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Introduction

Open Data is bringing a new revolution
in science, transforming everything
=> Open Science
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The Fourth Paradigm of Science
emerged, driven by Open Data

PARADIGM
DATA-INTENSIVE SCIENTIFIC DISCOVERY
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The Challenges Are Not Technical




The Exponential Evolution of Science




Science is Changing Exponentially

THOUSAND YEARS AGO
science was empirical e
describing natural phenomena §

LAST FEW HUNDRED YEARS
theoretical branch using models,
generalizations

LAST FEW DECADES
a computational branch simulating
complex phenomena

TODAY

data intensive science + Al, synthesizing
theory,

experiment and computation with statistics
» new way of thinking required!




Science: From Fractal to Convergence =

| Philosophy _

RN

Historically science was [ Physica ] ife [ Farth ]

Sciences

Sciences Sciences

fragmenting into narrower
and narrower sub-disciplines

Today we see a CONVERGENCE!

All Physical and Life Science
domains share common data Scli):::e
science methods and approaches Al

Data Science is becoming the “New Math”, the shared language of science!



Tomorrow’s Scientists are Multi-Disciplinary

Our higher education is training deep
but narrow people, I-shaped

As we get older, we become T-shaped,
with a shallow but broad layer on top

New disciplines emerge when two domains intersect
=> Watson and Crick (physicist+ornithologist) => genomics

Scientists need to become II-shaped, grow a deep leg
in data science/Al as well

We need to train Il-shaped people ...



The Changing Granularity of Science




The Emergence of Big Science

« From “manual production” of scientific data to the “industrial revolution”
- 1920-50 : Small experiments by few individuals, slowly growing

- 1960-: Big Science, costing S1B+, take decades, very risk-adverse, thousands of people

This is a big difference
« Past: Experiments rapidly followed one another, data sets had a short life

« Today: Big Science experiments (LIGO, LHC, SKA, LSST, OOI, NEON,...)
may not be surpassed by another variant in our lifetime

Van der Graaf -> Cyclotron -> Synchrotron -> National Lab&

The data is here to stay for decades...



Today’s Science is Mid-Scale = rre

* The optimum scale of science is changing today
— more in the middle
* NSF MSRI, NIH UO1, public-private partnerships
=> Sky Surveys Human Genome ... $10-100M
- Create a unique instrument (microscope, telescope,...)
» Use cutting edge technology, take risks, push budgets to the limit,
maximize science, generate petabytes of data
» Agility — important because of the exponential technology growth
* Highly automated, robotic experiments — the next step in scientific data acquisition

Enormous fresh creative energy liberated, the “sweet spot” for science!

Even smaller groups can generate petabytes of open data using advanced technology!



Agility vs Tenacity — How can We Compete?

* Extremely agile changes in the industry (particularly in Al)
* Google, Facebook, Amazon, Microsoft

* Universities cannot compete with the industry in agility
* Faculty hires are for 40 years...

* But we can compete in tenacity and high-value data!

* More mid-scale projects emerging at Universities
=> generating petabytes
* Innovative uses of Al will optimize experiments and discover new patterns
* This requires the data sets to be “Al-ready”
* The breakthroughs came from unique data sets (SDSS, AlexNet/CIFAR, Human
Genome) — combined with a disruptive idea

Creating such datasets offer the best chances to remain competitive!



Mid-Scale Example: Sloan Digital Sky Survey

R Sloan Digital Sky Survey / SkyServer

“The Cosmic Genome Project”

Started in 1992, SDSS-II finished in 2008
Data is entirely public, open and free
Database built at JHU

Project marked a transition in astronomy
From manufacturing to mass production

Jim Gray

SkyServer: Prototype in 21st Century data access

- Visual interface integrated with object-relational DB
- Remarkably fast adaptation by the community

- 10M distinct users vs. 15,000 astronomers

- The emergence of the “Internet Scientist”

- Collaborative server-side analysis

Scientists become publishers and curators of large data!



Main Concepts in the SDSS Design

* Requirements definition via “20 queries”

* Metadata encapsulated as comments into DDL -> autogenerate docs
e Capture and transform data (ETL -> ELT)

* Preserve hyperlink to raw data

* Annual versioning (DR*, accompanied by paper in journal)

* DB integrated with a visual, interactive interface

* SQL backdoor enabled

Always go from working to working!



Lessons Learned (Patterns to Processes)

* Statistical analyses and collaboration easier with DB than flat files

* Collaborative features essential

* Need to go beyond SQL scripting => Jupyter and Deep Learning

* Everything is spatial

* Multiple access patterns (visualization, interactive and batch analyses)

* Automation is needed for statistical reproducibility at scale

* Scaling out was much harder than we ever thought

* Always need deep links to the raw files (in order to find systematic errors)

* Find a common processing level that is “good enough”
and earn the TRUST of the community

* Moving PBs of data is hard, importance of smart data caching

Find the right tradeoffs -- do not try to do “everything for everybody”



Mid-Scale Science => “Game Changing” Data

Leapfrog — “non-incremental” — Mid-Scale Science projects at JHU

« (2001-) Sloan Digital Sky Survey (SDSS) — grew data by a factor of 100,
still the world’s most used astronomy facility,

5.1B web hits, 800M SQL queries, 10M users, 13K papers, 770K citations
« (2006- ) Turbulence database (JHTDB) the world's largest simulations,

the "virtual observatory" of turbulence,

1.5PB of data, 566 trillion points delivered to the world

« (2016- ) AstroPath (JHMI) — 1000-fold increase in data for cancer immunotherapy,

astronomy => pathology, soon Open Cancer Cell Atlas with 1B+ cells
28T pixels, 1B cells

« (2017-) POSEIDON (JHU/MIT/Columbia) building the world's largest ocean circulation

model, 10x higher resolution, open petascale interactive laboratory
2.5PB of data on its way

Using similarities to the SDSS, we are able to create unique leapfrog projects over and over



IDIES: Open Science with Interactive Petabytes

* Provide “disruptive assistance” -- from “patterns to processes” . o Insiuteor Data nensive Engineering and Sience

L : : e s . idies
* Institutionalize “lessons learned” in a multidisciplinary setting
* Science engagements have distinctive “phases of maturity”
* Critical mass of interdisciplinary postdocs and software engineers

» Convergent, multidisciplinary engagements (70+ ongoing projects)

* Hosted on the SciServer — collaborative platform for petabytes of data

* Collaborations with national labs, federal agencies (NASA, NIST, DOE), Max Planck, Japan, RAL
* Broad innovative educational and outreach program

 Leverage our scalable open infrastructure

* Currently 30PB+, 200 servers
10M casual users, 10K+ power users
Mostly built with previous large NSF investments
Operating at very good economies of scale
Increasing use of Al tools




Immersive Turbulence

“... the last unsolved problem of classical physics...”

-- Feynman
* Understand the nature of turbulence b "u
First: consecutive snapshots of a large 02 ol
simulation of turbulence: 30TB
- Treat it as an experiment, play with alolT NG ey ol
the database! i s

* Shoot test particles (sensors) from
your laptop into the simulation (2005-)
like in the movie Twister

* New paradigm for analyzing simulations!




Home

Database Access ~

Johns Hopkins Turbulence Databases

Documentation ~ Links Visualizations = About~

NOTICE: Jul-27-2021. Servers are functioning normally. For past announcements, please click here

Welcome to the Johns Hookins Turbulence Database (JHTDR) site

O

http://turbulence .pha.jhu.edu/

/ACCESS 10 the data Is 1acitated by a Veb Services Intertace that permits numerical experiments 10 be run across the Internet.
We offer C, Fortran and Matlab interfaces layered above Web services so that scientists can use familiar programming tools on

565,743,570,786,292 points queried ?%fi? |
> ™ S — = - patia

differentiation using various order approximations (up to 8th order) and filtering are also supported (for details, see
documentation page). Particle tracking can be performed both forward and backward in time using a second order accurate
Runge-Kutta integration scheme. Subsets of the data can be downloaded in hdf5 file format using the data cutout service.

To date the Web-services-accessible databases contain a space-time history of a direct numerical simulation (DNS) of isotropic
turbulent flow in incompressible fluid in 3D (100 Terabytes), a DNS of the incompressible magneto-hydrodynamic (MHD)
equations (50 Terabytes), a DNS of forced, fully developed turbulent channel flow at Re;=1000 (130 Terabytes), a DNS of
homogeneous buoyancy driven turbulence (27 Terabytes), and a transitional boundary layer flow (105 Terabytes). Also
available are individual snapshots (spatially but not temporally resolved data) of 40962 DNS of isotropic turbulence (1
snapshot), 81923 DNS of isotropic turbulence (6 snapshots at higher Reynolds number), rotating stratified turbulence (5
snapshots, 5 Terabytes), and channel flow at Re;=5200 (11 snapshots, 20 Terabytes). Basic characteristics of the data sets
can be found in the datasets description page. Technical details about the database techniques used for this project are
described in the publications.

The JHTDB project is funded by the US National Science Foundation @ . JHTDB operations is also supported by the

Institute for Data Intensive Engineering and Science . JHTDB data may also be accessed via SciServer
)

resources (NGa.
Questions and comments? turbulence@lists.johnshopkins.edu

187,955,501,619,752 points queried




Move backwards in time

Not possible during DNS
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Cosmlogical N-body Simulations

Particle Mass
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The Indra Simulations

Plk) (h~*Mpc)®
Kk (hiMpc)

 Suite of dark matter N-body simulations

[0 512 different random instances, WMAP7
cosmology Bridget Falck etal 2021

each 1 Gpc/h-sided box

10243 particles per simulation
About 1 PB of data

All data loaded into a SQL database
Available to the public

e Particle data:

0 All particle positions and velocities for all 64
snapshots of each simulation run

I R [ ) I [

* Halo catalogs:
[0 Standard Friends-Of-Friends (and others), linked to

particles
Recently used for training Deep Learning, * Fourier modes:
reconstructing the peculiar velocity field 0 Density grid for 512 time steps of each run

from positions and redshifts

Chen et al 2023




The Evolving Data Analysis

The evolution of the music industry is a good example (it is happening, like it or not...)

MILES BAVIS 5

=> Spotify/Pandora

What are the data equivalents?

Download EEZLRE IO
all data sneakernet

=> Run queries at nomy archives, SkyServer,

project servers MVORMAST, NED,...
=> Run in the cloud,
view the result
Scientific software needs to be Analysis Ready and Cloud Optimized (ARCO)
Ryan Abernathey (Columbia)




Measuring the Usefulness of Data




Cost

The VALUE of Scientific Data [

Price Value

 What is the VALUE of data?
» Accelerates testing ideas, find targets for followup
* Provides the basis for reproducible science
* Direct foundation to many publications

* Metric: how much science funding does a data set attract?
 Typical NSF Astronomy grant is S300K over 3 years
 1-2 refereed paper/year implies: ~S100K/paper (not S10K and not S1M)
* Scientists spend $100K of their research money to work on a data set

Every paper is a $100K vote on the VALUE of a data set!



Cost

The PRICE of Scientific Data TSR

Price Value

* What is the PRICE of data?
 How much did it take to build and run the experiment
» Spent over a decade during the lifetime of the experiment
* About 50-50 split between construction and operations

New electron microscope S10M-S50M

For the Sloan Digital Sky Survey around $200M
Rubin/LSST over S1B

CERN LHC, Hubble, James Webb over S10B

All that remains for this investment at the end of the experiment is the DATA!



The COST of Scientific Data

* The annual COST is maintaining the data
=> mostly in people, not the disks

* So far so good, while data owned by live projects

e But: experiments will be shutting down...

 Data is offered through smart services
 What happens to the data?
* Who will remember what it is?

* Who will take ownership of it? - 1885 dead drives in SDSS
. . » 2.5%lyear over 18 yrs
* Who will pay for it? * 1.1 tons of failed HDD

But: this is the EASY part!!!

There must be a “trusted intermediary” between the data and the scientists...



Comparison for the SDSS
S500K/year

0.25% /year
@ e
Price Value
o PN
$200M o S100K/paper
O

10,000 published papers
have a value of S1B!

5% of the survey price would cover the data for 20 years!



The Emergence of Al




Al in Science Today

* Much related to posterior analyses of existing data
* Proxy simulations (turbulence, cosmology, cloud formation)
* Recognizing patterns (image segmentation, Alpha fold, denoising)
* Compression, discovering correlations
 Anomaly alerts

* Recent developments with LLMs
* They can recite much of the literature
* ChatGPT — beware of “hallucinations”
* But zero-shot, fine-tuning
— why and how does it work???




Using LLMs

* Solve the “Long Tail” problem
* Most scientific data sets are small, and appear as tables in papers
* Publishing them in a reusable digital form very hard
 Efforts to capture this have been a total failure

e But: we could (and should) use the LLMs to harvest data

* We have the digital text of the surrounding information in the paper

* We also have to list of coauthors and their papers for broader context

* The Al framework can extract not just the data but their meaning and context
* Fine-tuning (LoRA)

 Easy to build generative models

* Use the LLM as a generic pattern recognition engine

* This may work because of the “long-tail” of natural processes: 1/f everywhere



Automatic Code Generation

* We have now LLMs trained on github etc (Copilot)
* They are quite successful in writing code from scratch

* Science is interactive: we often explore data in a hit and miss fashion
* We start with a smaller subset of data, try many things
* Lots of scattered dead-end
* We still do a manual cleanup of our attempts to write a clean script in the end

* Wouldn’t it be nice to have a button on top of a Jupyter notebook
that would generate a clean script from my attempts?



Nature is Sparse (and non-Gaussian)

* Many natural processes are dominated by a few processes and described by a
sparse set of parameters

* They are also full of sharp, non-Gaussian features (edges...)

* Compressed Sensing has emerged to identify in high dimensional data sets the
underlying sparse representation (Candes, Donoho, Tao, etal)

* This enables signal reconstruction with much less data!

* The resolution depends not on the pixel count but on the information content of
an image...

* Sampling very skewed distributions is hard, but the layers of neural nets are
acting like random projections -> Gaussian sampling...



Explainable Al

* Scientists do not like Black Boxes
* We need to know what is happening inside

* The Physics of Al is emerging in interpreting the evolution of the
complex networks (has its roots in spinglasses)

* The initially random weights of a network develop long range
correlations during learning — like a phase transition

* |dentify symmetries in the problem

* Latent layers of the autoencoders

* Interpretable autoencoders emerging
(Regev et al)




Big Data: From Sensors to Tensors

*e Two kinds of errors: statistical and systematic
« Statistical errors decrease with 1/vVN

* Big Data needs parallelism: many similar, inexpensive devices
* This scale-out is everywhere, like cloud computing

* Same in experiments, many similar cheap sensors
* phones, wearables, CubeSat...

* However, similar is not identical!
* Systematic errors: subtle instrumental biases
* If obvious, we call it calibration, and do it
* If not, it remains often undetected

* In most scale-out projects the biggest challenges are the systematic errors
* But: these can be corrected in software, much cheaper overall!
 Particularly important for Al training sets (“garbage in, garbage out”)

Al can tackle the hardest problems in experimental scaleout!



AstroPath: Atlas of Cancer Cells

* Astronomy meets Pathology
* Project started by Janis Taube (JHMI BKI) and Alex Szalay (JHU IDIES)

 Studying the spatial interactions of activated T cells and tumor near the tumor boundaries

 Parallels sky surveys (as of 20 years ago)
* “Disruptive assistance” from astronomy to pathology
* Using techniques astronomers learned the hard way (flat field, unwarp, calibrate)

Current census

* Transitioning to the “industrial revolution” of data acquisition A
* Goal: increase data collection by a factor of >1000 Images 539,331

Pairs  11,368,538,836

* 400GB mosaic of 35-band multiplex images/slide (from 10 to 2000 images/slide)
e 7 markers (lineage + PD-1, PD-L1), more markers via additional panels

* Use a farm of automated microscopes => Petabytes/year
* Heavy use of parallel processing, automation, scale-out (and Al tools)

» Databases linked to SciServer, collaborative Jupyter, PyTorch, Keras/TensorFlow, R
* Goal is to build a significant spatial atlas with billions of cancer cells

Great example of a 21st Century experiment, transformed by Al



Replacing the Human with Al

* Currently three steps of human involvement
 Staining/Scanning

 This will require a human for the foreseeable future, Digital Pathology at JHU
» Aided by largely automated scanners
* Tissue annotations
* We are ready to deploy a U-Net-based segmenter, using ViT
* Tissue outlines and torn tissue masks already functional
» Cell segmentation/classification ,
. *  We can generate 20M scanned slides
* We have Mesmer + transfer learning, already better at a fraction of $1 each
than existing commercial product *  We can train a LLM on the annotations,

* Expert validation over 100k cells just finished and use the cell data for training on many
different types of cancer

JHU is producing 600K cancer slides/ year
Fully annotated during surgery

Whole medical history known

Collected in a warehouse since 1980

* Todo:

* Need to replace unmixing and denoising algorithms
* Planning to complete this by the end of 2024

Al is becoming indispensable in running scalable experiments!



More Data Becomes Too Much Data
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Prioritizing for Relevance

“Do you have enough data or would you like to have more?”

* Delicate tradeoff between the scientific value and the cost of preservation
* One extreme — store everything, go bankrupt!
* Other extreme — collect too little data, not enough for the suenceI
* We are approaching a critical point

* LHC lesson
* In-situ hardware filters data, optimizing for “new science”

— Only 1in 10M events saved (9999999:1)
* Resulting “small subset” is still 10-100 PB

Tradeoffs are essential: cannot do everything for everybody (9-1, 99-1 or 999-1?)



Use Al to Collect More RELEVANT Data!

*Use of Generative Al to learn the corpus of known science ’y,%@é}g{é&
oY Q8P QP
*Build autoencoders to recognize if incoming data is inside ‘v‘&’g’.&:‘&’a’:&‘&?

/‘ SOANZL TN
the affine hull of the known parameter space "\\'//'“\\'/;“\\
*Use this to downsample, and create well-stratified data sets

that represent the UNKNOWN domain without breaking our budgets

* This can have a much bigger impact on science than the posterior
analysis of existing data sets!

If an Al algorithm can drive our cars, why cannot it run our microscopes?



Al in Experimental Design

*Need to dramatically improve our experimental design...
*Machine learning is already used in various areas:
* Adaptive target selection, active learning, Gaussian processes
* |t is already happening at CERN, material science, drug design, astronomy
*Maybe this will be the Fifth Paradigm, algorithms control our experiments
=> also make intelligent, real-time decisions

e
Put the telescope in the nee Y Eed Q

v \

reinforcement loop! | loee

Supported by the Schmidt Family Foundation e <17

at JHU and Princeton: Use Al Feedback for the PFS project N ©,§ —— SCHMIDT FAMILY
FOUNDATION



The Challenges Are Not Technical




data

lifecycle
convergence op

Data Lifecycle => Service Lifecycle Ze  ~3dence

law
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* The value of our national investments in science is the DATA!
* The high-value open data sets will live for decades

* Results i h dat
esults in much more data reuse MQOre\S Law

(n-) The observation made in 1965 by Gordd
the number of transistors per square inch on

every year since the integrated circut was 1
! . | r(\{ X«ou\d continue for the foreseeate :
* There is also a Service Lifecycle tren e orbe b
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* The data is becoming smarter | slowed GO¥T " et defnion e
* Smart platforms need to be maintained for decades

Smart data platforms are constantly evolving — following the technology



The Economics of Long-Term Data

« S100B+ investments => Today’s Open Science data
— National Treasure => must be preserved

* Conflict: Short term federal funding cycle
vs long term data preservation

» Different federal agencies have different strategies
NASA Data Centers, NIH Data Commons, NSF MREFC,

DOE National Labs, NOAA, NCAR, EPA...
Coherence/convergence is yet to emerge..

* The Smithsonian is hosting physical specimen from historical
scientific discoveries => private-public partnership

Where is the Smithsonian of Data?



The Challenges are Non-Technical

The Four Paradigms of Science
»  Empirical — Theoretical - Computational — Data Driven

Organization of science is changing
= Granularity of science (small — bimodal — mid-scale)
= Data sharing & long-lived data — Accelerating the change

The value, price and cost of scientific data
= Preserving digital data is incredibly inexpensive

The emerging Al is changing everything

»  We need explainable Al

We need to collect more relevant data
= How can we use Al to subsample the “known science”?

All of today’s science ends up as digital data
= Thisis the only legacy of the experiments
» Yet no coherent policy to preserve it for the long haul




Summary

*Use of Generative Al to learn the corpus of known science
for a given experiment, using fine-tuning/LoRa

*Build Al tools recognize if incoming data is inside the affine
hull of the known parameter space

*Use this to downsample, or compress using the parameters
of the generative model and create well-stratified data sets
that represent the UNKNOWN domain without breaking our budgets

*Recognize and correct/calibrate for systematic errors

*Optimize experimental strategy to maximize science goals
e Target selection, active learning, denoising, ...
* Realize Ross King’s vision of Robotic Scientist, but now driven by Al

Al can have a much bigger impct on our experiments than on our analyses!



“Now, here, you see, it takes all the
runnin% you can do, to keep in the
* same place. If you want to get
somewhere else, you must run at
least twice as fast as that!”

— Lewis Carroll,
Alice Through the Looking Glass (1865)



