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Introduction

Jim Gray

The Fourth Paradigm of Science
emerged, driven by Open Data

Open Data is bringing a new revolution 
in science, transforming everything

=> Open Science   

Enabled by the exponential growth in 
our computational technologies



Agenda



The Exponential Evolution of Science



Science is Changing Exponentially
THOUSAND YEARS AGO
science was empirical 
describing natural phenomena

LAST FEW HUNDRED YEARS
theoretical branch using models, 
generalizations

LAST FEW DECADES
a computational branch simulating 
complex phenomena

TODAY
data intensive science + AI, synthesizing 
theory, 
experiment and computation with statistics  
►new way of thinking required!



Science: From Fractal to Convergence

Data Science is becoming the “New Math”, the shared language of science!
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Tomorrow’s Scientists are Multi-Disciplinary

We need to train П-shaped people …

IOur higher education is training deep 
but narrow people, I-shaped

TAs we get older, we become T-shaped, 
with a shallow but broad layer on top

New disciplines emerge when two domains intersect
=> Watson and Crick (physicist+ornithologist) => genomics

Scientists need to become П-shaped, grow a deep leg 
in data science/AI as well

ITП



The Changing Granularity of Science



The Emergence of Big Science
• From “manual production” of scientific data to the “industrial revolution”

• 1920-50 : Small experiments by few individuals, slowly growing

• 1960-: Big Science, costing $1B+, take decades, very risk-adverse, thousands of people

The data is here to stay for decades…

Van der Graaf -> Cyclotron -> Synchrotron -> National Labs
 LHC ☺

SSC ☹

This is a big difference

• Past: Experiments rapidly followed one another, data sets had a short life

• Today: Big Science experiments (LIGO, LHC, SKA, LSST, OOI, NEON,…) 
may not be surpassed by another variant in our lifetime



Today’s Science is Mid-Scale

• The optimum scale of science is changing today
 – more in the middle

• NSF MSRI, NIH U01, public-private partnerships 
=> Sky Surveys Human Genome …  $10-100M

• Create a unique instrument (microscope, telescope,…)
• Use cutting edge technology, take risks, push budgets to the limit,

maximize science, generate petabytes of data
• Agility – important because of the exponential technology growth
• Highly automated, robotic experiments – the next step in scientific data acquisition 

Even smaller groups can generate petabytes of open data using advanced technology!

TEM FPGA

Enormous fresh creative energy liberated, the “sweet spot” for science!



Agility vs Tenacity – How can We Compete?
• Extremely agile changes in the industry (particularly in AI)

• Google, Facebook, Amazon, Microsoft

• Universities cannot compete with the industry in agility
• Faculty hires are for 40 years…

• But we can compete in tenacity and high-value data!

• More mid-scale projects emerging at Universities
=> generating petabytes

• Innovative uses of AI will optimize experiments and discover new patterns
• This requires the data sets to be “AI-ready” 
• The breakthroughs came from unique data sets (SDSS, AlexNet/CIFAR, Human 

Genome) –  combined with a disruptive idea

Creating such datasets offer the best chances to remain competitive!



  Mid-Scale Example: Sloan Digital Sky Survey

     “The Cosmic Genome Project”

• Started in 1992, SDSS-II finished in 2008
• Data is entirely public, open and free
• Database built at JHU 
• Project marked a transition in astronomy

• From manufacturing to mass production

SkyServer: Prototype in 21st Century data access

• Visual interface integrated with object-relational DB
• Remarkably fast adaptation by the community 
• 10M distinct users vs. 15,000 astronomers
• The emergence of the “Internet Scientist” 
• Collaborative server-side analysis

Jim Gray

Scientists become publishers and curators of large data!



Main Concepts in the SDSS Design

• Requirements definition via “20 queries”

• Metadata encapsulated as comments into DDL -> autogenerate docs

• Capture and transform data (ETL -> ELT)

• Preserve hyperlink to raw data

• Annual versioning (DR*, accompanied by paper in journal)

• DB integrated with a visual, interactive interface

• SQL backdoor enabled

Always go from working to working!



Lessons Learned (Patterns to Processes)

• Statistical analyses and collaboration easier with DB than flat files
• Collaborative features essential
• Need to go beyond SQL scripting => Jupyter and Deep Learning
• Everything is spatial
• Multiple access patterns (visualization, interactive and batch analyses)
• Automation is needed for statistical reproducibility at scale
• Scaling out was much harder than we ever thought
• Always need deep links to the raw files (in order to find systematic errors)
• Find a common processing level that is “good enough” 

and earn the TRUST of the community
• Moving PBs of data is hard, importance of smart data caching

Find the right tradeoffs -- do not try to do “everything for everybody”



Mid-Scale Science => “Game Changing” Data

Leapfrog – “non-incremental” – Mid-Scale Science projects at JHU
• (2001- ) Sloan Digital Sky Survey (SDSS) – grew data by a factor of 100,

               still the world’s most used astronomy facility, 
               5.1B web hits, 800M SQL queries, 10M users, 13K papers, 770K citations

• (2006- ) Turbulence database (JHTDB) the world's largest simulations,
               the "virtual observatory" of turbulence, 
               1.5PB of data, 566 trillion points delivered to the world

• (2016- ) AstroPath (JHMI) – 1000-fold increase in data for cancer immunotherapy, 
               astronomy => pathology,  soon Open Cancer Cell Atlas with 1B+ cells
               28T pixels, 1B cells

• (2017- ) POSEIDON (JHU/MIT/Columbia) building the world's largest ocean circulation 
          model, 10x higher resolution, open petascale interactive laboratory

               2.5PB of data on its way

Using similarities to the SDSS, we are able to create unique leapfrog projects over and over 



IDIES: Open Science with Interactive Petabytes
• Provide “disruptive assistance”  -- from “patterns to processes”
• Institutionalize “lessons learned” in a multidisciplinary setting

• Science engagements have distinctive “phases of maturity”
• Critical mass of interdisciplinary postdocs and software engineers

• Convergent, multidisciplinary engagements (70+ ongoing projects)
• Hosted on the SciServer – collaborative platform for petabytes of data
• Collaborations with national labs, federal agencies (NASA, NIST, DOE), Max Planck, Japan, RAL

• Broad innovative educational and outreach program
• Leverage our scalable open infrastructure

• Currently 30PB+, 200 servers
• 10M casual users, 10K+ power users
• Mostly built with previous large NSF investments
• Operating at very good economies of scale
• Increasing use of AI tools



Immersive Turbulence

“… the last unsolved problem of classical physics…” 
                                                               -- Feynman

• Understand the nature of turbulence
First: consecutive snapshots of a large 
simulation of turbulence: 30TB
• Treat it as an experiment, play with

the database! 
• Shoot test particles (sensors) from 

your laptop into the simulation (2005-)
like in the movie Twister

• New paradigm for analyzing simulations!



http://turbulence .pha.jhu.edu/

565,743,570,786,292 points queried



-

-

minus

advect backwards in time !

Not possible during DNS 

Move backwards in time

Eyink et al (2013), Nature 



Cosmlogical N-body Simulations



The Indra Simulations

• Suite of dark matter N-body simulations 
�  512 different random instances, WMAP7 

cosmology

�  each 1 Gpc/h-sided box

�  10243 particles per simulation

�  About 1 PB of data

�  All data loaded into a SQL database

�  Available to the public

• Particle data:
� All particle positions and velocities for all 64 

snapshots of each simulation run

• Halo catalogs:
� Standard Friends-Of-Friends (and others), linked to 

particles

• Fourier modes:
� Density grid for 512 time steps of each run

Bridget Falck etal  2021

Recently used for training Deep Learning, 
reconstructing the peculiar velocity field 
from positions and redshifts

Chen et al 2023



The Evolving Data Analysis
The evolution of the music industry is a good example (it is happening, like it or not…)

  LP/CD

=> Spotify/Pandora

=> iTunes

What are the data equivalents?

=> Run in the cloud, 
     view the result

Google Colab, 
SciServer

=> Run queries at 
     project servers 

Astronomy archives, SkyServer, 
IVOA, MAST, NED,…

Download 
all data 

Send tapes, disk, 
sneakernet

Scientific software needs to be Analysis Ready and Cloud Optimized (ARCO)
Ryan Abernathey (Columbia)



Measuring the Usefulness of Data

Price

Cost

Value



The VALUE of Scientific Data

• What is the VALUE of data?
• Accelerates testing ideas, find targets for followup

• Provides the basis for reproducible science

• Direct foundation to many publications

• Metric: how much science funding does a data set attract?
• Typical NSF Astronomy grant is $300K over 3 years

• 1-2 refereed paper/year implies: ~$100K/paper (not $10K and not $1M)

• Scientists spend $100K of their research money to work on a data set

Every paper is a $100K vote on the VALUE of a data set! 

Price

Cost

Value



The PRICE of Scientific Data

• What is the PRICE of data?
• How much did it take to build and run the experiment

• Spent over a decade during the lifetime of the experiment

• About 50-50 split between construction and operations

 
• New electron microscope $10M-$50M

• For the Sloan Digital Sky Survey around $200M

• Rubin/LSST over $1B

• CERN LHC, Hubble, James Webb over $10B

All that remains for this investment at the end of the experiment is the DATA!

Price

Cost

Value



The COST of Scientific Data

• The annual COST is maintaining the data
=> mostly in people, not the disks

• So far so good, while data owned by live projects

• But: experiments will be shutting down…
• Data is offered through smart services

• What happens to the data?

• Who will remember what it is?

• Who will take ownership of it?

• Who will pay for it?

There must be a “trusted intermediary” between the data and the scientists…

Price

Cost

Value

• 1885 dead drives in SDSS
• 2.5%/year over 18 yrs
• 1.1 tons of failed HDD
   But: this is the EASY part!!!



Comparison for the SDSS

5% of the survey price would cover the data for 20 years!

Price

Cost

Value

$500K/year

$200M $100K/paper

0.25% /year 5 papers /year

10,000 published papers 
have a value of $1B!



The Emergence of AI



AI in Science Today

• Much related to posterior analyses of existing data
• Proxy simulations (turbulence, cosmology, cloud formation)

• Recognizing patterns (image segmentation, Alpha fold, denoising)

• Compression, discovering correlations

• Anomaly alerts

• Recent developments with LLMs
• They can recite much of the literature

• ChatGPT – beware of “hallucinations”

• But zero-shot, fine-tuning 

– why and how does it work???



Using LLMs

• Solve the “Long Tail” problem
• Most scientific data sets are small, and appear as tables in papers
• Publishing them in a reusable digital form very hard
• Efforts to capture this have been a total failure

• But: we could (and should) use the LLMs to harvest data
• We have the digital text of the surrounding information in the paper
• We also have to list of coauthors and their papers for broader context
• The AI framework can extract not just the data but their meaning and context

• Fine-tuning (LoRA)
• Easy to build generative models
• Use the LLM as a generic pattern recognition engine
• This may work because of the “long-tail” of natural processes: 1/f everywhere



Automatic Code Generation

• We have now LLMs trained on github etc (Copilot)
• They are quite successful in writing code from scratch
• Science is interactive: we often explore data in a hit and miss fashion

• We start with a smaller subset of data, try many things

• Lots of scattered dead-end 

• We still do a manual cleanup of our attempts to write a clean script in the end

• Wouldn’t it be nice to have a button on top of a Jupyter notebook
that would generate a clean script from my attempts?



Nature is Sparse (and non-Gaussian)

• Many natural processes are dominated by a few processes and described by a 
sparse set of parameters

• They are also full of sharp, non-Gaussian features (edges…)

• Compressed Sensing has emerged to identify in high dimensional data sets the 
underlying sparse representation (Candes, Donoho, Tao, etal)

• This enables signal reconstruction with much less data!

• The resolution depends not on the pixel count but on the information content of 
an image…

• Sampling very skewed distributions is hard, but the layers of neural nets are 
acting like random projections -> Gaussian sampling…



Explainable AI

• Scientists do not like Black Boxes
• We need to know what is happening inside
• The Physics of AI is emerging in interpreting the evolution of the 

complex networks (has its roots in spinglasses)
• The initially random weights of a network develop long range 

correlations during learning – like a phase transition
• Identify symmetries in the problem

• Latent layers of the autoencoders

• Interpretable autoencoders emerging
(Regev et al)



Big Data: From Sensors to Tensors

•  

• Big Data needs parallelism: many similar, inexpensive devices
• This scale-out is everywhere, like cloud computing
• Same in experiments, many similar cheap sensors 

• phones, wearables, CubeSat…

• However, similar is not identical!
• Systematic errors: subtle instrumental biases
• If obvious, we call it calibration, and do it
• If not, it remains often undetected

• In most scale-out projects the biggest challenges are the systematic errors
• But: these can be corrected in software, much cheaper overall!
• Particularly important for AI training sets (“garbage in, garbage out”)

AI can tackle the hardest problems in experimental scaleout!



AstroPath: Atlas of Cancer Cells
• Astronomy meets Pathology

• Project started by Janis Taube (JHMI BKI) and Alex Szalay (JHU IDIES)

• Studying the spatial interactions of activated T cells and tumor near the tumor boundaries

• Parallels sky surveys (as of 20 years ago)
• “Disruptive assistance” from astronomy to pathology
• Using techniques astronomers learned the hard way (flat field, unwarp, calibrate)

• Transitioning to the “industrial revolution” of data acquisition

• Goal: increase data collection by a factor of >1000
• 400GB mosaic of 35-band multiplex images/slide (from 10 to 2000 images/slide)

• 7 markers (lineage + PD-1, PD-L1), more markers via additional panels

• Use a farm of automated microscopes => Petabytes/year

• Heavy use of parallel processing, automation, scale-out (and AI tools) 

• Databases linked to SciServer, collaborative Jupyter, PyTorch, Keras/TensorFlow, R

• Goal is to build a significant spatial atlas with billions of cancer cells

Great example of a 21st Century experiment, transformed by AI

Current census

Slides                          759
Cells         1,074,449,553
Images                539,331
Pairs      11,368,538,836



Replacing the Human with AI

• Currently three steps of human involvement
• Staining/Scanning

• This will require a human for the foreseeable future,
• Aided by largely automated scanners

• Tissue annotations
• We are ready to deploy a U-Net-based segmenter, using ViT
• Tissue outlines and torn tissue masks already functional

• Cell segmentation/classification
• We have Mesmer + transfer learning, already better 

than existing commercial product
• Expert validation over 100k cells just finished

• Todo:
• Need to replace unmixing and denoising algorithms

• Planning to complete this by the end of 2024

Digital Pathology at JHU

• JHU is producing 600K cancer slides/ year
• Fully annotated during surgery
• Whole medical history known
• Collected in a warehouse since 1980

• We can generate 20M scanned slides 
at a fraction of $1 each

• We can train a LLM on the annotations,
and use the cell data for training on many
different types of cancer

AI is becoming indispensable in running scalable experiments! 



More Data Becomes Too Much Data



Prioritizing for Relevance

• Delicate tradeoff between the scientific value and the cost of preservation
• One extreme – store everything, go bankrupt!
• Other extreme – collect too little data, not enough for the science!
• We are approaching a critical point

• LHC lesson

Tradeoffs are essential: cannot do everything for everybody (9-1, 99-1 or 999-1?)

 “Do you have enough data or would you like to have more?”

• In-situ hardware filters data, optimizing for “new science”
─ Only 1 in 10M events saved (9999999:1)

• Resulting “small subset” is still 10-100 PB



Use AI to Collect More RELEVANT Data!

•Use of Generative AI to learn the corpus of known science
•Build autoencoders to recognize if incoming data is inside 
    the affine hull of the known parameter space
•Use this to downsample, and create well-stratified data sets 
    that represent the UNKNOWN domain without breaking our budgets

If an AI algorithm can drive our cars, why cannot it run our microscopes?

• This can have a much bigger impact on science than the posterior 
analysis of existing data sets!



AI in Experimental Design
•Need to dramatically improve our experimental design…
•Machine learning is already used in various areas:

• Adaptive target selection,  active learning, Gaussian processes
• It is already happening at CERN, material science, drug design, astronomy

•Maybe this will be the Fifth Paradigm, algorithms control our experiments
=> also make intelligent, real-time decisions

Supported by the Schmidt Family Foundation 
at JHU and Princeton:  Use AI Feedback for the PFS project

Put the telescope in the 
reinforcement loop!



The Challenges Are Not Technical

beyondrecognition.net



Data Lifecycle => Service Lifecycle

• The value of our national investments in science is the DATA!

• The high-value open data sets will live for decades

• Results in much more data reuse

Smart data platforms are constantly evolving – following the technology

• There is also a Service Lifecycle
• The data is becoming smarter
• Smart platforms need to be maintained for decades



The Economics of Long-Term Data

• $100B+ investments => Today’s Open Science data
     – National Treasure => must be preserved

Where is the Smithsonian of Data? 

• The Smithsonian is hosting physical specimen from historical 
scientific  discoveries  => private-public partnership

• Conflict: Short term federal funding cycle 
vs long term data preservation

• Different federal agencies have different strategies
NASA Data Centers, NIH Data Commons, NSF MREFC, 
DOE National Labs, NOAA, NCAR, EPA…
Coherence/convergence is yet to emerge..



The Challenges are Non-Technical
The Four Paradigms of Science
▪ Empirical → Theoretical → Computational → Data Driven

Organization of science is changing
▪ Granularity of science (small → bimodal → mid-scale)
▪ Data sharing & long-lived data → Accelerating the change

The value, price and cost of scientific data
▪ Preserving digital data is incredibly inexpensive

The emerging AI is changing everything
▪ We need explainable AI

We need to collect more relevant data
▪ How can we use AI to subsample the “known science”?

All of today’s science ends up as digital data
▪ This is the only legacy of the experiments
▪ Yet no coherent policy to preserve it for the long haul



Summary

•Use of Generative AI to learn the corpus of known science
        for a given experiment, using fine-tuning/LoRa

•Build AI tools recognize if incoming data is inside the affine 
        hull of the known parameter space

•Use this to downsample, or compress using the parameters 
        of the generative model and create well-stratified data sets 
        that represent the UNKNOWN domain without breaking our budgets

•Recognize and correct/calibrate for systematic errors

•Optimize experimental strategy to maximize science goals
• Target selection, active learning, denoising, …
• Realize Ross King’s vision of Robotic Scientist, but now driven by AI

AI can have a much bigger impct on our experiments than on our analyses!




