Bayesian inference of astronomical populations

DANIEL MORTLOCK

Statistics Section
Department of Mathematics

&

Imperial Centre for Inference and Cosmology
Astrophysics Group
Department of Physics

Imperial College London

&

Department of Physics Stockholm University

Astronomical data

Astronomical samples

- Astronomical survey records data from the observable sky.
- Sample is a list/catalogue of objects "detected" in a survey (effectively data compression).
- Each has (noisy) measurements of observable properties.
- Possible sample analysis tasks:
 - Infer properties of individual objects.
 - Classify individual objects.
 - Constrain population from which sample is drawn.
 - Identify correlations, etc., at the population level.

Bayesian inference

- One basic aim of science: ascribe probabilities to models/ hypotheses given data/knowledge.
- Requires probability is defined as a degree of implication, hence P(A|B) notation.
- Cox (1946) showed that logical and self-consistency implies (equivalence with) the standard laws of probability.
- Hence want (posterior) probabilities obtained by applying Bayes's theorem and other laws of probability to data-sets.
- Methodology prescriptive; choice is in models.

Population model

Poisson point process (but could be binomial, cf Kelly et al. 2008)

with density: population parameters (normalisation, slope, etc.)
$$d\bar{N}_t = \rho_t(\boldsymbol{\phi}; \boldsymbol{\psi}) \, d\boldsymbol{\phi}$$
 type object parameters (mass, luminosity, etc.)

- Similar to, e.g., Loredo (2004) and does not need to be normalisable (cf Buchner et al. 2015).
- Common examples:
 - Schechter (1976) luminosity function (but really just a gamma distribution)
 - Salpeter (1955) stellar mass function (but really just a Pareto/ power-law distribution)

Observation model

 Measurement process encoded in source sampling distribution or source likelihood:

$$P(\boldsymbol{d}|t, \boldsymbol{\phi}, \mathcal{O})$$

• Selection into the catalogue has the form: $P(S|\boldsymbol{d},t,\boldsymbol{\phi},\mathcal{O})$

• Loredo (2004) emphasises deterministic selection, but if only data summaries (e.g., fluxes, positions) are available then it is effectively probabilistic (cf Buchner et al. 2015).

Population/object inference

$$\begin{split} & \mathrm{P}(\boldsymbol{\psi},t_{1:N},\boldsymbol{\phi}_{1:N}|N,\boldsymbol{d}_{1:N},S_{1:N},T,\mathcal{O},\mathcal{K}) \\ & \propto \mathrm{P}(\boldsymbol{\psi}|T,\mathcal{K}) \, \frac{\mathrm{P}(N|\boldsymbol{\psi},T,\mathcal{O})}{[\bar{N}(\boldsymbol{\psi},T,\mathcal{O})]^N} \prod_{i=1}^N \rho_{t_i}(\boldsymbol{\phi}_i;\boldsymbol{\psi}) \, \mathrm{P}(\boldsymbol{d}_i|t_i,\boldsymbol{\phi}_i,\mathcal{O}) \, \mathrm{P}(S_i|\boldsymbol{d}_i,t_i,\boldsymbol{\phi}_i,\mathcal{O}) \\ & \text{where} \\ & \bar{N}(\boldsymbol{\psi},T,\mathcal{O}) = \sum_{t=1}^T \int \mathrm{d}\boldsymbol{\phi} \, \rho_t(\boldsymbol{\phi};\boldsymbol{\psi}) \, \mathrm{P}(S|t,\boldsymbol{\phi},\mathcal{O}) \end{split}$$

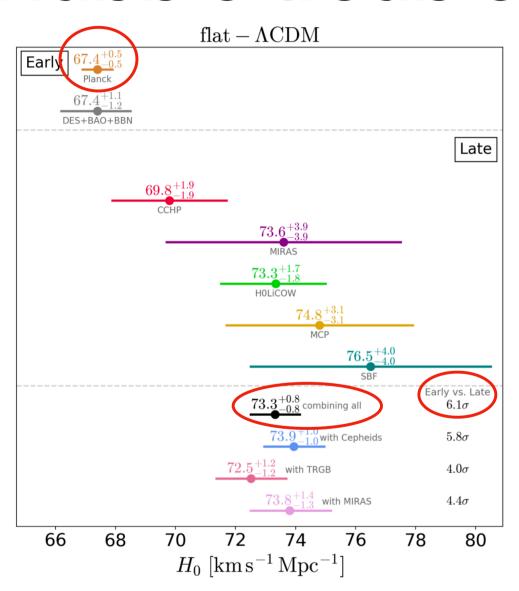
- Does not include:
 - false detections
 - clustering or inter-object correlations
 - source crowding
 - selection function estimation

The value of Hubble constant

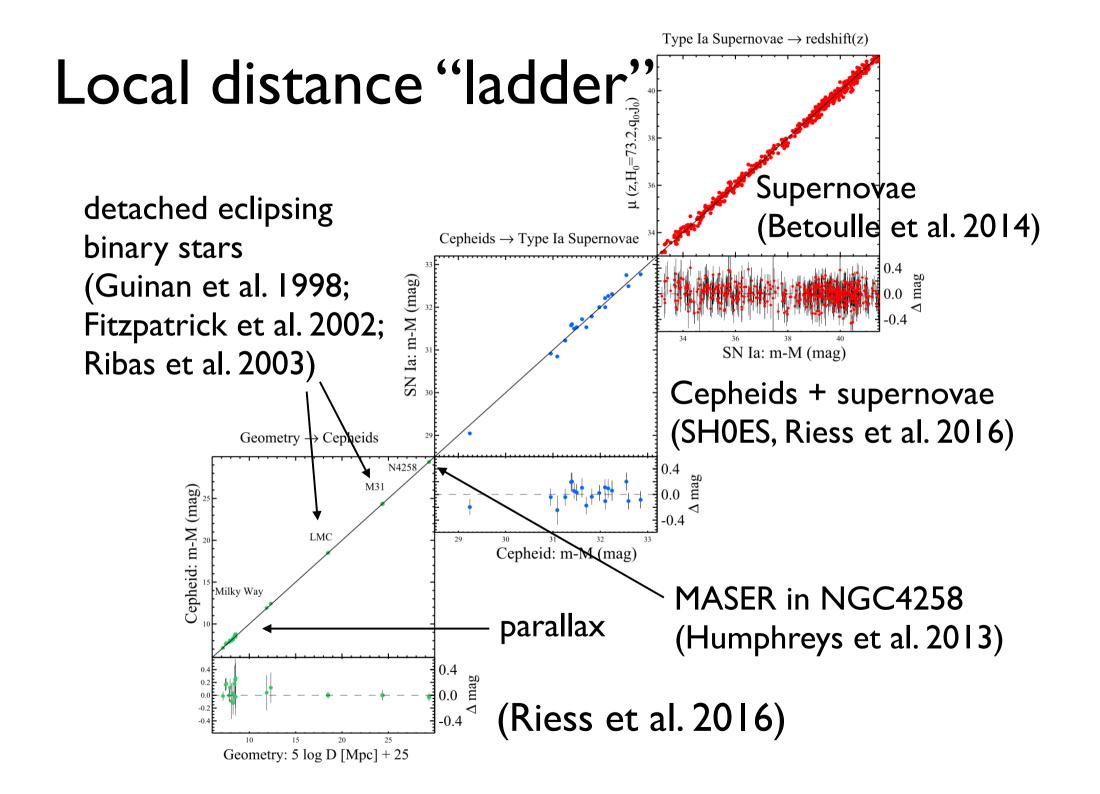
with:

Stephen Feeney and Niccolo D'almasso

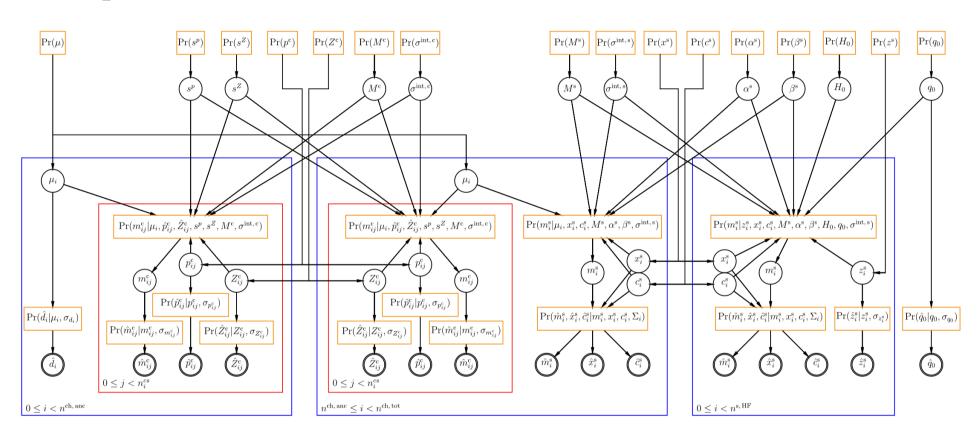
Hubble trouble?



(Verde et al. 2019)

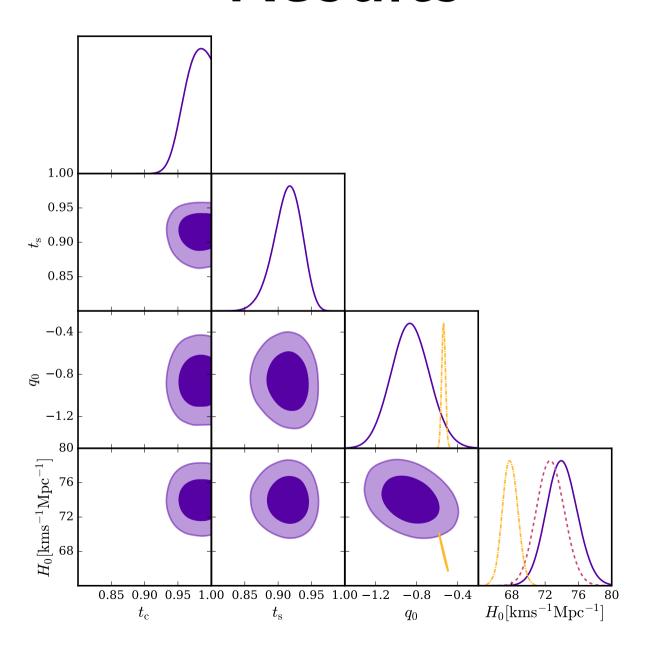


Bayesian hierarchical model



(Feeney et al. 2018)

Results



Cosmology with compact merger gravitational wave counterparts

currently with:

Hiranya Peiris (UCL & Stockholm University) Samaya Nissanke (GRAPPA, Amsterdam) Nikhil Sarin (Nordita, Stockholm University) Justin Alsing (Stockholm University)

previously with: Stephen Feeney & Andrew Williamson

Compact binary mergers

Binary neutron stars:

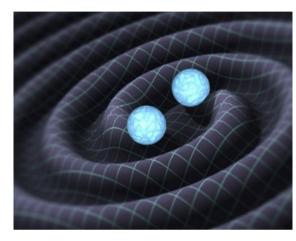
- M ~ Solar mass
- $-R \sim 10 \text{ km}$
- optical counterpart from kilonova or gamma-ray burst

Binary black holes:

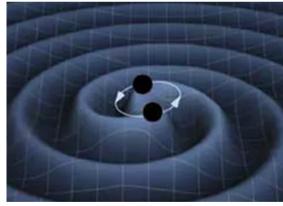
- M ~10 Solar mass
- $-R \sim 100 \text{ km}$
- no expected optical emission

NS-BH mergers:

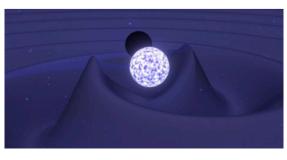
properties less certain



(Caltech/LIGO)

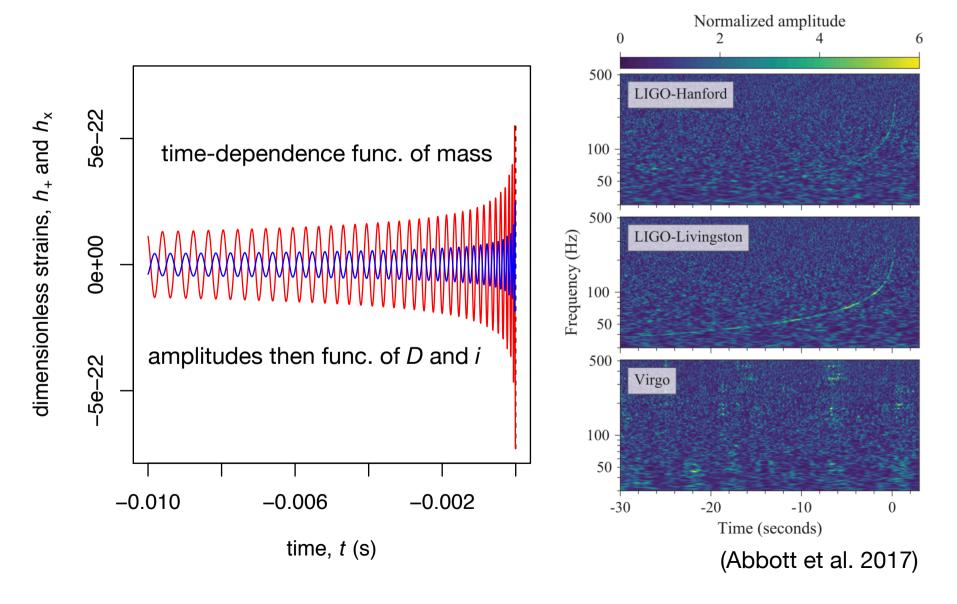


(Caltech/LIGO)



(OzGrav)

GWs from a BNS merger

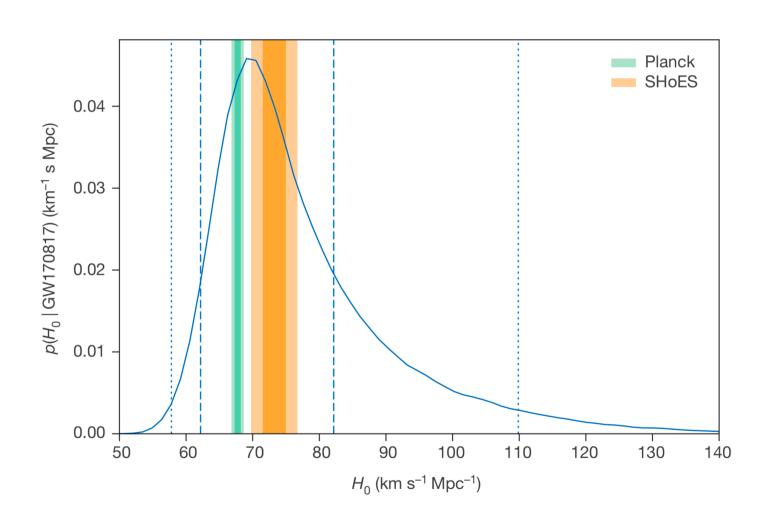


Ho from one BNS merger

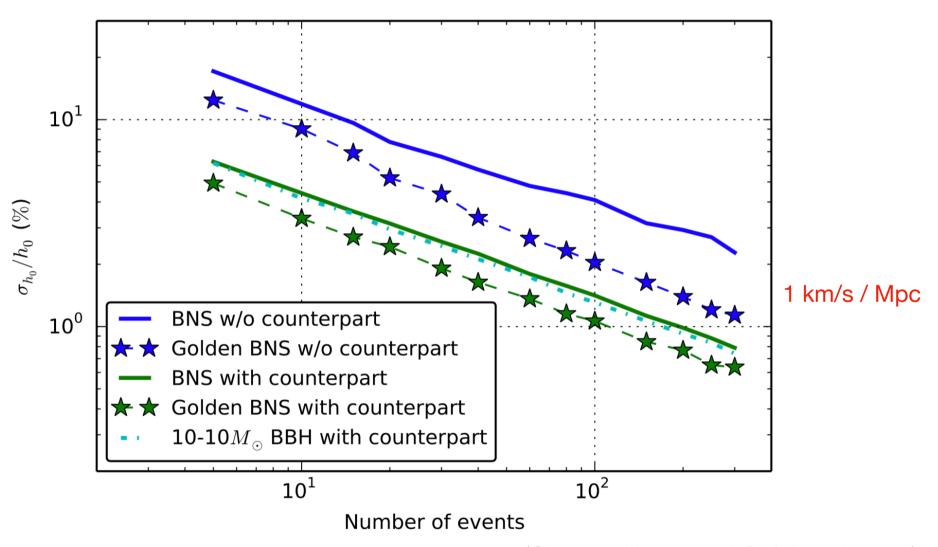
- GW 170817: LIGO+Virgo detected in GWs
- GRB 170807A: A GRB <2 seconds later
- Follow-up observations at all wavelengths

- Kilonova afterglow gives a location and host identification.
- GW data: "chirp mass" and distance D = 44(+7/-3) Mpc.
- Spectrum of host galaxy/group gives z = 0.0101 + /-0.0006.
- Hubble constant estimate is $H_0 = c z / D = 70(+12/-8)$ km/s/Mpc.

H₀ from one BNS merger

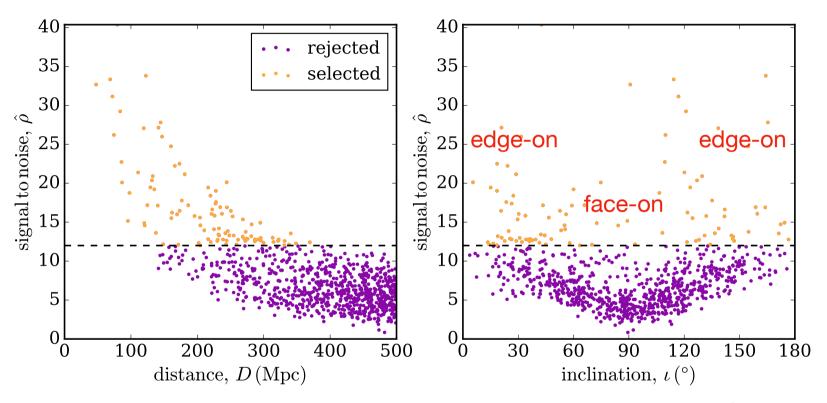


H₀ from many BNS mergers



(Chen et al. 2018; cf. Dalal et al. 2006)

Simulations



Posterior distributions in H_0 from 25 simulations of samples of N BNSs

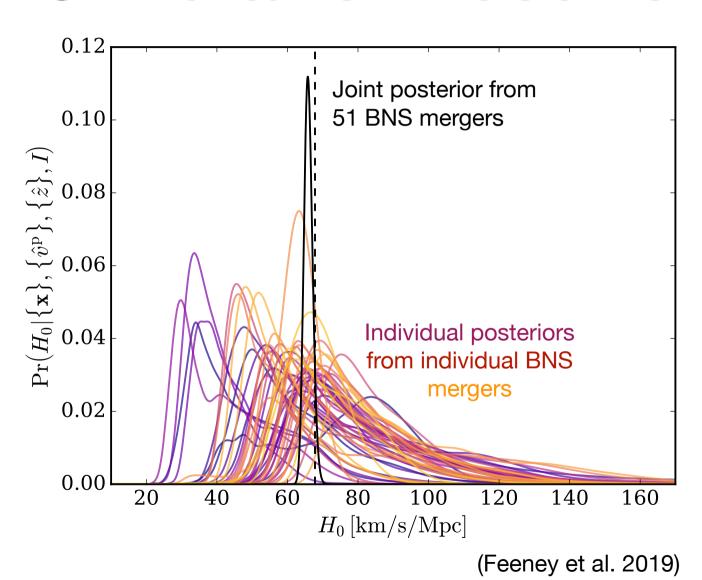
Full models too slow to do large number numbers of realisations.

Use linearised general relativity which includes only: "chirp mass", *M*; distance, *D*; and inclination *i*.

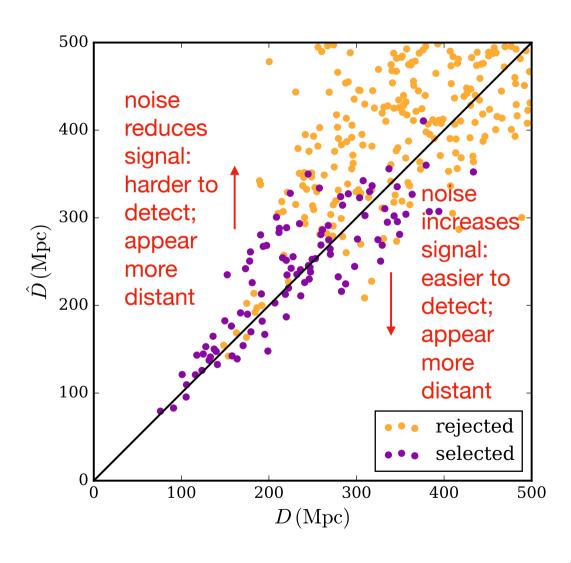
Includes self-consistent selection on observed quantities.

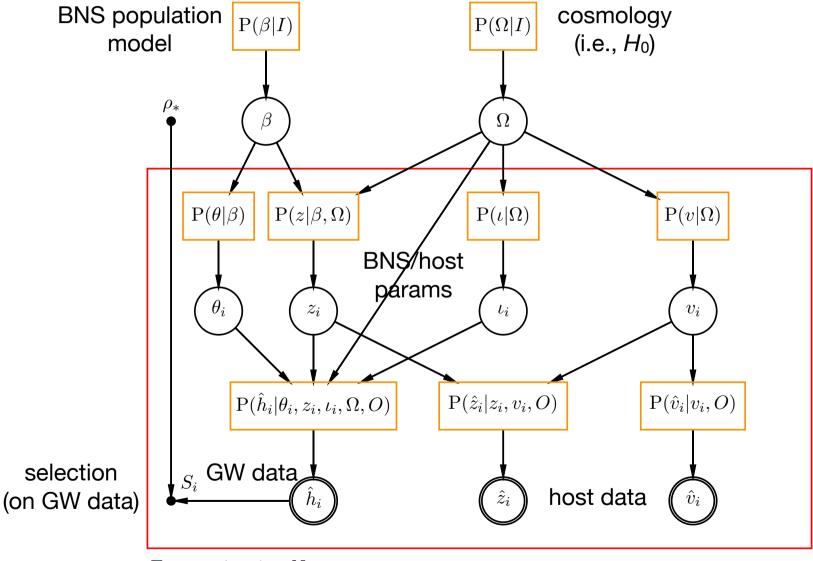
(Mortlock et al. 2019)

Simulation results

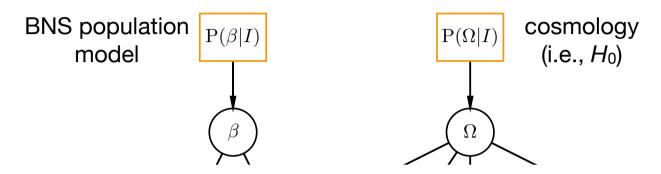


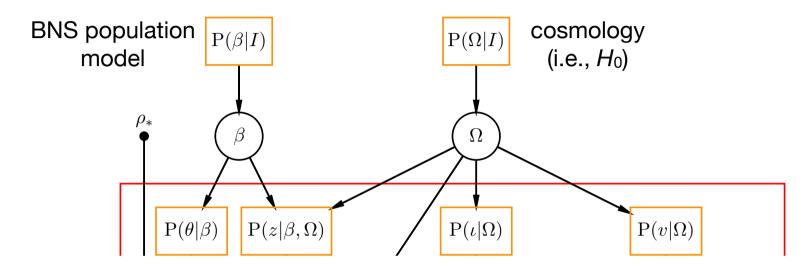
Simulations

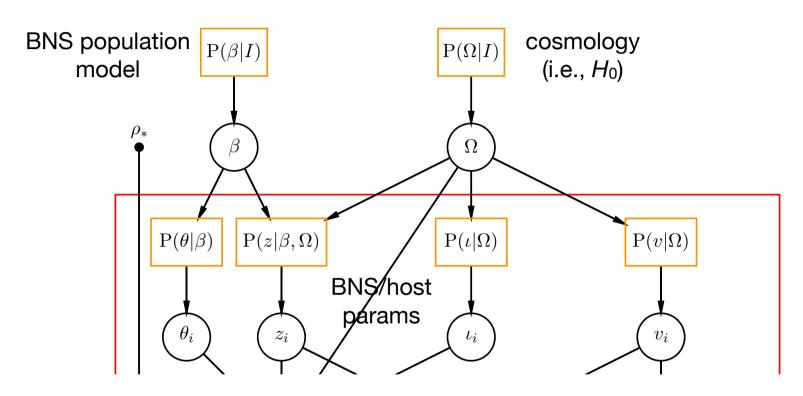


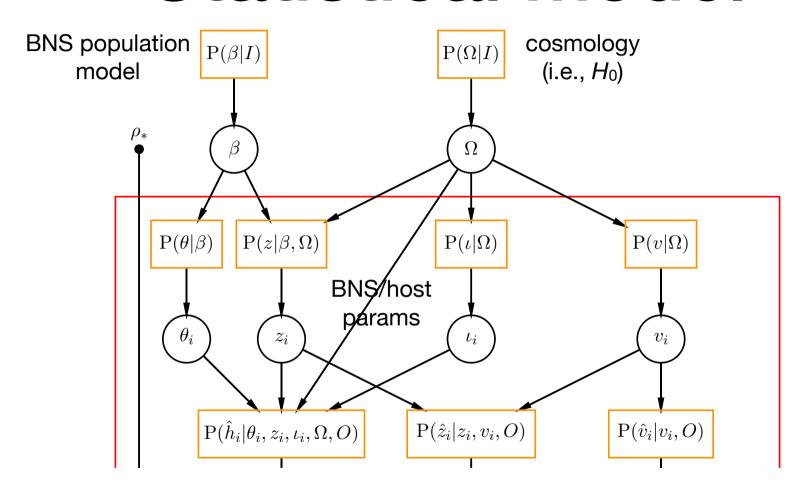


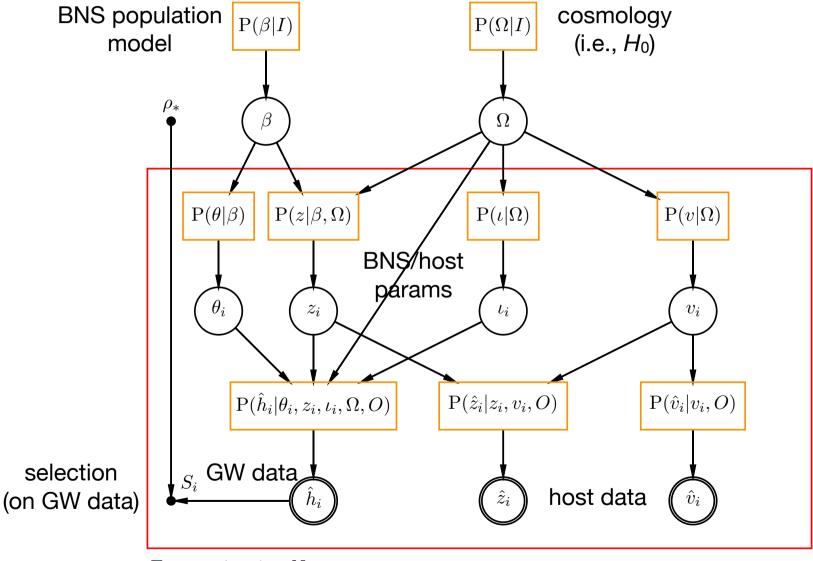
Events : $1 \le i \le N$



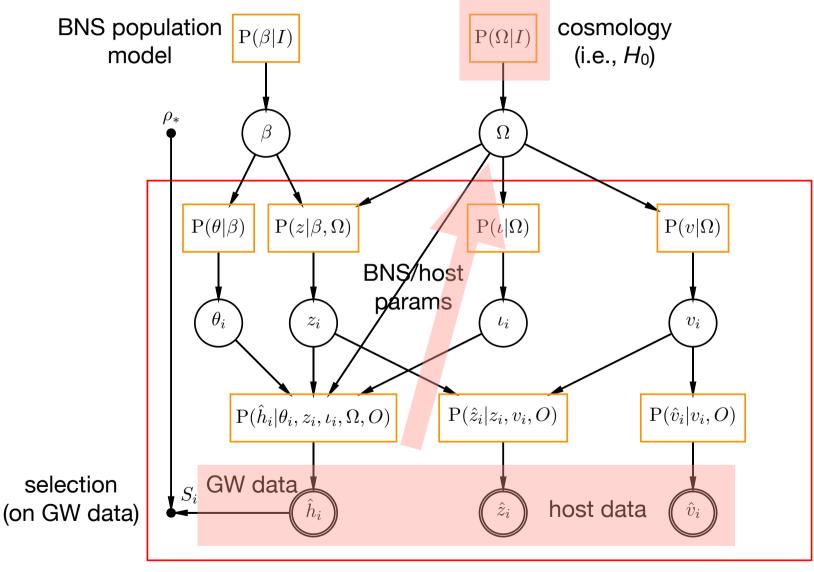






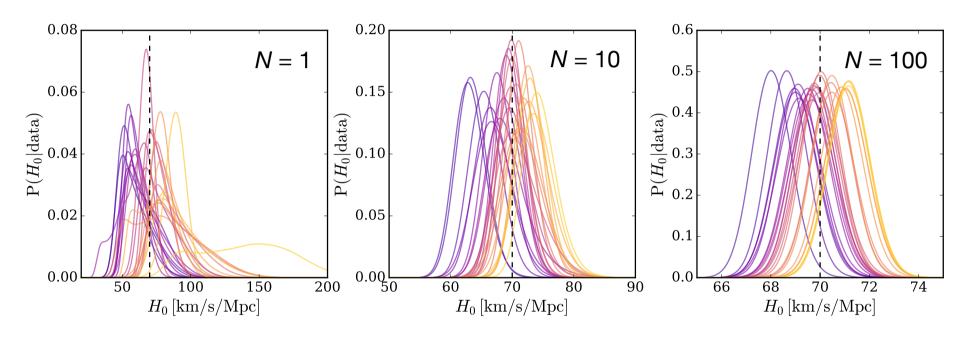


Events : $1 \le i \le N$



Events : $1 \le i \le N$

Simulation results

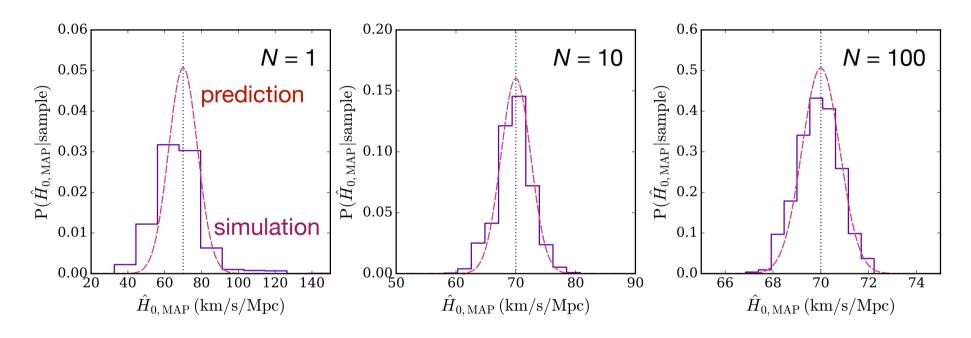


Posterior distributions in H_0 from 25 simulations of samples of N BNSs

N = 1: Posteriors have range of shapes; difficult to assess error/bias

N = 100: Posteriors all normal; into asymptotic regime

Removes potential bias



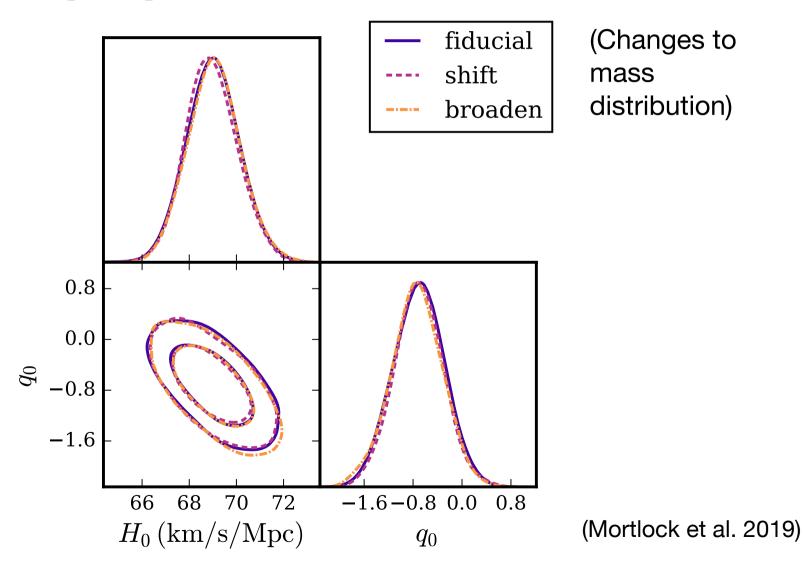
Distribution of MAP estimate of H_0 from simulations of samples of N BNSs

N = 1: Distribution has a high- H_0 tail; difficult to assess error/bias

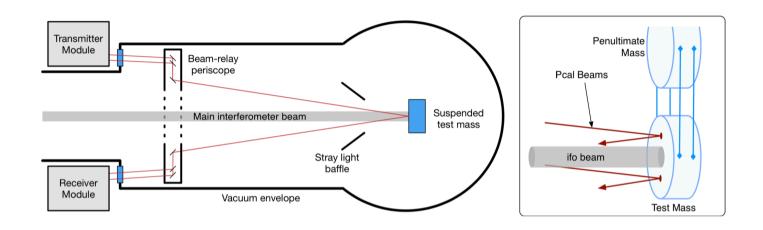
N = 100: Distribution Gaussian; into asymptotic regime; unbiased (not guaranteed)

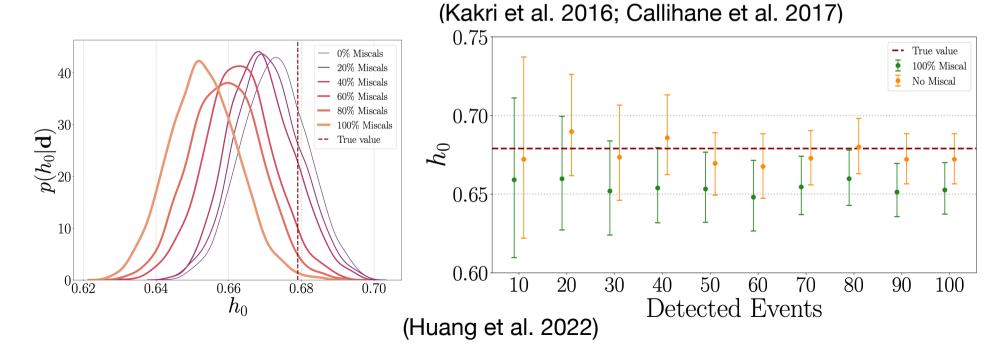
(Mortlock et al. 2018)

Robust to incorrect population models

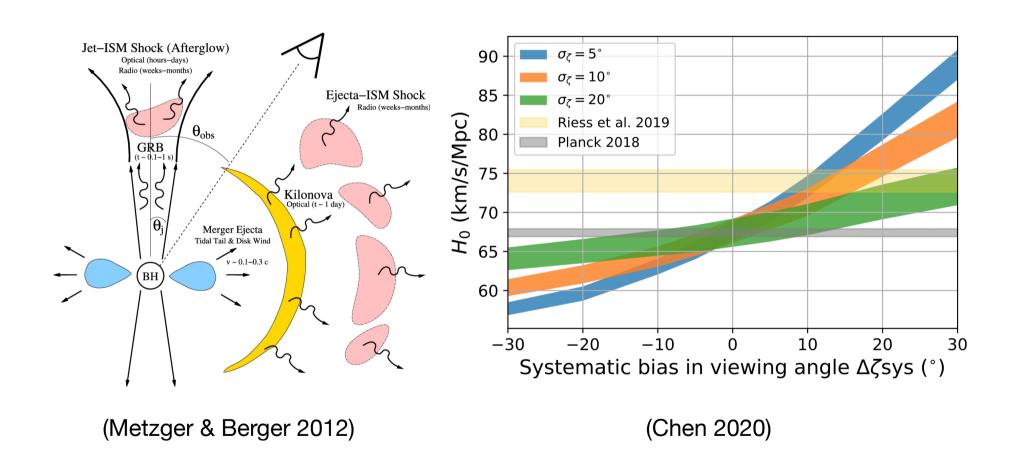


Absolute calibration





Optical/EM counterparts



Conclusions

- Astronomical catalogues can be used to do a range of science.
- Possible to do object and population level analysis using Bayesian inference.
- Some level of approximation typically required but inference can be made robust to modelling assumptions.
- Critically, outputs are uncertainties and probabilities rather than estimates and classifications.