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The traditional Monte Carlo pipeline

CosmoMC, Monte Python, CosmoSIS, Cobaya...


https://arxiv.org/abs/1304.4473
https://arxiv.org/abs/1804.07261
https://arxiv.org/abs/1409.3409
https://arxiv.org/abs/2005.05290

Bayesian parameter inference

So how do we go about mapping and characterising the posterior?
|.e., where are the maxima are how does probability spread around them?
This is not trivial for not-so-simple probability distributions.

Simplest way: produce a sample from that distribution using a Monte Carlo
algorithm (MCMC, Nested Sampling...), i.e. a series of points whose density is
proportional to the probability in their neighbourhood.
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Alternative: forward modelling

Simulator
(Theo. + Exp.)

Data m(0)

Likelihood-free forward modelling, usually with ABC:
Akeret at el. '15, Jennings & Madigan '16, Kacprzak et al. '17...


https://arxiv.org/abs/1504.07245
https://arxiv.org/abs/1608.07606
https://arxiv.org/abs/1707.07498

Problems of conventional approaches

Traditional likelihood-based (MCMC...) or traditional forward-
modelling-based (ABC...) inference need a lot of
samples/realisations since they are based on probability
estimation from sampling density.

Not feasible in finite time with heaps of data coming our way. We
will probably need to reduce the computational cost by at least

(9(102), by using emulation (ML-based) at some level, and heavily
rely on parallelisation (incl. other types such as GPU).



The ML emulator path
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Emulation of the observables (compatible with trad. pipeline)

Fendt & Wandelt '06, Manrique-Yus & Sellentin' 19, Albers et al. '19, Mancini et al. '21,
Mootoovaloo et al. '20...


https://arxiv.org/abs/astro-ph/0606709
https://arxiv.org/abs/1907.05881
https://arxiv.org/abs/1907.05764
https://arxiv.org/abs/2106.03846
https://arxiv.org/abs/2005.06551

The ML forward-modeling path
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Likelihood-free forward modelling, ML-enhanced.:

Leclercq '18, Alsing et al. '19, Miller et al. '20, Day & Seljak '22 (in this seminar series: Nisimichi,
Villaescusa-Navarro, McEwen)... (plus many more, including applications)


https://arxiv.org/abs/1805.07152
https://arxiv.org/abs/1903.00007
https://arxiv.org/abs/2011.13951
https://arxiv.org/abs/2202.05282

A note on likelihood-free approaches

The idea of likelihood-free approaches:

e Create asimulator § — D™ () (stochastic)

e Sample from joint (9, DSim) space, and estimate density w.r.t. some
divergence between D™ and the actual data D.
That density implicitly defines a data likelihood L(D | 6, D5™).

This is (part of) the future of inference, but it comes with limitations:

e Low reusability, since derived likelihoods depend on models.

e Less statistical control (propagation of realisation stochasticity is simulated)
e Limited discoverability (better than summary statistics, but not that much)

o Assessing robustness is an open problem.

"Are summary statistics an unfortunately necessary intermediate step?
Or a useful tool for Physics?"



Our approach:

Emulate the much simpler mapping [parameters — posterior]:

QCcR"— R, € L', C>2
GOAL: drop-in replacement for traditional MC
Probability density functions (our target!) are positive: let's model their log

WISHLIST:

e No need for pretraining

e Small overhead / fast on CPUs (though GPU-capable)
e Modest memory requirements
e Robustness(?)

—>TOOL: Gaussian Processes ~ probabilistic interpolators

(Similar approaches: Pellejero-Ibanez et al. '19, Acerbi '18...)


https://arxiv.org/abs/1912.08806
https://arxiv.org/abs/1810.05558

Why not NNs

Advantages of Gaussian Process for this particular problem:

e Size of the model / number of hyperparameters
= Much less training needed
= Interpretability (noise, correlation length...)
= Robustness to overfitting / better extrapolation
= Much faster / trained on-the-fly
e Easier toincorporate prior information
e Probabilistic: natural way to define active sampling
o Always differentiable

If you start adding restrictions to a NN (smoothness, predictivity so that it can
be trained with small sets of samples...) it starts looking like a GP.
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https://xkcd.com/1831/

The elements of GP parameter inference:

1. Modelling: choice of GP kernel, variable transformations...
2. Acquisition (active sampling): search for the next optimal locations.
3. Evaluation of the true model at the optimal locations.

4. Re-fitting of the GP model: adding new points and finding new optimal
hyperparameters

5. Convergence checks

6. Profit! Inference with your shiny, analytic, differentiable GP model.



GP model: mean, kernel and hyper parameters

Rasmussen & Williams '06

f(z) ~ GP (u(z), k(z,z'))

mean p: baseline value to which /L
uncorrelated values return.

kernel k: describes the correlation

between points. Encodes prior
information on f: e.g. smoothness,

noise, periodicity...

2

Ot Variance of uncorrelated points
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out

C (| — za|;p) + 028;; p: correlation length(s)

a,,%: white noise variance (*)

k(il?l, ZEQ) =0


http://www.gaussianprocess.org/gpml/chapters/

GP model: which kernel?

The RBF (or squared-exp) kernel imposes a long smoothness length.

The Matérn kernel (v = 3/2): allows for less smooth functions, while staying

compressed along the mean.

o 2
Ca — exp _|33‘1 LB2| % B \/g\xl —CBQ‘ 1 \/g\xl —$2‘
auss 2 p2 Matern, v=3/2 — €XP | — P + P
Posterior (kernel: 0.594**2 = RBF(length_scale=0.279))
Log-Likelihood: -0.067 Posterior (kernel: 0.609**2 * Matern(length_scale=0.484, nu=1.5))
3 Log-Likelihood: -1.185




Active sampling - where to evaluate next?

Key to reducing the number of evaluations:
choosing well where to evaluate next.

Optimal locations are chosen such that they maximise an acquisition function,
usually defined in terms of how reduction in local uncertainty would affect
some global target.

E.g.
target: pdf p(d) — acq. function: AVar(Z|log GP)

But that is very expensive to compute! (involves an integral)

Ideally, we will try to use a local measure instead of a global one.



Active sampling - a local function

Let's look at the GP uncertainty at each point if we had modelled the posterior
directly, instead of its log:

GP modelon p
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The uncertainty could be used as an acquisition function, but ignores what
regions are most relevant; just cares about far away one is from training points.



Active sampling - a local function (ll)

But when modelling the log-posterior, the derived posterior uncertainty does
care about the target function value:

logp ~ GP = o, = el (7 — 1) x

Gunter, Osborne et al '14; Chai & Garnett '18
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https://arxiv.org/abs/1411.0439
https://arxiv.org/pdf/1802.04782.pdf
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https://arxiv.org/abs/1411.0439
https://arxiv.org/pdf/1802.04782.pdf

Active sampling - exploration vs exploitation

Oé(CIZ') - e:ulogp(fv)'g (ealogp(x) - 1)

e Exploration: encourages looking far away from training points, where
uncertainty is higher.

o Exploitation: focus on areas of high value of the target.

e Balance: regulate or switch between the two.

Unless checked, acquisition functions of this kind tend to turn increasingly
greedy/exploitative during learning, because the surrogate model gets more

confident (smaller o).

May require fine-tunning for efficient convergence!



Active sampling - optimising

Global maxima of highly multi-modal function — Hard!

Even if the model is nice and simple...




Active sampling - parallelisation

Key for the slow-posterior regime: parallel evaluations of the true posterior.

—> we need simultaneous maxima of the acquisition function.

0',6°, ... < argmaxa(h)
61,62, ..

Simultaneous optimisation is very expensive.
Problems with simply taking multiple local maxima:
a) Our maximiser would run into the same maximum more than once

b) The information in one maximum may be redundant with another one



Active sampling - parallelisation (ll)

A yypical (but not unique) choice is "Kriging believer":
[find global maximum] — [add GP-predicted mean there] — [repeat]

Works well up to nparanel = d.

—-— True function — p(x) ] o(x) e Training points *  proposals

NB: Adding a training point with the value of the mean GP does not modify the
mean GP, but excludes points around the new one.



Model fitting

Once the true posterior is evaluated at the new optimal locations,
we need to re-fit the GP model.

Re-computing the model (kernel matrix) has a cost O(IN?).

o |f hyperparameters are kept constant, this only needs to be done once.

e Ifthey are to be re-fitted, there are many (’)(N3) evaluations.

This is way costlier than active sampling, which only requires GP model
predictions that scale as O(IN?).

Usual strategy: re-fit hyperparameters only every m active-sampling steps.

After a while parameters don't change, in any case.



Convergence criterion

Specially because we target expensive functions, we need to know when we
have approximated the target function well enough, so that we can stop.

A good convergence criterion would look at the stability over iterations of a
global measure; e.g. the Bayesian evidence for the case in which we model
probability density functions.

But global measures are (usually) expensive to compute, so we try local
measures when possible, e.g. that the [V last added training points are close

enough to the real log-posterior:
p(z) —logp(z1V)| < e

Local measures tend to require fine tuning.



Convergence criterion

Specially because we target expensive functions, we need to know when we
have approximated the target function well enough, so that we can stop.

A good convergence criterion would look at the stability over iterations of a
global measure; e.g. the Bayesian evidence for the case in which we model
probability density functions.

But global measures are (usually) expensive to compute, so we try local
measures when possible, e.g. that the [V last added training points are close

enough to the real log-posterior:
u(z) —logp(z1)| < e

Local measures tend to require fine tuning.

But for now we have all the elements that we needed!
We are ready to model and infer!
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Robustness - it's the hard part!

Usual kernels guarantee convergence to any function after sufficient learning.
But in a realistic implementation will convergence...
e .. happen fast/early enough?

= GP costs increase rapidly as C’)(N3)

= GP's break down due to bad-conditioning of kernel matrices

o ...be detected by the convergence criterion when it happens,
and not before (false positive) or too much later (false negative).

o ...depend on fine-tuning of hyperparameters or initial conditions?

e ...happen reliably for non-gaussian and multimodal pdf's?



Our focus in this project:

Convergence robustness by incorporating prior information

Remember our emulation problem:

QCcR* — R, e L, C

The target L1 positive continuous function on a compact domain will either

(a) be approximately constant within the domain (easy!)
(b) have its mass concentrated around some mode(s)
(or a combination of both in different dimensions)

The target are probability distributions, so we do not need to map the whole
domain correctly, just the part of the domain with the most mass below it.
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The curse(?) of dimensionality in Bayes. inference

Tails contain more and more of the hypervolume/probability!
It is important to map them correctly as dimensionality grows.
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M.W. Toews, CC-BY 2.5 (Wikipedia)



The radius of a 68% (hyper)contour
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The radius of a 68% (hyper)contour
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The radius of a 68% (hyper)contour




The radius of a 68% (hyper)contour = dynamic range!

log p((xq1, 0, ...




Acquisition function, revisited

We discussed the acquisition function
a(x) — e'ulogp(x)'c (ealogp(w) _ ]_)

We use a linearised version of it: (the factor 2 is a convention)
a(z) = eteer(@ gy ()

Since the dynamic range of log p grows with dimensionality, and the

exploitation term e* depends on absolute values of the log p, this
acquisition function(s) becomes greedier and greedier with dimensionality.

Solution: make ((d) a decreasing function of d.

No obvious way to model that behaviour analytically: find an empirical fit that
maximises convergence.



Acquisition function - empirical fit of ¢

C ~ d—0.85

B (=001 @ (=005 mEm (=02 mmmC=1 mm (=5
O {=0.02 3 (=01 [ (=05 =3 (=2

1072 4 r

1%8 357 51‘36 7i5 8!'94 10‘73 12I52
N (number of true posterior evaluations)




Acquisition function - empirical fit of  (II)

Do optimal ('s follow consistent hypercontours across dimensionalities?



Acquisition function - empirical fit of  (II)

Do optimal ('s follow consistent hypercontours across dimensionalities?

Yes, they do! In particular they focus in the 68% one.

— 6827 —:— 99.73 — 6827 —-— 99.73 — 6827 —-— 99.73 — 6827 —-— 99.73
=== 9545 - 99.99 === 9545 - 99.99 === 9545 - 99.99 === 9545 -0 99.99

d=16,¢ =0.05

0 2 4 6 8 0 2 4 6 8 10 0 2 4 6 8 10 12 0 5 10 15
Number of standard deviations Number of standard deviations Number of standard deviations Number of standard deviations

NB: Here we have not used the modelling of the dimensionality dependence
presented before. It just chooses to follow it to get better convergence!



Analytic calculation of dynamic range in a Gaussian

The log-probabilities themselves follow a (1D) X2 with d d.o.f.:

(xla .. .,CBd) ~ N(”’) 2) — —210gp(213) ~ XCZZ

By definition, for the cumulative function of a 1D probability distribution on x,
with € being the probability mass under x > xy:

1l —€= F(SE())
So the dynamic range of the target log-p for enclosed probability mass 1 — e:

1
Aq_clogp = _§Fd_1 (1—¢)

(the maximum that defines the A is the maximum in the training set)



Convergence criterion, revisited

We mentioned the possibility of using cheap local criteria, such as
u(z) —logp(z!)| < e

Recalling the dependence of the dynamic range of log p with dimensionality, it
should be obvious that this criterion becomes stricter as dimensionality grows!

We should relax it when the dynamic range of interest is larger (larger d).

We set € to a small fraction of the A log p(68%) in each dimensionality!

Reliable convergence without further fine tuning, with a very cheap criterion!

(In practice we have another term in the RHS, ’,u(a:(i)) — ymaX| - €re], but it has no dim. scaling)



Infinities and extreme values

GP model
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Likely to either overshoot (long corr. length)



Infinities and extreme values

corr. length
A ; '
AT |
S i
GP model
= -~
CAMB falls 3 - \MB works 0

(returns -inf)

Likely to either overshoot (long corr. length) or overfit (short corr. length).

Regularising the bad points doesn't help too much (and is finicky)



SVM, a cheap classifier to learn which regions to ignore




Our solution to this problem is to simultaneously exclude these infinities from the GP, and to
use them to divide the parameter space into a finite and an infinite region using a support vector
machine (SVM) classifier [61, 62].® A SVM defines a hyperplane which maximizes the separation
between samples with locations x; belonging to one of two classes y € {—1,1}. By defining the
distance between points through a kernel function k(x,x’) the separating hyperplane is drawn in a
higher-dimensional space which is connected to the sample space by a non-linear transformation. This
effectively transforms the separating hyperplane into more complex hypersurfaces which are better
suited to the classification problem at hand.

The categorical predictions ¢(a) of the SVM are then given by
NS
y(x) = sgn (b ' Z a;k(x;, m)) (3.3)
i=1

where the hyperparameters b and «; are optimized in the training procedure.



SVM, a cheap classifier to learn which regions to ignore (ll)

Calibration needs knowledge about the expected dynamical range of the
target function, i.e. how small is too small and w.r.t. what?

We go back again to our Gaussian example, where we can calculate the
dynamical range, and simply choose a threshold in terms of credibility €.

We have found that the € equivalent to 20 1D standard
deviations works well, and the correct scaling is guaranteed.

(The SVM will not only ignore — o0 points, but also very-low-value ones. That's OK, and will keep
the model cheaper and more numerically robust.)



Summary of our advances in modelling

Using the dimensionality scaling of Gaussians as an ansatz, we have:

e added dimensionality scaling to our acquisition function to guarantee good
exploration-vs-exploitation balance

e added dimensionality scaling to our cheap convergence criterion to make it
as robust as a global one

e proposed a SVM classifier for outliers with a dimensionally-scaling threshold

Altogether, this produces more reliable convergence with fewer
evaluations of the true model (~ (O(10)), and removes the need
for fine tuning, without making the model less flexible!



Examples/convergence experiments: Gaussians

e
Number of posterior evaluations




Examples/convergence experiments: Gaussians

Cost comparison:
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Examples: non-Gaussians
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Examples: non-Gaussians (l1)
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Bad stuff: multimodality

PolyChord n PolyChord
| | /V\ BN CPry V B CPry

P, - AWAA A VAW

—— 0 2 — 0 2 — 0 2 —— 0 2

X0 X1 X0 L1

We expect to fix this with a less greedy acquisition procedure (WIP)



Cosmology:
3-parameter ACDM + N ¢ with BBN + BAO (low- and high-2)
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Cosmology:

6-parameter ACDM with Planck Lite 2018
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Conclusions & outlook

o (> 100) fewer evaluations, and overhead that makes it way faster than traditional MC
for posterior evaluation costs of 1/10 seconds ford < 8, 1 second ford < 16...

e So far we focused on modelling, but there are a lot of interesting avenues to pursue
(integration with VBMC by L. Acerbi et al., clever strategies for active learning and
hyperparameter fitting...)

e Working in application to inference on GW sources (R. Buscicchio, G. Nardini)

e Current limitations:

= Strong non-Gaussianity in high dim (in general hard for approximate methods) -
looking at normalising flows.

= Multimodality (more informative initialisation, no SVM, clustering and multiple GP
models...)

= Costs scale badly with dimensionality, so for d > 20 we are working to extend it
(GPU/approximate GP libraries).

Play with it!
https://pypi.org/project/gpry/ - https://gpry.readthedocs.io/en/latest/


https://pypi.org/project/gpry/
https://gpry.readthedocs.io/en/latest/

