Statistical Challenges in Stellar Parameter Estimation from Theory and Data

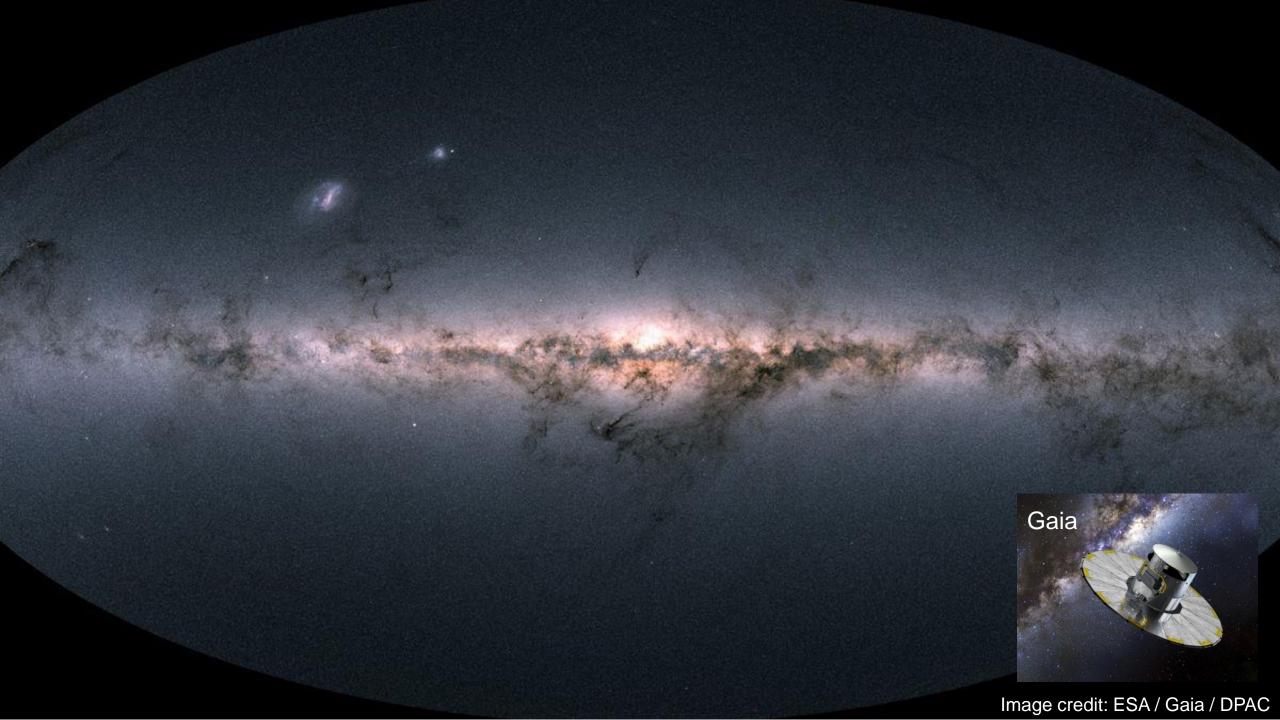
Joshua S. Speagle (沈佳士)

Banting & Dunlap Postdoctoral Fellow

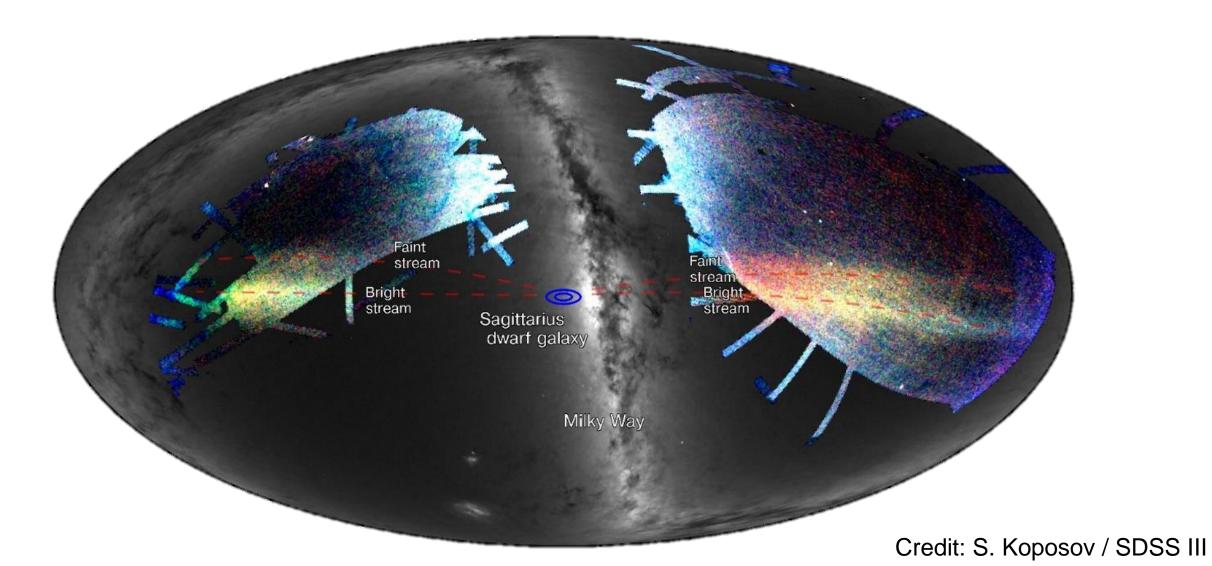
Department of Statistical Sciences
David A. Dunlap Department of Astronomy & Astrophysics
Dunlap Institute for Astronomy & Astrophysics

j.speagle@utoronto.ca

Image credit: ESO /Y. Beletsky (VLT)



What can stars tell us about our Galaxy?



Understanding the Milky Way

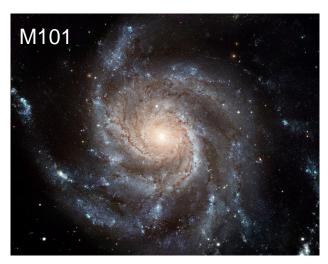
Data (2-D)

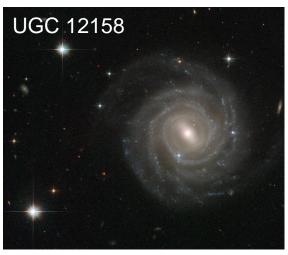
Image credit: ESO /Y. Beletsky (VLT)

Model (3-D)

Image credit: NASA

Stars: The Building Blocks of Galaxies





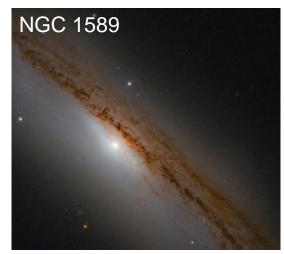
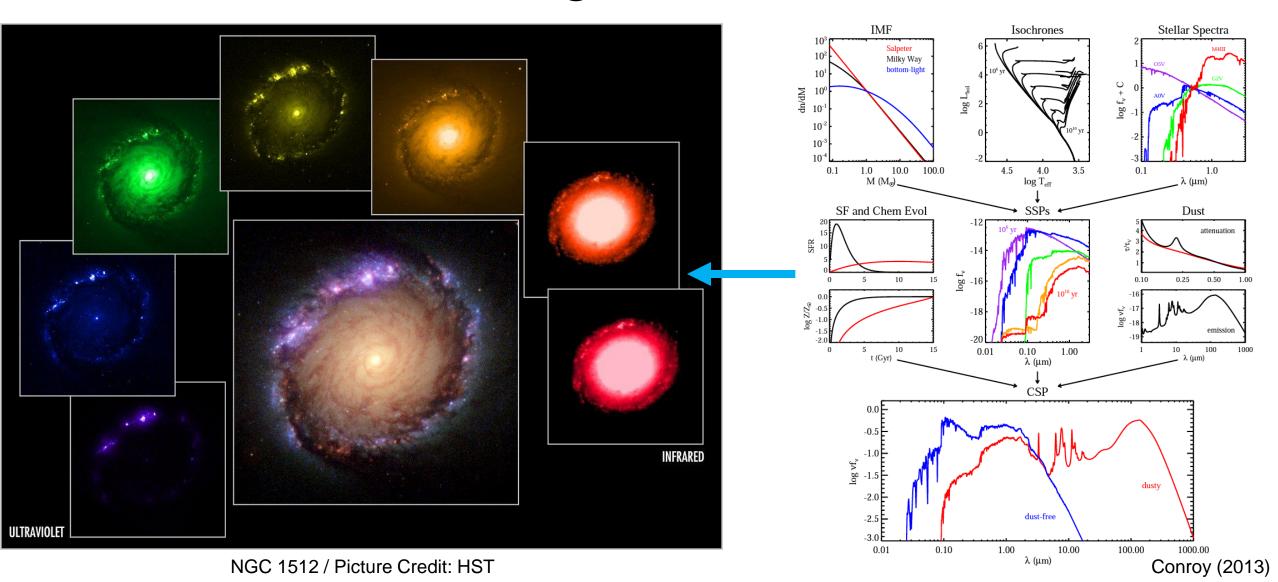


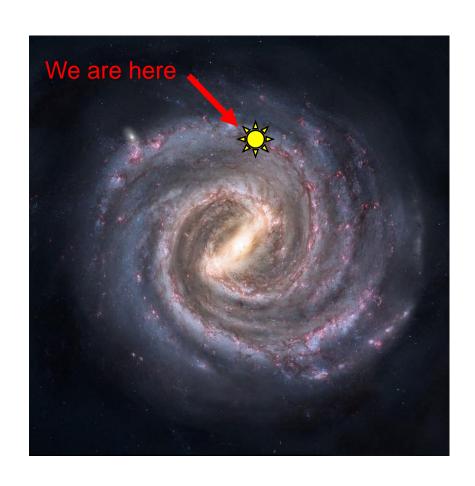
Image credit: ESA/ESO/Hubble/NASA

Stars: The Building Blocks of Galaxies

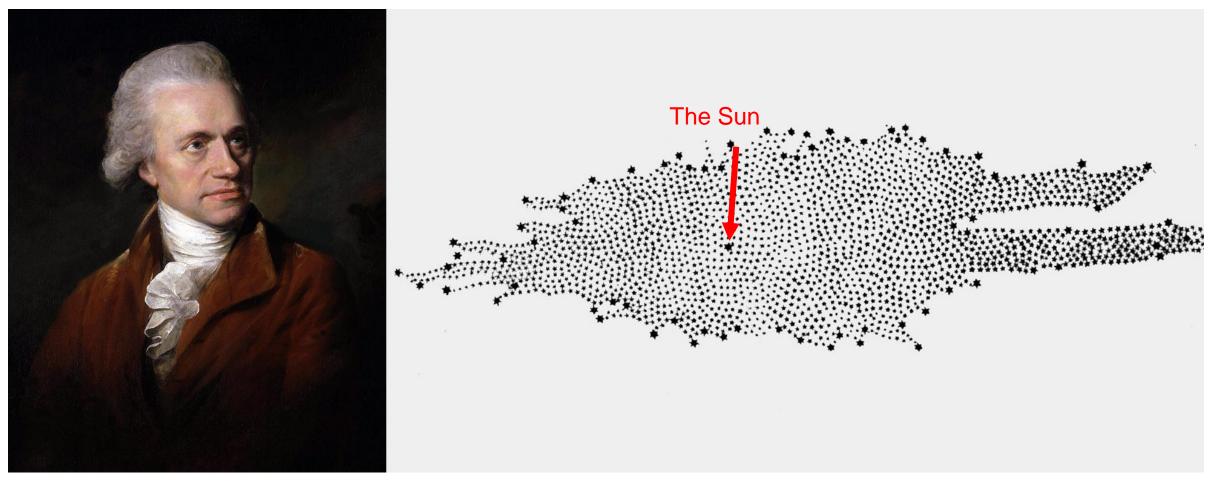


Part 1 A Motivated Historical Example

Milky Way (c. 2010)



Milky Way (c. 1781)



William Herschel

Credit: On the Construction of the Heavens (1785)

How did he do it?

Two primary assumptions:

All stars have the same intrinsic brightness.

$$B_{\rm obs} = \frac{B_{\rm int}}{d^2}$$

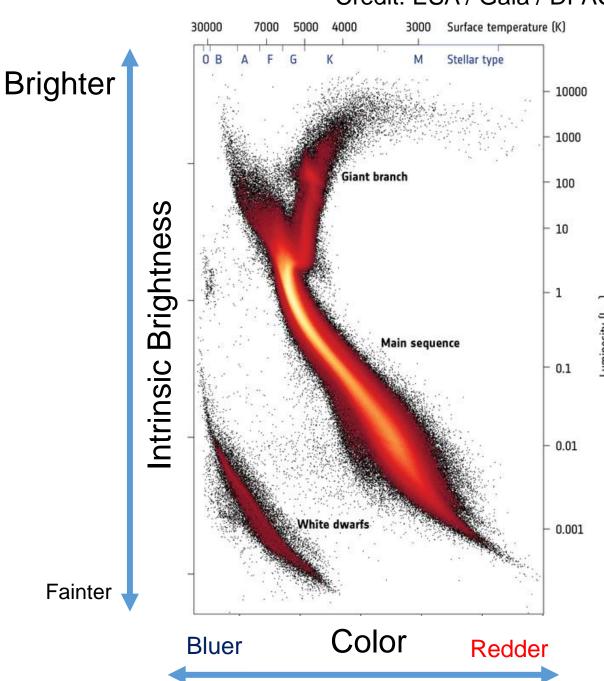
2. There is **no material** between us and other stars.

$$\rho_{\rm obs} \sim \rho_{\rm int}$$
 density

Credit: ESA / Gaia / DPAC

Stellar Populations

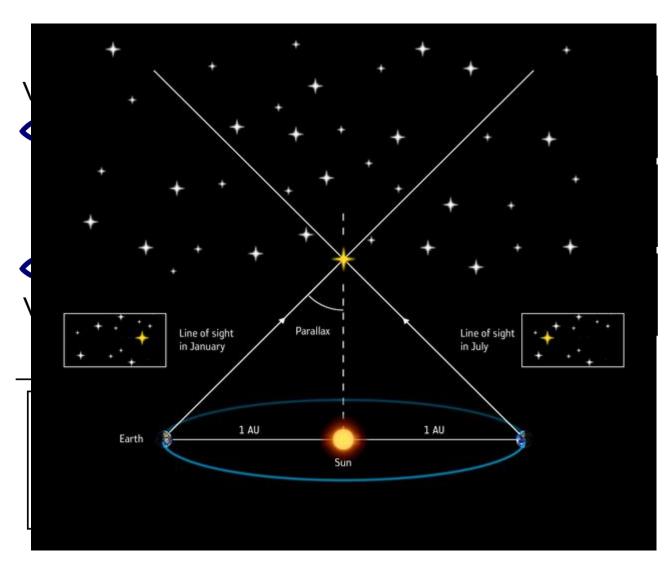
 c. 1910: measurements of the intrinsic brightness and colors of stars by Ejnar Hertzsprung and Henry Norris Russell spanned a wide range of values.



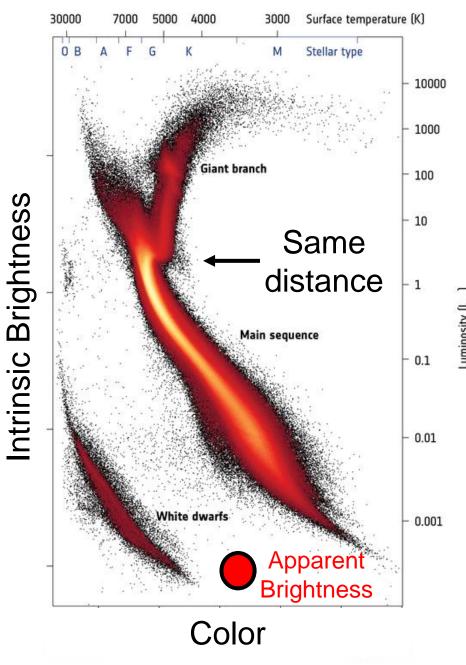
Measuring Distances with Parallax

 We can leverage the Earth's orbit around the Sun to get an independent measurement of distance.

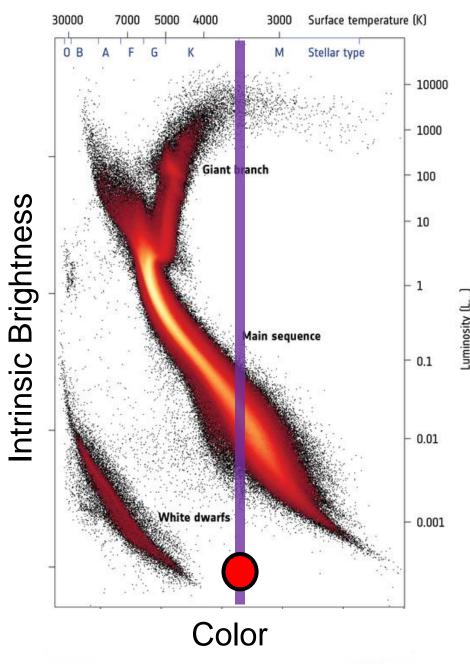
$$d = 1/\overline{\omega}$$



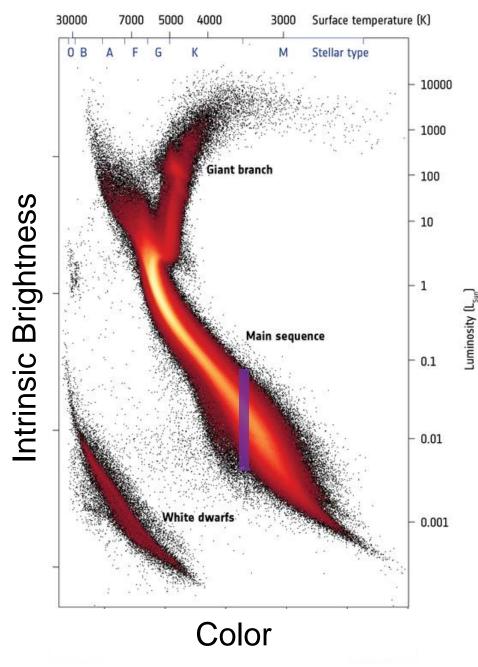
Measuring Distances



Measuring Distances



Measuring Distances



How did he do it?

Two primary assumptions:

All stars have the same intrinsic brightness.

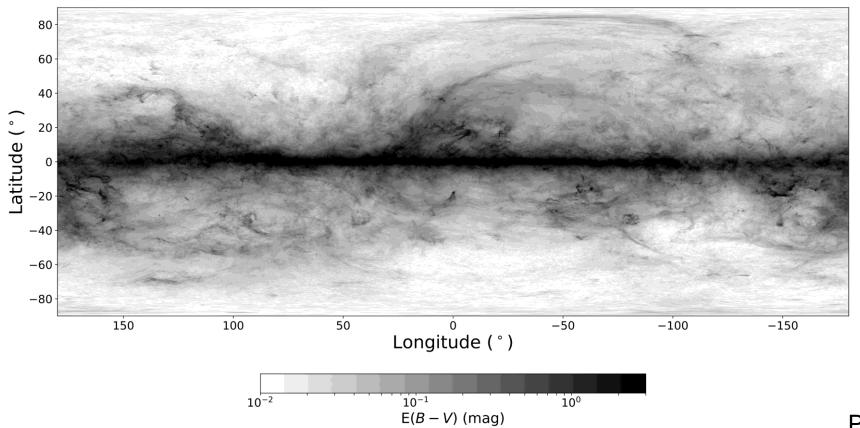
$$B_{\rm obs} = \frac{B_{\rm int}}{d^2}$$

There is no material between us and other stars.

$$ho_{
m obs} \sim
ho_{
m int}$$
 density

Dust and the Interstellar Medium

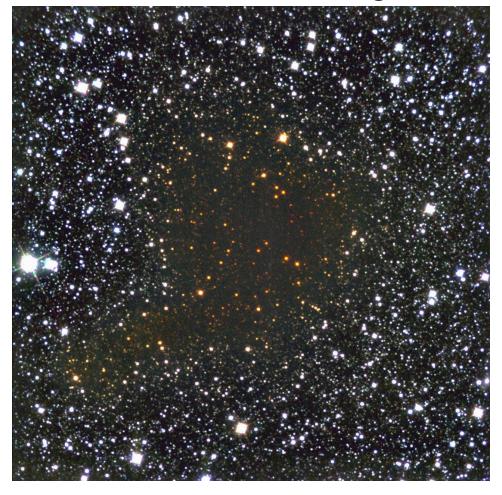
- The space between stars is filled with gas, dust, and other material.
- While dust is ~1% of ISM by mass, it scatters 30% of all light (Draine 2003).



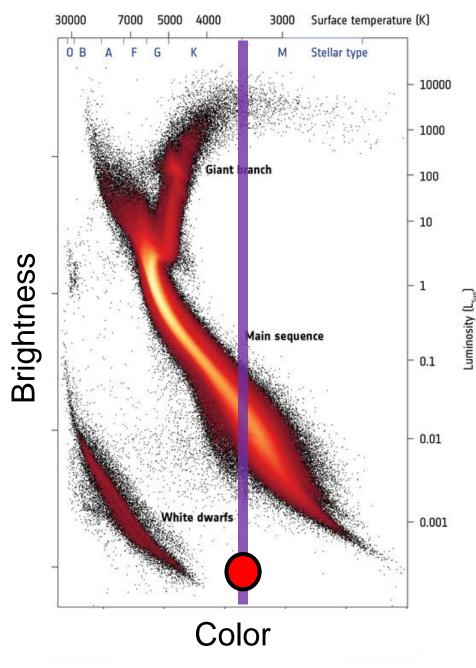
Extinction and Reddening

Visible Wavelengths

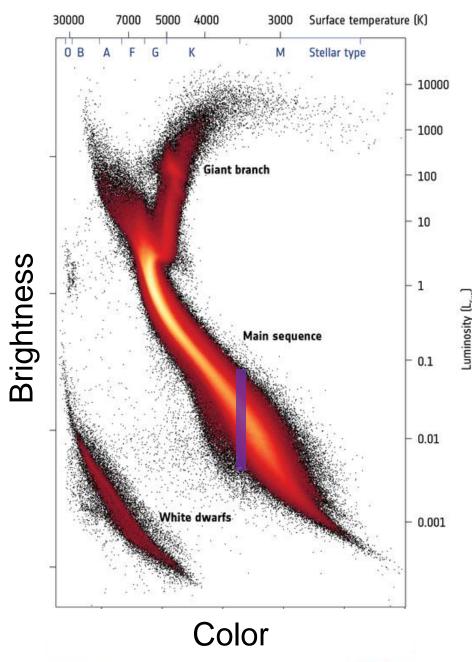
Infrared Wavelengths



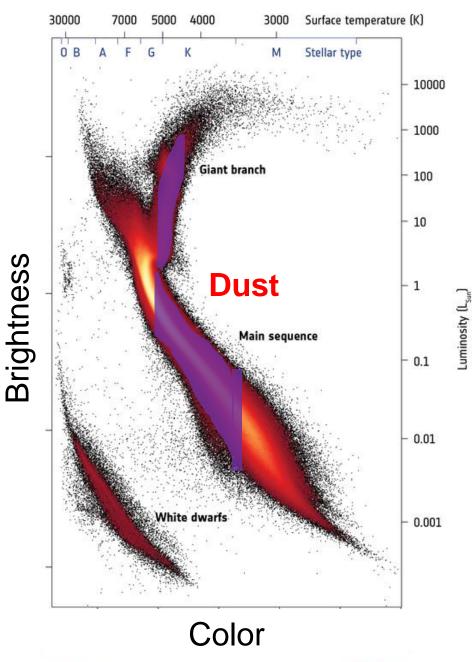
Impact of Dust



Impact of Dust



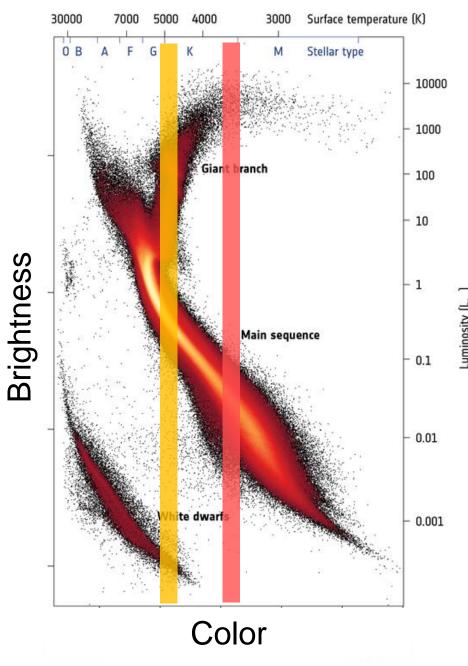
Impact of Dust



Stellar Confusion

- Low-mass solution
 - Less reddening
 - Closer

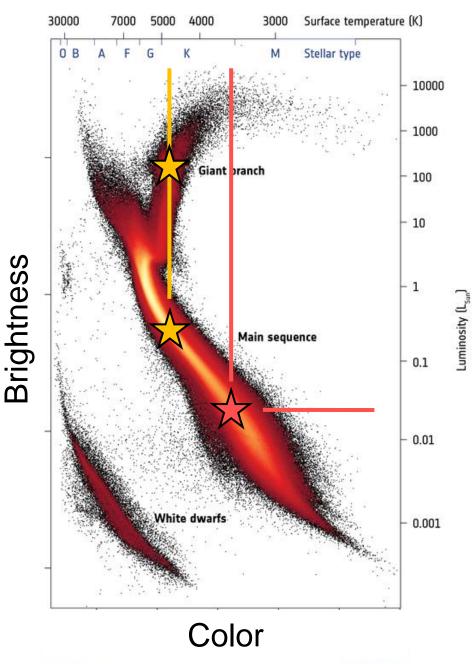
- High-mass solution
 - More reddening
 - Further



Stellar Confusion

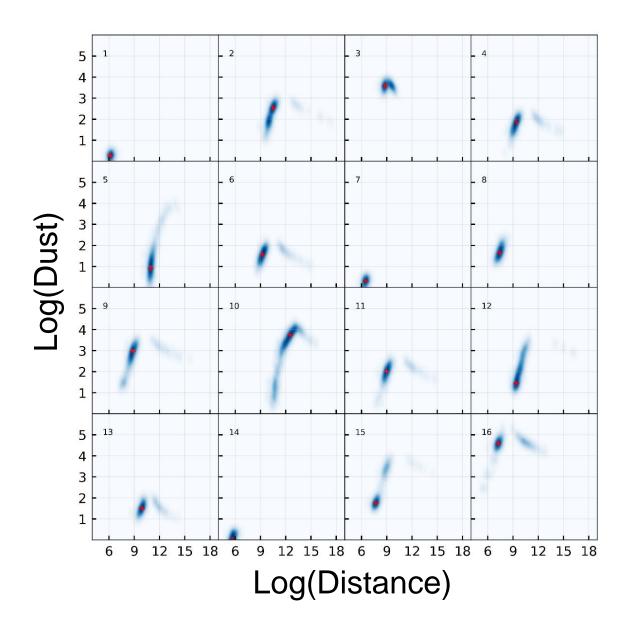
- Low-mass solution
 - Less reddening
 - Closer

- High-mass solution
 - More reddening
 - Further
 - Dwarf vs giant?(Sun) (Betelgeuse)



The Result?

- Inference must cope with:
 - Large uncertainties
 - Complex degeneracies
 - Multi-modal distributions
- Widespread application therefore requires:
 - Larger sample sizes
 - Improved inference
 - Significant computing power



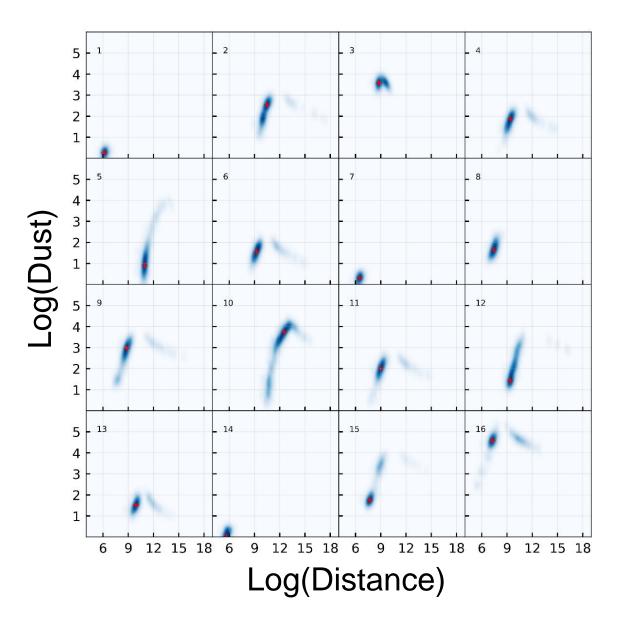
Zucker & Speagle et al. (2019)

Part 2 Stellar Inference with Photometry and Astrometry

Requirements

Need an approach that:

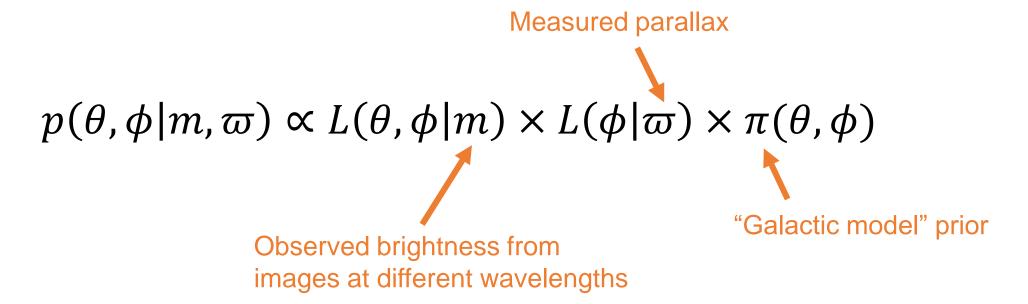
- Can characterize multimodal, complex parameter degeneracies robustly.
- 2. Can perform inference in **seconds** per object to scale up to >100M stars.



Zucker & Speagle et al. (2019)

Stellar Inference

- Use a Bayesian approach to simultaneously estimate:
 - Intrinsic parameters of a star (θ) such as intrinsic brightness
 - Extrinsic parameters of a star (ϕ) such as distance and dust



Model Likelihood: Photometry (Images)

 A combination of non-linear and linear dependencies with Normally-distributed measurement errors.

Intrinsic stellar brightness

$$m = m_{\rm int}(\theta) + \beta(\theta) \cdot \phi + \epsilon_m$$
 $\epsilon_m \sim N(0, \Sigma_m)$ Linear coefficients

Model Likelihood: Astrometry (Parallaxes)

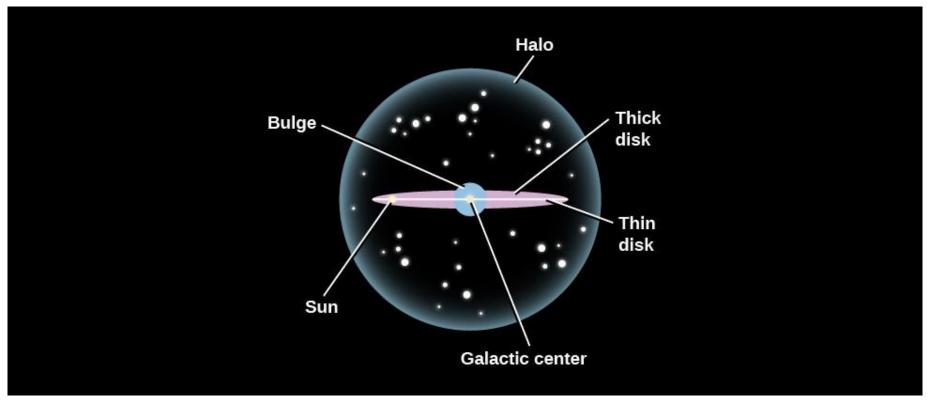
Errors are Normally-distributed.

$$\varpi = \frac{1}{d(\phi)} + \epsilon_{\varpi}$$
Distance

$$\epsilon_{\varpi} \sim N(0, \sigma_{\varpi})$$

Model Prior: The "Galactic Model"

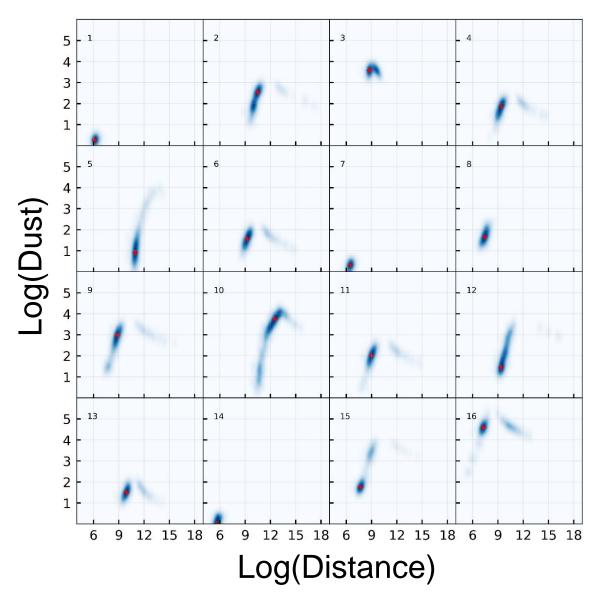
 Assumes the distribution of stars and their properties follows a three-component model with a "thin disk", "thick disk", and "halo".



Picture Credit: Lumen Learning

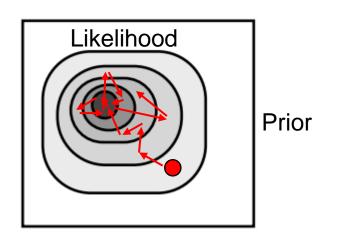
• Typical MCMC methods struggle with efficiently exploring these distributions.

Solution 1: Nested Sampling



Zucker & Speagle et al. (2019)

Nested Sampling Motivation

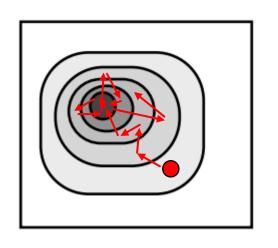


MCMC: Solving a Hard Problem once.

(Markov Chain Monte Carlo)

Sampling directly from the likelihood $\mathcal{L}(\mathbf{\Theta})$ is **hard**.

Nested Sampling: Motivation



MCMC: Solving a Hard Problem once.

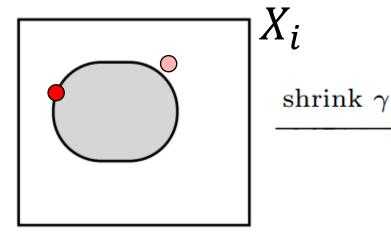
VS

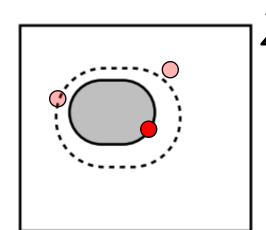
Nested Sampling: Solving an Easier

Problem many times.

Sampling uniformly within $\mathcal{L}(\mathbf{\Theta}) > \lambda$ bound is **easier**.

If you have a **prior transform** that converts your priors to look uniform, then this case is equivalent.





 X_{ii+1}

Pictures adapted from this 2010 talk by John Skilling.

Nested Sampling

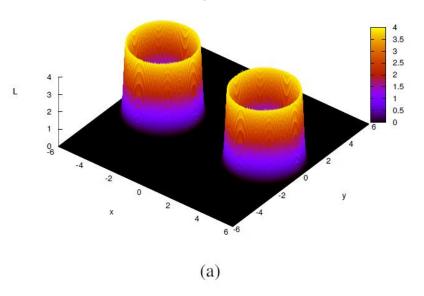
 Method originally designed to estimate the marginal likelihood (i.e. Bayesian evidence).

$$\mathcal{Z} \equiv \int_{\Omega_{\mathbf{\Theta}}} \mathcal{L}(\mathbf{\Theta}) \pi(\mathbf{\Theta}) d\mathbf{\Theta}$$

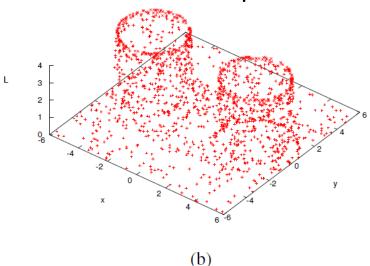
Nested Sampling

- Method originally designed to estimate the marginal likelihood (i.e. Bayesian evidence).
- Allows simultaneous exploration of widely-separated modes.

Underlying distribution

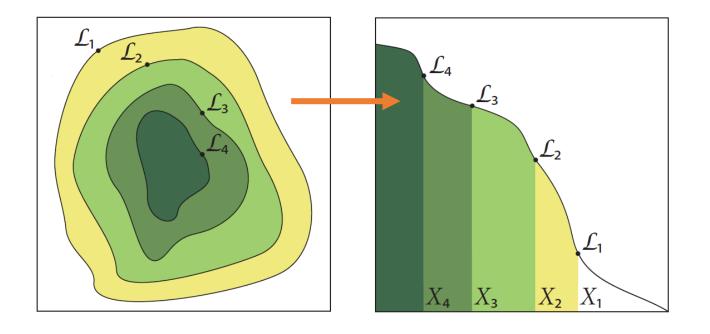


Final samples



Nested Sampling

- Method originally designed to estimate the marginal likelihood (i.e. Bayesian evidence).
- Allows simultaneous exploration of widely-separated modes.
- Leverages order statistics to sample distribution, giving wellbehaved error properties.



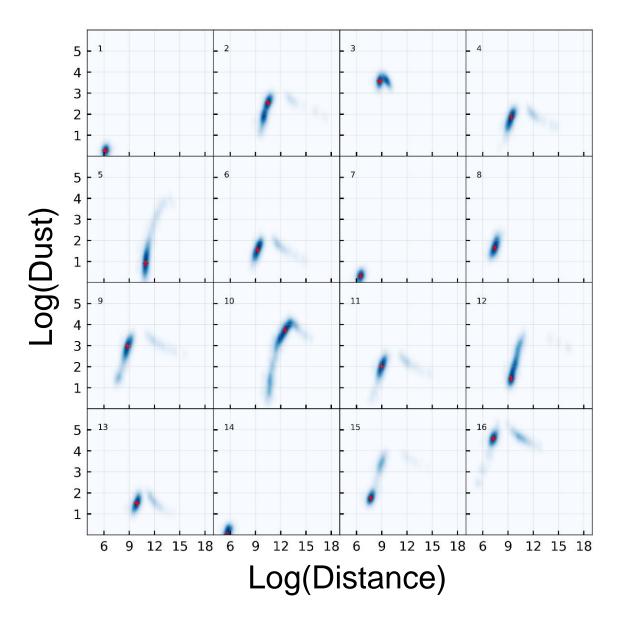
Implementation

Nested Sampling implemented in open-source Python package dynesty.

Stellar Inference

Need an approach that:

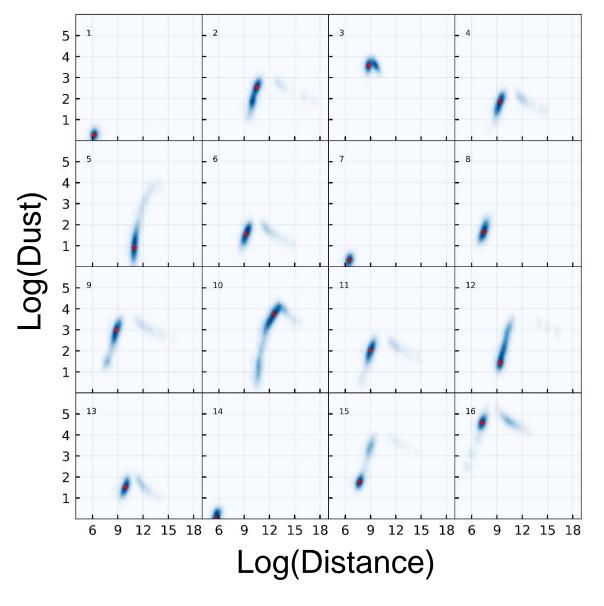
- Can characterize multimodal, complex parameter degeneracies robustly.
- 2. Can perform inference in **seconds** per object to scale up to >100M stars.



Zucker & Speagle et al. (2019)

 Typical MCMC methods struggled with efficiently exploring distributions.

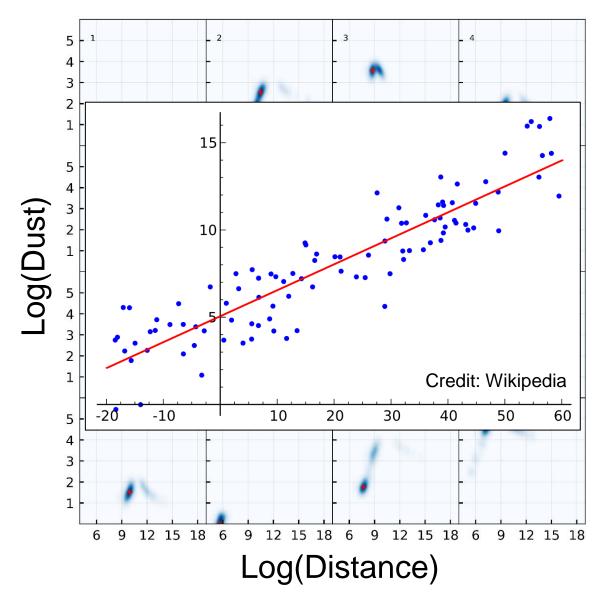
Solution 2: tailored approach



 Typical MCMC methods struggled with efficiently exploring distributions.

- Solution 2: "Intrinsic" "Extrinsic" parameters parameters
 - Conditioned on θ , solving for ϕ is a **linear** regression problem! Can analytically marginalize over ϕ .

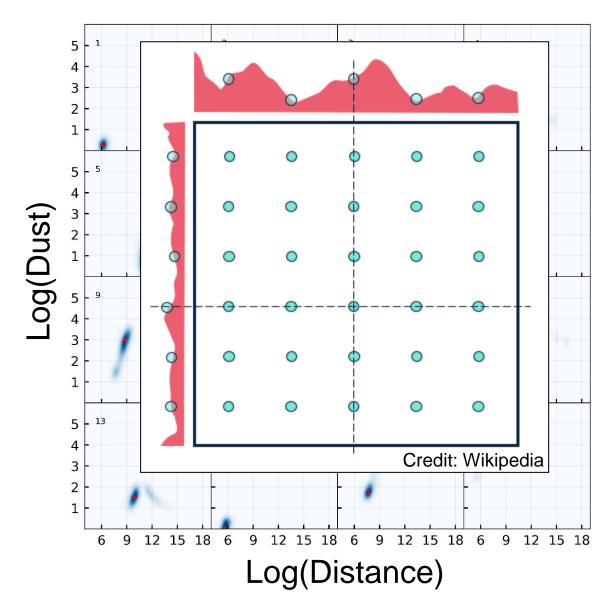
$$m = m_{\rm int}(\theta) + \beta(\theta) \cdot \phi + \epsilon_m$$



 Typical MCMC methods struggled with efficiently exploring distributions.

- Solution 2: "Intrinsic" "Extrinsic" parameters parameters
 - Conditioned on θ , solving for ϕ is a **linear** regression problem! Can analytically marginalize over ϕ .
 - Since θ is low-dimensional (≤ 4), can explore efficiently using a **brute-force** grid.

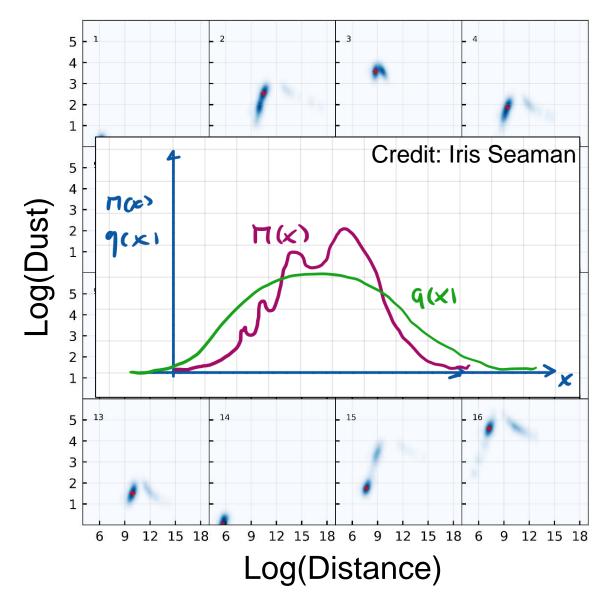
$$m = m_{\rm int}(\theta) + \beta(\theta) \cdot \phi + \epsilon_m$$



 Typical MCMC methods struggled with efficiently exploring distributions.

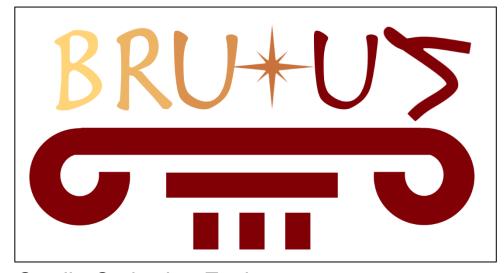
- Solution 2: "Intrinsic" "Extrinsic" parameters parameters
 - Conditioned on θ , solving for ϕ is a **linear** regression problem! Can analytically marginalize over and sample for ϕ .
 - Since θ is low-dimensional (≤ 4), can explore efficiently using a **brute-force** grid.
 - Add data from parallax and prior using importance sampling to "reweight" points.

$$L(\theta, \phi | m) \times L(\phi | \varpi) \times \pi(\theta, \phi)$$

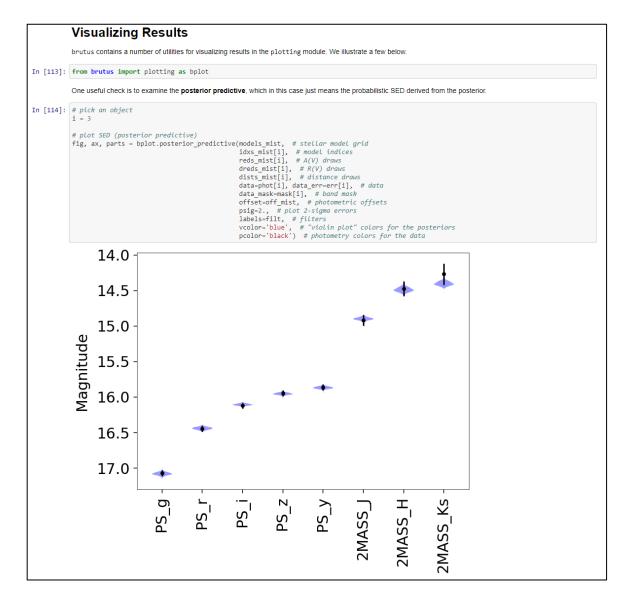


Implementation

- Open-source Python package.
- Includes built-in plotting utilities.
- Release planned in coming weeks!



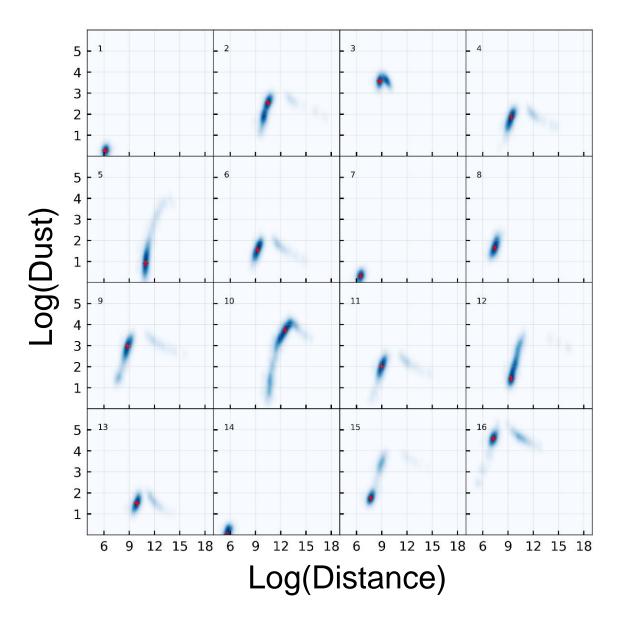
Credit: Catherine Zucker



Stellar Inference

Need an approach that:

- Can characterize multimodal, complex parameter degeneracies robustly.
- 2. Can perform inference in **seconds** per object to scale up to >100M stars.



Part 3 A Few Applications

~170M objects/~700k CPU hours later...

Interactive visualization in allsky

http://allsky.s3-website.us-east-2.amazonaws.com