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Astronomical data



Astronomical samples
• Astronomical survey records data from the observable sky.

• Sample is a list/catalogue of objects “detected” in a survey 
(effectively data compression).

• Each has (noisy) measurements of observable properties.

• Possible sample analysis tasks:

• Infer properties of individual objects.

• Classify individual objects. 

• Constrain population from which sample is drawn.

• Identify correlations, etc., at the population level.



Bayesian inference
• One basic aim of science: ascribe probabilities to models/

hypotheses given data/knowledge.

• Requires probability is defined as a degree of implication, 
hence P(A|B) notation.

• Cox (1946) showed that logical and self-consistency 
implies (equivalence with) the standard laws of 
probability.

• Hence want (posterior) probabilities obtained by 
applying Bayes’s theorem and other laws of probability to 
data-sets.

• Methodology prescriptive; choice is in models.



Population model
• Poisson point process (but could be binomial, cf Kelly et al. 2008) 

with density:

•
• Similar to, e.g., Loredo (2004) and does not need to be 

normalisable (cf Buchner et al. 2015).

• Common examples:

• Schechter (1976) luminosity function (but really just a gamma 
distribution)

• Salpeter (1955) stellar mass function (but really just a Pareto/
power-law distribution)

type object parameters (mass, luminosity, etc.)

population parameters (normalisation, slope, etc.)



Observation model
• Measurement process encoded in source 

sampling distribution or source likelihood: 

• Selection into the catalogue has the form:

• Loredo (2004) emphasises deterministic 
selection, but if only data summaries (e.g., fluxes, 
positions) are available then it is effectively 
probabilistic (cf Buchner et al. 2015).



• Does not include:

• false detections

• clustering or inter-object correlations

• source crowding

• selection function estimation

Population/object inference

where



The value of 
Hubble constant

with:
Stephen Feeney and Niccolo D’almasso



Hubble trouble?

(Verde et al. 2019)



Local distance “ladder”

(Riess et al. 2016)

parallax

detached eclipsing
binary stars
(Guinan et al. 1998;
Fitzpatrick et al. 2002;
Ribas et al. 2003)

MASER in NGC4258
(Humphreys et al. 2013)

Supernovae 
(Betoulle et al. 2014)

Cepheids + supernovae
(SH0ES, Riess et al. 2016)



Bayesian hierarchical model

(Feeney et al. 2018)



Results



Cosmology with  
compact merger  

gravitational wave 
counterparts

currently with:

Hiranya Peiris (UCL & Stockholm University)


Samaya Nissanke (GRAPPA, Amsterdam)

Nikhil Sarin (Nordita, Stockholm University)


Justin Alsing (Stockholm University)


previously with:

Stephen Feeney & Andrew Williamson



Compact binary mergers
Binary neutron stars: 
- M ~ Solar mass

- R ~ 10 km

- optical counterpart

from kilonova or 
gamma-ray burst
Binary black holes: 
- M ~10 Solar mass

- R ~ 100 km

- no expected 

optical emission

(Caltech/LIGO)

NS-BH mergers: 
- properties less 

certain

(Caltech/LIGO)

(OzGrav)



GWs from a BNS merger
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H0 from one BNS merger

• GW 170817: LIGO+Virgo detected in GWs


• GRB 170807A: A GRB <2 seconds later


• Follow-up observations at all wavelengths


• Kilonova afterglow gives a location and host identification.


• GW data: “chirp mass” and distance D = 44(+7/-3) Mpc.


• Spectrum of host galaxy/group gives z = 0.0101+/-0.0006.


• Hubble constant estimate is H0 = c z / D = 70(+12/-8) km/s/Mpc.



H0 from one BNS merger

(LIGO+Virgo 2017)



H0 from many BNS mergers

(Chen et al. 2018; cf. Dalal et al. 2006)

1 km/s / Mpc



Simulations

(Mortlock et al. 2019)

Posterior distributions in H0 from 25 simulations of samples of N BNSs

Full models too slow to do large number numbers of realisations.

Use linearised general relativity which includes only: 

“chirp mass”, M; distance, D; and inclination i.

Includes self-consistent selection on observed quantities.

edge-on

face-on

edge-on



Simulation results

(Feeney et al. 2019)

Joint posterior from 

51 BNS mergers

Individual posteriors

from individual BNS 


mergers



Simulations

(Mortlock et al. 2019)

noise

increases

signal:

easier to

detect;

appear

more

distant

noise

reduces

signal:

harder to

detect;

appear

more 

distant



Events : 1 ∑ i ∑ N
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P(ĥi|µi, zi, ∂i, ≠, O)

ẑi
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Simulation results

(Mortlock et al. 2019)

N = 1 N = 10 N = 100

Posterior distributions in H0 from 25 simulations of samples of N BNSs

N = 1: Posteriors have range of shapes; difficult to assess error/bias

N = 100: Posteriors all normal; into asymptotic regime



Removes potential bias

(Mortlock et al. 2018)

Distribution of MAP estimate of H0 from simulations of samples of N BNSs

N = 100N = 1 N = 10

N = 1: Distribution has a high-H0 tail; difficult to assess error/bias

N = 100: Distribution Gaussian; into asymptotic regime; unbiased (not guaranteed)

simulation

prediction



Robust to incorrect  
population models

(Changes to

mass 

distribution)

(Mortlock et al. 2019)



Absolute calibration

(Kakri et al. 2016; Callihane et al. 2017)

(Huang et al. 2022)



Optical/EM counterparts

(Metzger & Berger 2012) (Chen 2020)



Conclusions
• Astronomical catalogues can be used to do 

a range of science.

• Possible to do object and population level 
analysis using Bayesian inference.

• Some level of approximation typically 
required but inference can be made robust 
to modelling assumptions.

• Critically, outputs are uncertainties and 
probabilities rather than estimates and 
classifications.


