
Machine-learning
Bayesian inference with

Gaussian Processes
Jesús Torrado

IAU-IAA Seminar Series – 9th May 2023

Based on 
with Jonas el Gammal, Nils Schöneberg & Christian Fidler

 

arXiv:2211.02045

https://arxiv.org/abs/2211.02045


Elements of an inference problem

Data
Theo.
model

Exp.
model

Summary

Simulator
(Theo. + Exp.)



Elements of an inference problem

Data
Theo.
model

Exp.
model

Summary

Simulator
(Theo. + Exp.)

The traditional Monte Carlo pipeline

, , , ...CosmoMC Monte Python CosmoSIS Cobaya

https://arxiv.org/abs/1304.4473
https://arxiv.org/abs/1804.07261
https://arxiv.org/abs/1409.3409
https://arxiv.org/abs/2005.05290


Bayesian parameter inference
So how do we go about mapping and characterising the posterior?

I.e., where are the maxima are how does probability spread around them?

This is not trivial for not-so-simple probability distributions.

Simplest way: produce a sample from that distribution using a Monte Carlo
algorithm (MCMC, Nested Sampling...), i.e. a series of points whose density is
proportional to the probability in their neighbourhood.



Alternative: forward modelling

Data
Theo.
model

Exp.
model

Summary

Simulator
(Theo. + Exp.)

Likelihood-free forward modelling, usually with ABC:

, , ...Akeret at el. '15 Jennings & Madigan '16 Kacprzak et al. '17

https://arxiv.org/abs/1504.07245
https://arxiv.org/abs/1608.07606
https://arxiv.org/abs/1707.07498


Problems of conventional approaches

Traditional likelihood-based (MCMC...) or traditional forward-
modelling-based (ABC...) inference need a lot of
samples/realisations since they are based on probability
estimation from sampling density.

Not feasible in finite time with heaps of data coming our way. We

will probably need to reduce the computational cost by at least

, by using emulation (ML-based) at some level, and heavily
rely on parallelisation (incl. other types such as GPU).
O(10 )2



The ML emulator path

Data
Emulator
(e.g. ML)

Exp.
model

Summary

Simulator
(Theo. + Exp.)

Emulation of the observables (compatible with trad. pipeline)

, , , ,
...

Fendt & Wandelt '06 Manrique-Yus & Sellentin ' 19 Albers et al. '19 Mancini et al. '21
Mootoovaloo et al. '20

https://arxiv.org/abs/astro-ph/0606709
https://arxiv.org/abs/1907.05881
https://arxiv.org/abs/1907.05764
https://arxiv.org/abs/2106.03846
https://arxiv.org/abs/2005.06551


The ML forward-modeling path

Data
Theo.
model

Exp.
model

Summary

Emulator
(e.g. ML)

Likelihood-free forward modelling, ML-enhanced:

, , ,  (in this seminar series: Nisimichi,
Villaescusa-Navarro, McEwen)... (plus many more, including applications)
Leclercq '18 Alsing et al. '19 Miller et al. '20 Day & Seljak '22

https://arxiv.org/abs/1805.07152
https://arxiv.org/abs/1903.00007
https://arxiv.org/abs/2011.13951
https://arxiv.org/abs/2202.05282


A note on likelihood-free approaches
The idea of likelihood-free approaches:

Create a simulator  (stochastic)

Sample from joint  space, and estimate density w.r.t. some

divergence between  and the actual data .

That density implicitly defines a data likelihood .

This is (part of) the future of inference, but it comes with limitations:

Low reusability, since derived likelihoods depend on models.
Less statistical control (propagation of realisation stochasticity is simulated)
Limited discoverability (better than summary statistics, but not that much)
Assessing robustness is an open problem.

"Are summary statistics an unfortunately necessary intermediate step?
Or a useful tool for Physics?"

θ → D (θ)sim

(θ, D )sim

Dsim D

L(D ∣ θ, D )sim



Our approach:

Emulate the much simpler mapping [parameters  posterior]:

GOAL: drop-in replacement for traditional MC

Probability density functions (our target!) are positive: let's model their 

WISHLIST:

No need for pretraining
Small overhead / fast on CPUs (though GPU-capable)
Modest memory requirements
Robustness(?)

TOOL: Gaussian Processes  probabilistic interpolators

(Similar approaches: , ...)

→

Ω ⊂ R ⟶n R ​ ∈+ L ,C1 ≥2

log

⇒ ∼
Pellejero-Ibáñez et al. '19 Acerbi '18

https://arxiv.org/abs/1912.08806
https://arxiv.org/abs/1810.05558


Why not NNs
Advantages of Gaussian Process for this particular problem:

Size of the model / number of hyperparameters
Much less training needed
Interpretability (noise, correlation length...)
Robustness to overfitting / better extrapolation
Much faster / trained on-the-fly

Easier to incorporate prior information
Probabilistic: natural way to define active sampling
Always differentiable

If you start adding restrictions to a NN (smoothness, predictivity so that it can
be trained with small sets of samples...) it starts looking like a GP.



https://xkcd.com/1831/

https://xkcd.com/1831/


The elements of GP parameter inference:

1. Modelling: choice of GP kernel, variable transformations...

2. Acquisition (active sampling): search for the next optimal locations.

3. Evaluation of the true model at the optimal locations.

4. Re-fitting of the GP model: adding new points and finding new optimal
hyperparameters

5. Convergence checks

6. Profit! Inference with your shiny, analytic, differentiable GP model.



mean : baseline value to which

uncorrelated values return.

kernel : describes the correlation

between points. Encodes prior

information on : e.g. smoothness,

noise, periodicity...

GP model: mean, kernel and hyper parameters

: variance of uncorrelated points

: correlation length(s)

: white noise variance (*)

Rasmussen & Williams '06

f(x) ∼ GP μ(x), k(x,x )( ′ )

μ

k

f

k(x ​,x ​) =1 2 σ ​ ⋅out
2 C ∣x ​ − x ​∣; ρ +( 1 2 ) σ ​δ ​n

2
ij

σ ​out
2

ρ

σ ​n
2

http://www.gaussianprocess.org/gpml/chapters/


GP model: which kernel?
The RBF (or squared-exp) kernel imposes a long smoothness length.

The Matérn kernel ( ): allows for less smooth functions, while staying

compressed along the mean.

ν = 3/2

C ​ =Gauss exp − ​(
2ρ2

∣x ​ − x ​∣1 2
2

) C ​ =Matern, ν=3/2 exp − ​ 1 + ​(
ρ

​∣x ​ − x ​∣3 1 2 ) (
ρ

​∣x ​ − x ​∣3 1 2 )



Active sampling – where to evaluate next?

Key to reducing the number of evaluations:
choosing well where to evaluate next.

Optimal locations are chosen such that they maximise an acquisition function,
usually defined in terms of how reduction in local uncertainty would affect
some global target.

E.g.

But that is very expensive to compute! (involves an integral)

Ideally, we will try to use a local measure instead of a global one.

target: pdf p(θ) ⟹ acq. function: ΔVar(Z∣ log GP)



Active sampling – a local function
Let's look at the GP uncertainty at each point if we had modelled the posterior
directly, instead of its log:

 model on 

The uncertainty could be used as an acquisition function, but ignores what
regions are most relevant; just cares about far away one is from training points.

GP p



 model on 

Active sampling – a local function (II)
But when modelling the log-posterior, the derived posterior uncertainty does
care about the target function value:

log p ∼ GP   ⇒  σ ​ =p e e − 1 ∝μ ​log p ( σ ​log p ) μ ​p

Gunter, Osborne et al '14; Chai & Garnett '18

GP log p elog p

https://arxiv.org/abs/1411.0439
https://arxiv.org/pdf/1802.04782.pdf


 model on 

Active sampling – a local function (II)
But when modelling the log-posterior, the derived posterior uncertainty does
care about the target function value:

log p ∼ GP   ⇒  σ ​ =p e e − 1 ∝μ ​log p ( σ ​log p ) μ ​p

Gunter, Osborne et al '14; Chai & Garnett '18

GP log p elog p

https://arxiv.org/abs/1411.0439
https://arxiv.org/pdf/1802.04782.pdf


Active sampling – exploration vs exploitation

Exploration: encourages looking far away from training points, where
uncertainty is higher.
Exploitation: focus on areas of high value of the target.
Balance: regulate or switch between the two.

Unless checked, acquisition functions of this kind tend to turn increasingly
greedy/exploitative during learning, because the surrogate model gets more
confident (smaller ).

May require fine-tunning for efficient convergence!

σ



Active sampling – optimising
Global maxima of highly multi-modal function  Hard!

Even if the model is nice and simple...

... its acquisition function has many local maxima

→



Active sampling – parallelisation
Key for the slow-posterior regime: parallel evaluations of the true posterior.

 we need simultaneous maxima of the acquisition function.

Simultaneous optimisation is very expensive.

Problems with simply taking multiple local maxima:

a) Our maximiser would run into the same maximum more than once

b) The information in one maximum may be redundant with another one

⇒

θ , θ , ⋯ ⇐1 2
​a(θ)

θ ,θ ,…1 2
arg max



Active sampling – parallelisation (II)

A yypical (but not unique) choice is "Kriging believer":

[find global maximum]  [add GP-predicted mean there]  [repeat]

Works well up to .

NB: Adding a training point with the value of the mean GP does not modify the
mean GP, but excludes points around the new one.

→ →

n ​ ≈parallel d



Model fitting
Once the true posterior is evaluated at the new optimal locations,
we need to re-fit the GP model.

Re-computing the model (kernel matrix) has a cost .

If hyperparameters are kept constant, this only needs to be done once.

If they are to be re-fitted, there are many  evaluations.

This is way costlier than active sampling, which only requires GP model

predictions that scale as .

Usual strategy: re-fit hyperparameters only every  active-sampling steps.

After a while parameters don't change, in any case.

O(N )3

O(N )3

O(N )2

m



Convergence criterion
Specially because we target expensive functions, we need to know when we
have approximated the target function well enough, so that we can stop.

A good convergence criterion would look at the stability over iterations of a
global measure; e.g. the Bayesian evidence for the case in which we model
probability density functions.

But global measures are (usually) expensive to compute, so we try local
measures when possible, e.g. that the  last added training points are close

enough to the real log-posterior:

Local measures tend to require fine tuning.

N

​μ(x ) − log p(x ) ​ <(i) (i) ϵ



Convergence criterion
Specially because we target expensive functions, we need to know when we
have approximated the target function well enough, so that we can stop.

A good convergence criterion would look at the stability over iterations of a
global measure; e.g. the Bayesian evidence for the case in which we model
probability density functions.

But global measures are (usually) expensive to compute, so we try local
measures when possible, e.g. that the  last added training points are close

enough to the real log-posterior:

Local measures tend to require fine tuning.

N

​μ(x ) − log p(x ) ​ <(i) (i) ϵ

But for now we have all the elements that we needed!
We are ready to model and infer!





Robustness – it's the hard part!
Usual kernels guarantee convergence to any function after sufficient learning.

But in a realistic implementation will convergence...

... happen fast/early enough?

GP costs increase rapidly as 

GP's break down due to bad-conditioning of kernel matrices

... be detected by the convergence criterion when it happens,
and not before (false positive) or too much later (false negative).

... depend on fine-tuning of hyperparameters or initial conditions?

... happen reliably for non-gaussian and multimodal pdf's?

O(N )3



Our focus in this project:

Convergence robustness by incorporating prior information

Remember our emulation problem:

The target  positive continuous function on a compact domain will either

(a) be approximately constant within the domain (easy!)

(b) have its mass concentrated around some mode(s)

(or a combination of both in different dimensions)

The target are probability distributions, so we do not need to map the whole
domain correctly, just the part of the domain with the most mass below it.

Ω ⊂ R ⟶n R ​ ∈+ L ,C1 ≥1

L1



The curse(?) of dimensionality

 the cost of grid-based methods diverges exponentially!⇒ ≈



The curse(?) of dimensionality in Bayes. inference

Tails contain more and more of the hypervolume/probability!
It is important to map them correctly as dimensionality grows.

M.W. Toews, CC-BY 2.5 (Wikipedia)



The radius of a 68% (hyper)contour 



The radius of a 68% (hyper)contour 



The radius of a 68% (hyper)contour 



The radius of a 68% (hyper)contour 



The radius of a 68% (hyper)contour 



The radius of a 68% (hyper)contour  dynamic range!⇒



Acquisition function, revisited
We discussed the acquisition function

We use a linearised version of it: (the factor 2 is a convention)

Since the dynamic range of  grows with dimensionality, and the

exploitation term  depends on absolute values of the , this

acquisition function(s) becomes greedier and greedier with dimensionality.

Solution: make  a decreasing function of .

No obvious way to model that behaviour analytically: find an empirical fit that
maximises convergence.

α(x) = e e − 1μ ​(x)⋅ζlog p ( σ ​(x)log p )

α (x) =lin e σ ​(x)μ ​(x)⋅2ζlog p
log p

log p
eμ log p

ζ(d) d



Acquisition function – empirical fit of ζ

ζ ≈ d−0.85



Acquisition function – empirical fit of  (II)

Do optimal 's follow consistent hypercontours across dimensionalities?

ζ

ζ



Acquisition function – empirical fit of  (II)

Do optimal 's follow consistent hypercontours across dimensionalities?

ζ

ζ

Yes, they do! In particular they focus in the  one.68%

NB: Here we have not used the modelling of the dimensionality dependence
presented before. It just chooses to follow it to get better convergence!



Analytic calculation of dynamic range in a Gaussian

The log-probabilities themselves follow a (1D)  with  d.o.f.:

By definition, for the cumulative function of a 1D probability distribution on ,

with  being the probability mass under :

So the dynamic range of the target log-p for enclosed probability mass :

(the maximum that defines the  is the maximum in the training set)

χ2 d

(x ​, … ,x ​) ∼1 d N (μ,Σ) ⟹ −2 log p(x) ∼ χ ​d
2

x

ϵ x > x ​0

1 − ϵ = F (x ​)0

1 − ϵ

Δ ​ log p =1−ϵ − ​F ​ 1 − ϵ
2
1

d
−1 ( )

Δ



Convergence criterion, revisited
We mentioned the possibility of using cheap local criteria, such as

Recalling the dependence of the dynamic range of  with dimensionality, it

should be obvious that this criterion becomes stricter as dimensionality grows!

We should relax it when the dynamic range of interest is larger (larger ).

We set  to a small fraction of the  in each dimensionality!

Reliable convergence without further fine tuning, with a very cheap criterion!

(In practice we have another term in the RHS, , but it has no dim. scaling)

​μ(x ) − log p(x ) ​ <(i) (i) ϵ

log p

d

ϵ Δ log p(68%)

​μ(x ) − y ​ ​ ⋅(i)
max ϵ ​rel



Infinities and extreme values

CAMB works
CAMB fails
(returns -inf)

corr. length GP model

Likely to either overshoot (long corr. length)



Infinities and extreme values

CAMB works
CAMB fails
(returns -inf)

corr. length

GP model

Likely to either overshoot (long corr. length) or overfit (short corr. length).

Regularising the bad points doesn't help too much (and is finicky)



SVM, a cheap classifier to learn which regions to ignore





SVM, a cheap classifier to learn which regions to ignore (II)

Calibration needs knowledge about the expected dynamical range of the
target function, i.e. how small is too small and w.r.t. what?

We go back again to our Gaussian example, where we can calculate the
dynamical range, and simply choose a threshold in terms of credibility .

We have found that the  equivalent to  1D standard

deviations works well, and the correct scaling is guaranteed.

(The SVM will not only ignore  points, but also very-low-value ones. That's OK, and will keep

the model cheaper and more numerically robust.)

ϵ

ϵ 20

−∞



Summary of our advances in modelling
Using the dimensionality scaling of Gaussians as an ansatz, we have:

added dimensionality scaling to our acquisition function to guarantee good
exploration-vs-exploitation balance

added dimensionality scaling to our cheap convergence criterion to make it
as robust as a global one

proposed a SVM classifier for outliers with a dimensionally-scaling threshold

Altogether, this produces more reliable convergence with fewer
evaluations of the true model ( ), and removes the need
for fine tuning, without making the model less flexible!

∼ O(10)



Examples/convergence experiments: Gaussians

 



Examples/convergence experiments: Gaussians

Cost comparison:

 



Examples: non-Gaussians

 



Examples: non-Gaussians (II)

 



Bad stuff: multimodality

 

We expect to fix this with a less greedy acquisition procedure (WIP)



Cosmology:

3-parameter CDM +  with BBN + BAO (low- and high- )Λ N ​eff z



Cosmology:

6-parameter CDM with Planck Lite 2018Λ



Conclusions & outlook

 fewer evaluations, and overhead that makes it way faster than traditional MC

for posterior evaluation costs of 1/10 seconds for , 1 second for ...

So far we focused on modelling, but there are a lot of interesting avenues to pursue
(integration with VBMC by L. Acerbi et al., clever strategies for active learning and
hyperparameter fitting...)

Working in application to inference on GW sources (R. Buscicchio, G. Nardini)

Current limitations:

Strong non-Gaussianity in high dim (in general hard for approximate methods) –
looking at normalising flows.
Multimodality (more informative initialisation, no SVM, clustering and multiple GP
models...)

Costs scale badly with dimensionality, so for  we are working to extend it

(GPU/approximate GP libraries).

Play with it!
 – 

O(> 100)
d < 8 d < 16

d > 20

https://pypi.org/project/gpry/ https://gpry.readthedocs.io/en/latest/

https://pypi.org/project/gpry/
https://gpry.readthedocs.io/en/latest/

