regression, then draw samples from \tilde{D} .

Our Approach: Propensity Score Stratification

Work by **Max Autenrieth** (Stats PhD student), in collaboration with David van Dyk (Imperial) & David Stenning (Simon Fraser U.) Improving on our previous work ("STACCATO"), Revsbech, RT, van Dyk (2018): StratLearn, Autenrieth et al (2021), arXiv 2106.11211

Propensity scores

 $e(x_i)$ = probability for object i to be selected into the source domain, using the *whole features* set:

$$e(x_i) \equiv P(s_i = 1 \mid x_s, x_t)$$

Key idea (StratLearn):

subdivide ("stratify") target and source data in *k* subgroups according to quantiles of their propensity scores. Then supervised learning in each stratum ("stratified learner")

Propensity scores as balancing scores

Rosenbaum & Rubin (1983, 1984) show that, conditional on their propensity scores, the *k* subgroups ("strata") have approximately balanced covariate distribution, i.e.

$$p_{s_j}(x) \approx p_{t_j}(x) \text{ for } j = 1, \dots, k$$

Since $p_s(y|x) = p_t(y|x)$, it follows that

$$p_{s_j}(x, y) \approx p_{t_j}(x, y) \text{ for } j = 1, ..., k$$

Hence covariate shift approximately disappears.

Toy Example (illustration of StratLearn)

1D simulation (regression):

Source: $x_s \sim N(0.5, 0.5^2)$

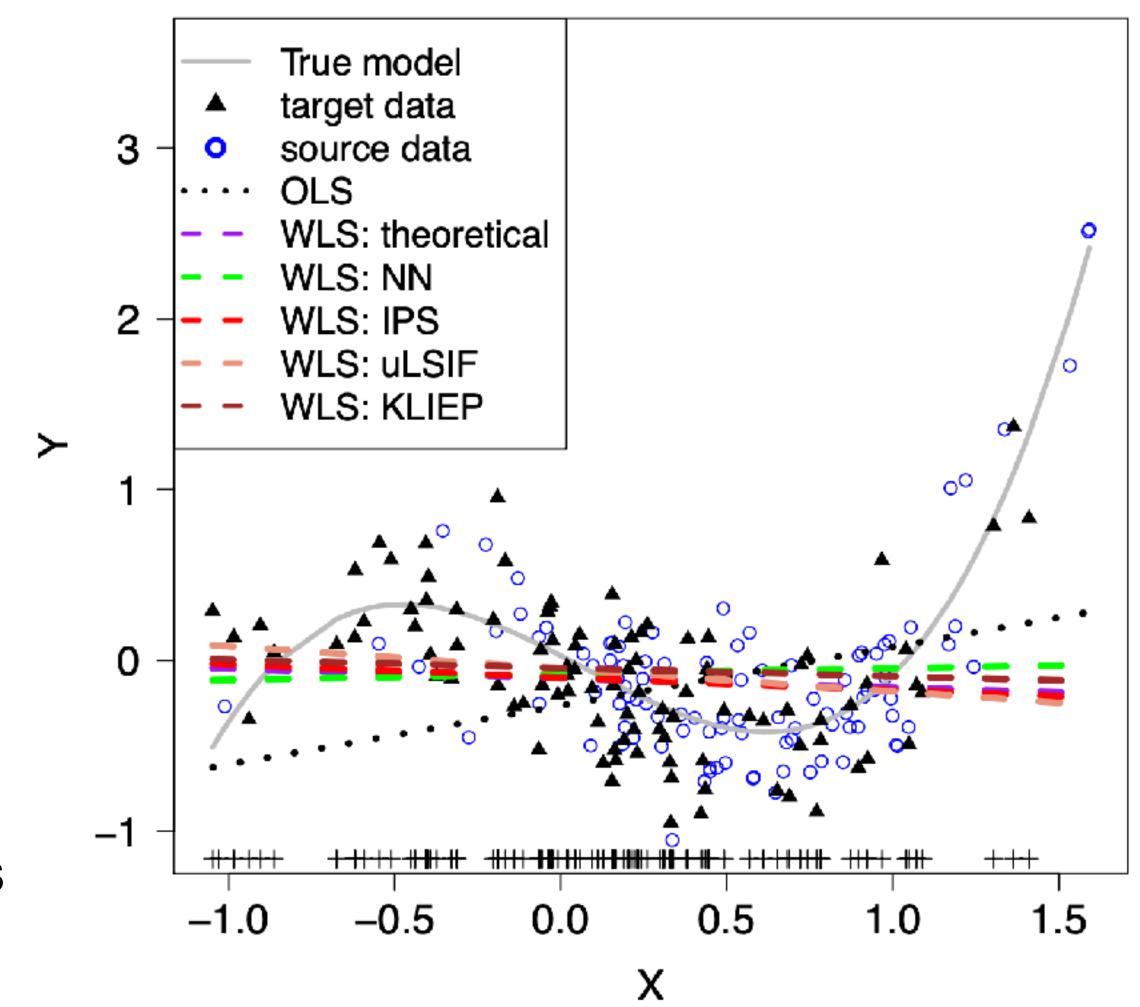
Target: $x_t \sim N(0.2, 0.5^2)$

Outcome: $y_s = -x + x^3 + \epsilon$ Where $\epsilon \sim N(0, 0.3^2)$

Fit with misspecified (ie wrong) model:

Ordinary least square regression fit

(For the experts: importance weighting does not work in this case)

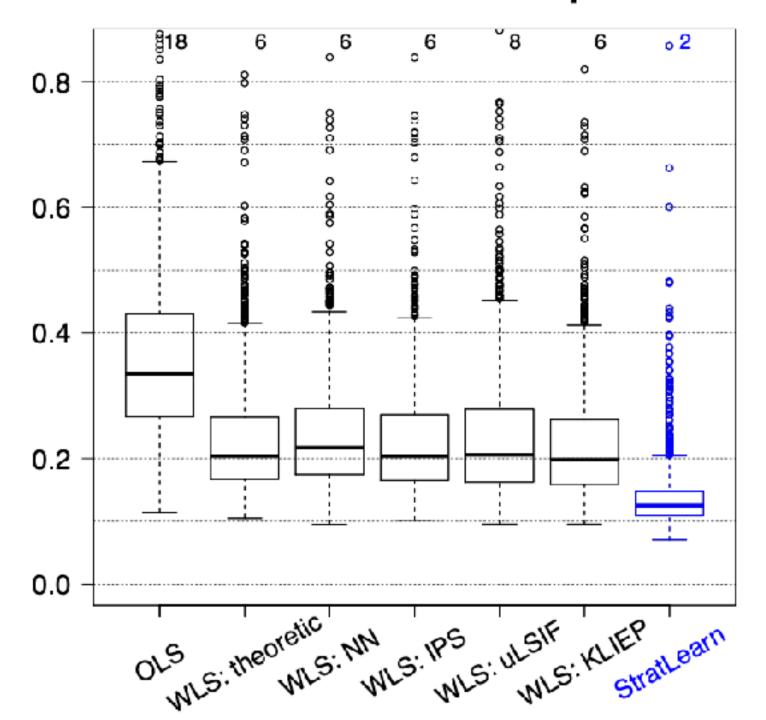


Toy Example

StratLearn solution:

Subdivide the covariate space (ie. x axis) according to quintiles of propensity scores and fit the (wrong) linear model in each

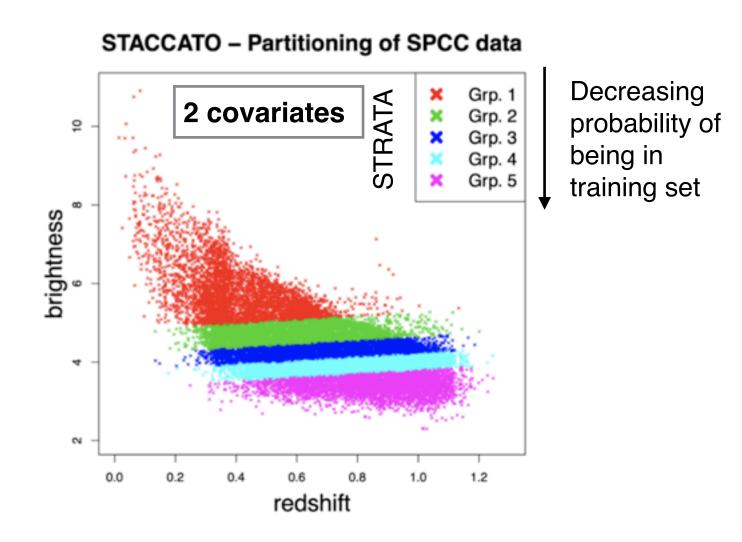
MSE – univariate example

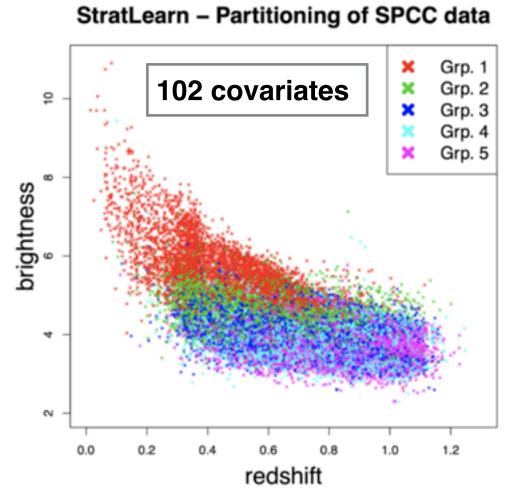




StratLearn on SNIa data

Propensity score partitioning of target domain (test data):



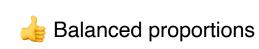


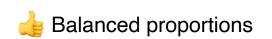
Conditional on the propensity scores (i.e., within each stratum), the source and target outcomes are approximately the same.

This means: inside each stratum, the imbalance has been redressed, i.e. source data are approximately representative

Important: the underlying theorem only valid *if all* potential confounding covariates (i.e., things the SNIa type could depend on) are included in the propensity score estimation!

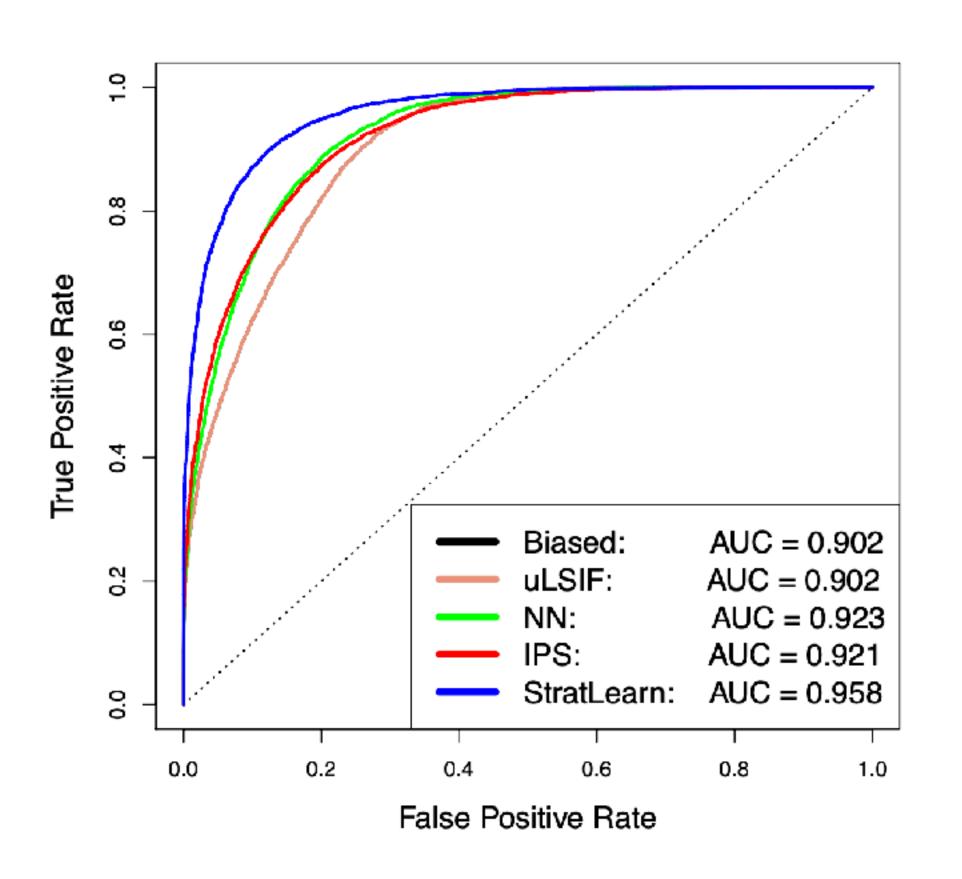
		Number	Number	Prop.
Stratum	Set	of SNe	of SNIa	of SNIa
1	Source	958	518	0.54
	Target	3306	1790	0.54
2	Source	120	28	0.23
	Target	4144	927	0.22
3	Source	13	4	0.31
	Target	4250	540	0.13
4	Source	7	4	0.57
	Target	4257	610	0.14
5	Source	4	4	1
	Target	4259	662	0.16





Classification Performance with StratLearn

SPCC Challenge data (v2):



StratLearn performance close to "gold standard" of unbiased training set (AUC=0.977 vs 0.958) without any augmentation

Cf previous results: Lochner et al (2016): AUC= 0.855

Pasquet et al (2019): AUC=0.939

Revsbech et al ("STACCATO", 2018): AUC=0.94

Note: AVOCADO (Boone, 2019), winner of the PLASTICC challenge 2019, uses an extended version of STACCATO (incl. augmentation).

StratLearn for regression

We seek a principled framework for covariate shift adaptation via propensity score stratification that does not need augmentation:

- 1. Augmentation is problem-specific
- 2. Augmentation usually requires a validation set (not available)

Propensity score stratification leads to approximately balanced (i.e., unbiased) sub-groups, on which to perform supervised classification/regression.

Classification (2-way)

SNIa vs non-la, AUC:

Gold standard: 0.977

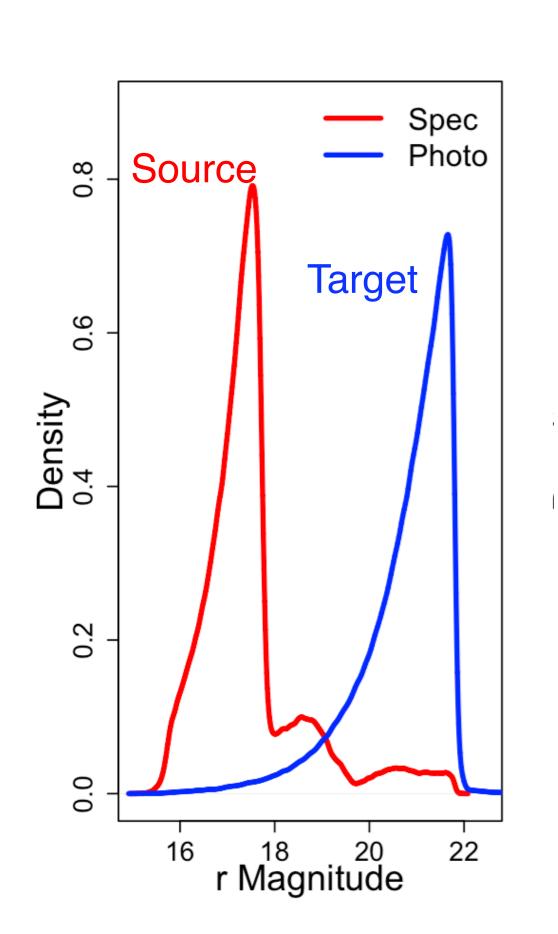
Best-in-class: 0.937

STACCATO: 0.961

StratLearning: 0.973

Multivariate regression

Photo-z estimation (~500,000 source/targets from SDSS DR 8)



Conditional Density Estimation Problem

The problem: estimate the conditional density of redshift, *z*, given the observed covariates (magnitudes in 5 different colour filters), in the presence of covariate shift.

We compare our performance to the estimators in Izbicki et al (2017).

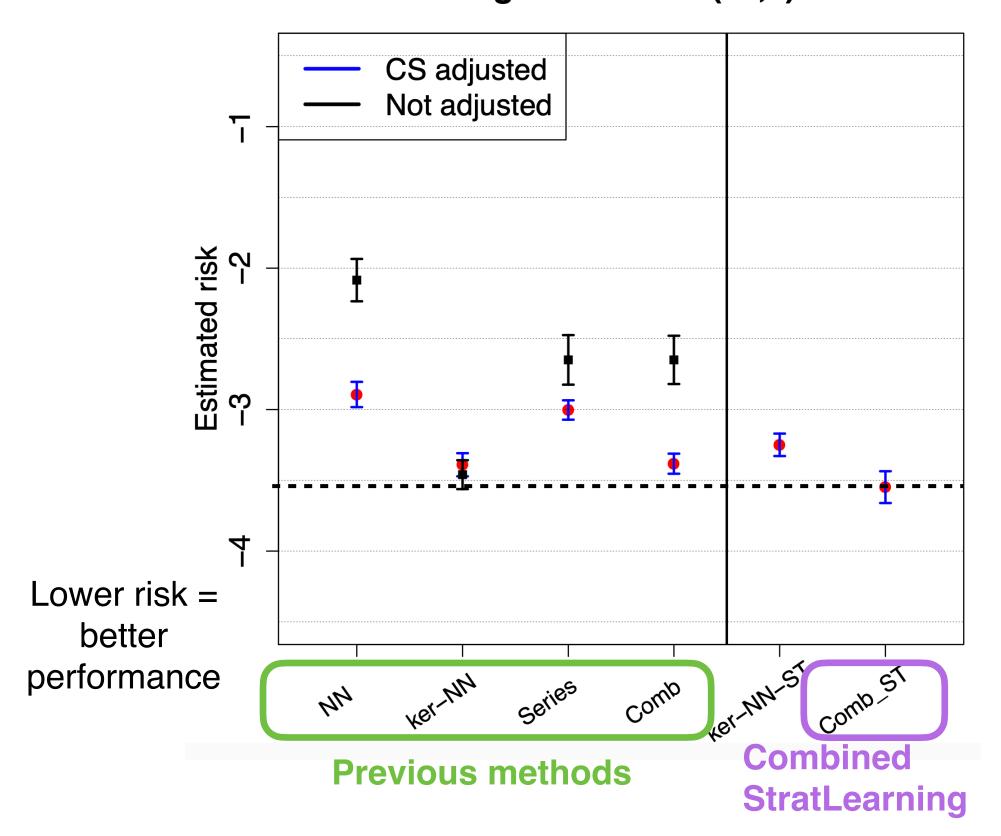
Approach:

- 1. "StratLearning" partitions the source and target domain according to propensity scores (no augmentation needed)
- 2. Within each group, we combine two conditional density estimation models from Izbicki et al (2017), *ker-NN* and *Series*, via a weighted average.
- 3. Weight is optimised by minimising the empirical loss on a validation set (a sub-set of the training set, **no test data needed**)

StratLearn: Photo-z Performance

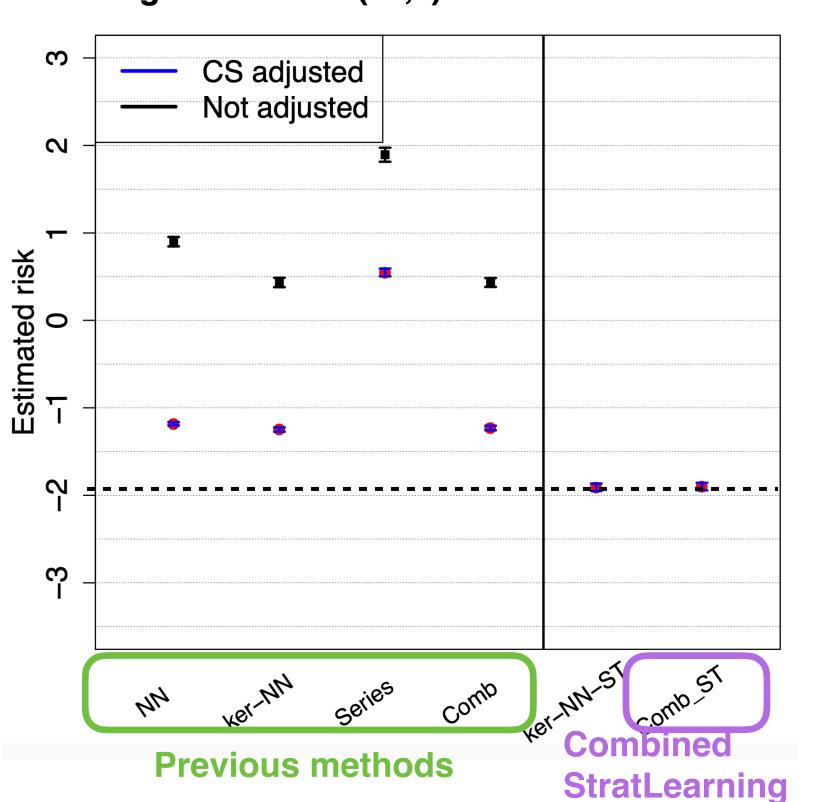
Moderate shift Low covariate dimensions

Target loss: Beta(13,4)



Moderate shift High covariate dimensions

Target loss: Beta(13,4) + 50 noise covariates



StratLearning outperforms previous methods for this problem.

Performance improvement is larger in the presence of high-D noisy covariate space (right panel).

Conclusions

- Covariate shift is an important and recurrent phenomenon in supervised learning. In dark energy research, it will affect the next generation of large SNIa data.
- We propose a general approach (StratLearn) based on stratifying source and target domain according to propensity scores (= probability of an object to be included in the source domain).
- Within strata, source and target domains are better balanced: StratLearn shows improved performance in regression and classification tasks compared to best-in-class alternatives.

Thanks to my collaborators: Max Autenrieth (PhD student), David van Dyk (Imperial), David Stenning (Simon Fraser U.). Paper here: https://arxiv.org/abs/2106.11211

Thank you!

www.robertotrotta.com

Check out our new group:

datascience.sissa.it

References (Astro)

- E. A. Revsbech, R. Trotta, D. A. van Dyk, STACCATO: a novel solution to supernova photometric classification with biased training sets. *Monthly Notices of the Royal Astronomical Society* **473**, 3969-3986 (2018).
- R. Kessler et al., Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC).
 Publications of the Astronomical Society of the Pacific 131, 094501 (2019).1.
- Boone, K., Avocado: Photometric Classification of Astronomical Transients with Gaussian Process Augmentation. *The Astronomical Journal* **158**, 257 (2019).
- R. Kessler, et al (2010), Supernova Photometric Classification Challenge. ArXiv:1001.5210
- T. M. C. Abbott *et al.* (2019), First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. *The Astrophysical Journal* **872**, L30.
- M. C. March, R. Trotta, P. Berkes, G. D. Starkman, P. M. Vaudrevange (2011), Improved constraints on cosmological parameters from Type Ia supernova data. *Monthly Notices of the Royal Astronomical Society* **418**, 2308-2329.
- S. R. Hinton et al. (2019), Steve: A Hierarchical Bayesian Model for Supernova Cosmology. The Astrophysical Journal 876, 15.
- H. Shariff, X. Y. Jiao, R. Trotta, D. A. van Dyk (2016), BAHAMAS: New Analysis Of Type Ia Supernovae Reveals Inconsistencies With Standard Cosmology. *Astrophys. J.* **827**, 25.
- D. Rubin et al. (2015), UNITY: Confronting Supernova Cosmology's Statistical and Systematic Uncertainties in a Unified Bayesian Framework. The Astrophysical Journal 813, 137 (2015).
- J. W. Richards, D. Homrighausen, P. E. Freeman, C. M. Schafer, D. Poznanski (2012), Semi-supervised learning for photometric supernova classification. *Monthly Notices of the Royal Astronomical Society* **419**, 1121.

References (Stats)

- Shimoidara (2000), Improving predictive inference under covariate shift by weighting the log-likelihood function. *Journal of statistical planning and inference 90*, 2, 227–244.
- Zadrozny (2004), Learning and evaluating classifiers under sample selection bias. In Proceedings of the 21st international
 conference on Machine learning. ACM, 114.
- Rosenbaum, P. R. and Rubin, D. B. (1983), The central role of the propensity score in observational studies for causal effects.
 Biometrika 70, 1, 41–55.
- Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score.
 Journal of the American statistical Association 79, 387, 516–524.
- Chen, X., Monfort, M., Liu, A. & Ziebart, B.D.. (2016). Robust Covariate Shift Regression. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, in PMLR 51:1270-1279