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What I'm going to say

e Negative side:

o Regressions produce biased predictions, not measurements.

o  Simulation-based inferences with emulators amplify confirmation biases.
e Positive side:

o ML should (actually should) be used on nuisances, such as calibration and backgrounds.
o In causal-separation problems, flexibility is paramount (and interpretation is not).



What is machine learning?

e A machine learning method is a method whose capability improves as it sees
more data.

o Probably meaning: Improves substantially faster than the square-root of N.

e C(lassic: PCA, ICA, SVM, large linear regression, Gaussian process, k-means,
K-nearest-neighbor, KDE

e Contemporary: MLP, deep CNN, transformer, diffusion



What is (supervised) machine learning?

e You have a golden set of data containing N objects, each of which has a list x.
of features and a list y. of labels. This is your training set.
e You try to find the function f(x) that does “the best” job of predicting y in this
data set. This is the training step.
o You give this function immense flexibility—often literally millions or billions (!) of parameters.
e You can now predict new labels y, for any new data point x, with f(x,). This is

sometimes called the test step or prediction.
o Note the deep assumption that the new data are similar to the training data.



What is a measurement?

e Hottake: A measurement is a peak in a likelihood function!
o If you want your measurement to be used downstream, it has to be either unbiased,
o or (at least) can be combined with other measurements.

e Even if you are strictly Bayesian, you should agree with this.

o Information comes from data via a likelihood function (likelihood principle).
o If you want to use someone else’'s measurement, you want their LF, not their posterior.
o A measurement is not an expression of your belief! It is a statement about the data.



How is machine learning used to make measurements?

e Regression: Train a function that predicts labels from data.
o Execute that function on a new datum: New measurement of that label. Bad!

e Emulation: Speed up simulation-based inferences or likelihood evaluations.
o This makes measurements possible that wouldn't otherwise be. But also bad!

e Statistics discovery: Find sufficient (or good) statistics of the data.
o Maybe a good idea? Great place for symmetries, etc. I'm not going to talk about this.

e Causal separations: Model and remove backgrounds and instruments.
o Agreatidea, especially when executed hierarchically.



The philosophy of machine learning

e Ontology: Only the data exist; models predict data from data.

o The latent structure is irrelevant; judged only on performance.
o  We don't need to understand the internals of f(x).

e Epistemology: Performance on held-out data is the one arbiter of truth.
o Compare this to the epistemology of physics!



Trust issues

e Fundamentally you can't know what an ML method is doing, internally.
o (this is controversial; many experts would disagree)
e Interpretability is much discussed, but is currently a failure.

o Even linear regression is generally uninterpretable once the number of features gets large.
o | believe that interpretability is doomed to failure, because it is at odds with model capacity..



The question

e Where in science can you use a model that you don’t understand?



Example: Emulation (piras et al arxiv:2205.07898)
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Adversarial attacks (Goodfellow et al ICLR 2015)
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What do adversarial attacks reveal?

e They are carefully tuned, so they don’t represent generic failure modes.

e But they reveal that the model is not doing what we think it is doing.
o In scientific applications, that's pretty disturbing.
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Confirmation bias

e Simulations are expensive, so let’s replace them with an ML emulator!

o Really expensive! In cosmology and in ocean science, eg, the requirements exceed the
computing capacity of the United States.

e .. [grind on your scientific problem using those emulations as your theory] ...

e Now you discover something really really surprising. What do you do?
o Checking your result is very expensive (by construction), so you will only check if the result is
very surprising.
e Thisis the very definition of confirmation bias.
o Emulation forces us inevitably into a confirmation-bias setting.
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Confirmation bias

e /don't have a solution for this problem.
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Population and joint analyses

e If you want to perform joint analyses on multiple objects (or multiple data

sets), you have to combine their likelihood functions.
o If you try to combine their posterior pdfs, you will end up exponentiating your prior pdfs.
e Almost no ML regressions or classifications return quantities related to
likelihood functions.
o They tend to return something akin to posterior quantities, where the training set takes the
role of the prior.
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Population and joint analyses

e Example: You have 1000 stars in some region of the Galaxy. What is their
average age?

e If you take the average of maximum-likelihood estimates of their ages, you
get an unbiased estimate of the average age.

e If you take the average of posterior estimates of their ages, you get a highly

biased estimate.
o It's like you took your prior to the 1000th power.
o ML regressions generally return posterior estimates.
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POpUIation and jOint analyseS (Hogg & Villar arXiv:2405.18095)
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Population and joint analyses

e |don’t have a solution for this problem.
o  (well actually, some ML methods return maximum-likelihood estimates)
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The question

e | asked: Where in science can you use a model that you don’t understand?

e But in astrophysics we use instruments we don’t understand all the time.
o Example: Almost all infrared detectors, including those on ESA Euclid.
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Causal inference in astrophysics?

e Social sciences and health sciences often foreground causal inference.

e Physical sciences less so, but:
o Was this data feature produced by the star, or by the atmosphere? Or by my instrument?
o Isthat a signal or just a background effect?
o If I had observed for longer, what would | have seen?
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Instrument calibration

e Say we are measuring the brightness of a star extremely sensitively.

e What variations are due to the star, what are due to the instrument?
o And what are due to any planets?

e You make the best argument that the signal is due to the star, when you have
given your instrument model a lot of flexibility.
e Often (but not always), you don't need to interpret your instrument model.
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Example.' Planets in NASA K2 (Foreman-Mackey et al, arXiv:1502.04715)
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Example: Excalibur zhao et a, arxiv:2010.13786)
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Example: Excalibur zhao et a, arxiv:2010.13786)
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Instrument calibration

e Want enormous flexibility to capture unexpected instrument properties.

e Want hierarchical structure to restrict that flexibility appropriately.
o Related to representation learning?
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Backgrounds (or foregrounds)

e Most astrophysical data are contaminated by backgrounds and foregrounds.
e A subtle signal of interest is only believable when the background and

foreground models have been given lots of flexibility.
e And by assumption, these are the signals you don’t care to understand!
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Example: Foregrounds

in ESA Planck
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Residuals

Example: wobble spectral model sedel et al, arxiv:1901.00503)
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Conservatism

e |tis generally considered cavalier, and not conservative, to throw ML at your

scientific data.
e However, in causal inferences, the most conservative thing you can do is give

your nuisances and confounders maximum flexibility.
o ML can provide the most conservative possible approaches to these problems!
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Open question: Trust in emulators

e Itis obvious that emulation of expensive simulations (and other expensive
computation) is here to stay. It's happening.

e So, we need to figure out ways to build trust systems for emulators.

We're exploring methods involving exact symmetries.

We're exploring methods built on adversarial training.

Maybe there are ways to introduce sanity checks and sparse resimulations?
(all joint work with Soledad Villar @ JHU)

e Many of these issues arise in artificial intelligence more generally.

(@)
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What | said

e Negative side:

o Regressions produce biased predictions, not measurements.

o  Simulation-based inferences with emulators amplify confirmation biases.
e Positive side:

o ML should (actually should) be used on nuisances, such as calibration and backgrounds.
o In causal problems, flexibility is paramount (and interpretation is not).
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