

Going beyond isotropy and Gaussianity in Cosmology

Minkowski Functionals and other statistics

Javier Carrón Duque

javier.carron@csic.es

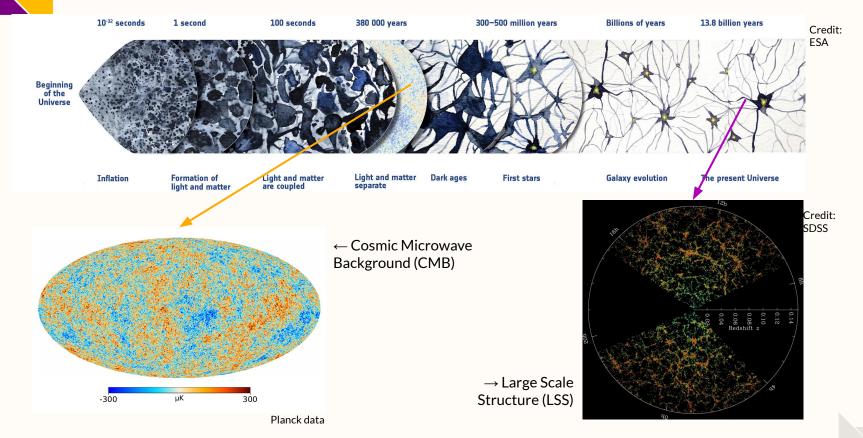
I will talk about

- What are the main cosmological observables?
- Why are Gaussianity and isotropy important?
- What are Minkowski Functionals?
- Why are they useful?
- How can they be extended to CMB polarization?
- What about anisotropy?

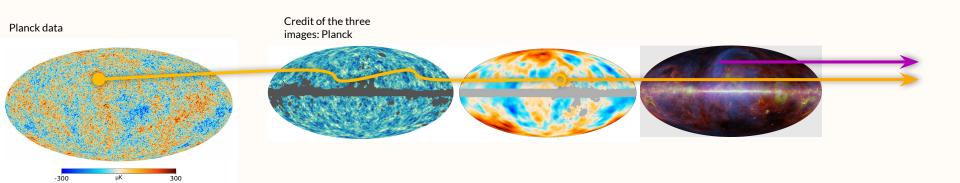
Introduction

- What are the main cosmological observables?
- Why are Gaussianity and isotropy important?
- What are Minkowski Functionals?
- Why are they useful?
- How can they be extended to CMB polarization?
- What about anisotropy?

There are two main cosmological observables



The Cosmic Microwave Background (CMB)

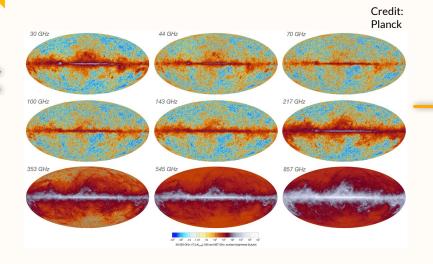


Plasma becomes transparent Photo of the plasma at this time (~380 000 years) Light is bent by the space curvature caused by the mass distribution

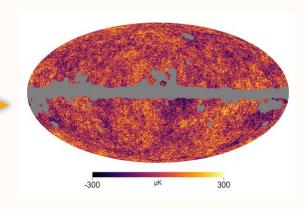
Light is modified by massive structures (Integrated Sachs-Wolfe, Sunyaev-Zeldovich) The galaxy emits light in similar wavelengths

(and more...)

The Cosmic Microwave Background (CMB)



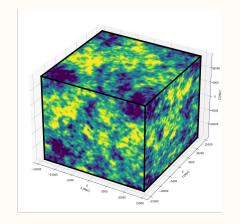
The CMB is observed in different wavelength bands



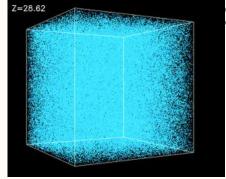
The CMB is reconstructed within the confidence mask through different methods

(Temperature and polarization information)

And the Large Scale Structure (LSS)

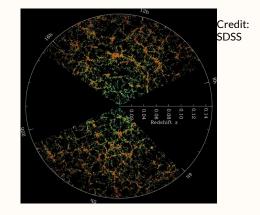


Initial conditions for the plasma (Gaussian, homogeneous, isotropic)



Credit: Center for Cosmological Physics

Evolves due to gravity and baryonic effects

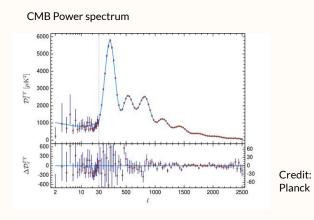


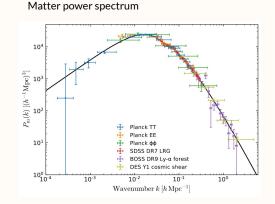
Gaussian fields are simple

- Let f(x) be a real random field
- We observe at points $\vec{x}_1, \dots, \vec{x}_N$
- The field is **Gaussian** iff, for any set of observed points:
 - o The probability distribution is a multivariate Gaussian $\mathcal{N}(\vec{\mu}, \Sigma)$ With $\vec{\mu} = \{E[f(\vec{x}_1)], \dots, E[f(\vec{x}_N)]\}$ the **expected value** at the points and $\Sigma_{ij} = \text{Cov}[f(\vec{x}_i), f(\vec{x}_j)]$ the **covariance** between pairs
- Fully defined by 1-point and 2-point correlation functions!
- Higher order correlation functions are given by these two (Isserlis' Theorem)
- Primordial perturbations and CMB are Gaussian fields (or very close to it)

Homogeneity and isotropy are typically assumed

- Homogeneity: invariance to translations
 - The expected value is constant
 - The covariance only depends on the relative distance (vector)
- Isotropy: invariance to rotations
 - Typically requires a center
 - With homogeneity: the covariance only depends on the relative distance (modulus)





It is important to go beyond these assumptions

- (Near) Gaussianity in the primordial plasma is predicted by Inflation
- **Non-Gaussianity** can provide useful information
 - About Inflation and Early Universe Physics
 - (CMB) About Late Universe effects on the CMB
 - (LSS) About non-linear gravity and baryonic effects
 - About systematics, biases, foreground contamination, ...
- Homogeneity and isotropy is assumed by the Cosmological Principle
- **Deviations** can provide useful information
 - About the topology of the Universe
 - About gradients in the Universe (i.e., dipoles)
 - About the velocity of the Milky Way and other structures
 - About systematics, biases, foreground contamination, ...

Other statistics can probe further information

- N points correlation functions (bispectrum, trispectrum, ...)
- Anisotropic power spectrum, density-split power spectrum, ...
- Extrema statistics (maxima, minima, saddle points)
- Stacking
- Topological descriptors: Minkowski Functionals, Betti numbers, persistent homology
- Wavelet Scattering transform
- Field-level inference
- Machine Learning
- ullet f_{NL} is very important, but not the only way

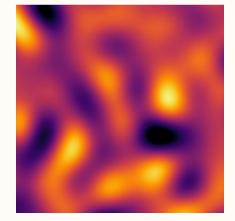
Minkowski Functionals

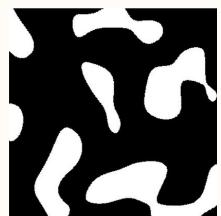
- What are the main cosmological observables?
- Why are Gaussianity and isotropy important?
- What are Minkowski Functionals?
- Why are they useful?
- How can they be extended to CMB polarization?
- What about anisotropy?

Minkowski Functionals describe the geometry and

topology of the field

- We consider a field (e.g., T or δ)
- Let u be a threshold (e.g., 2σ)
- We define the **excursion set** A(u) as the regions of the field above u
- Minkowski Functionals (MFs) are:
 - \circ V_0 : area of A(u)
 - \circ V_1 : boundary length of A(u)
 - \circ V_2 : Euler—Poincaré characteristic of A(u) (#regions #holes)
- They are higher-order statistics (complement N-point correlation functions)



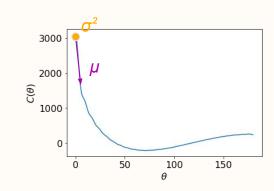


MFs are accurately predicted

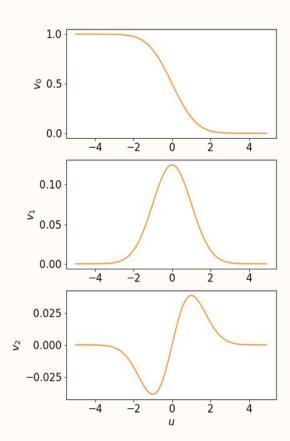
- For Gaussian isotropic fields, the expected value is known and the variance is small
- It is **independently** affected by only three factors: threshold, manifold, correlation length

$$\mathbb{E}[V_j(A_u)] \approx \rho_j(u) V_0(\mathbb{S}^2) \mu^{j/2}$$
Threshold Ambient Correlation length of the map

- $\rho_i(u)$: gaussian × Hermite polynomial
- $\bullet \quad V_0(\mathbb{S}^2) = 4\pi \times [f_{sky}]$
- μ : inverse of correlation length



MFs are accurately predicted



$$\frac{\mathbb{E}\left[V_0(A_u)\right]}{4\pi} = 1 - \Phi(u)$$

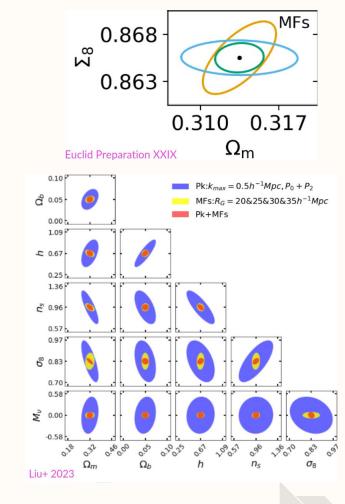
$$\frac{\mathbb{E}\left[V_1(A_u)\right]}{4\pi} = \frac{1}{8}\exp(-\frac{u^2}{2})\mu^{1/2}$$

$$\frac{\mathbb{E}\left[V_2(A_u)\right]}{4\pi} = \frac{\mu}{\sqrt{(2\pi)^3}}\exp(-\frac{u^2}{2})u$$

$$P(f, f_x, f_y, f_{xx}, f_{xy}, f_{yy})$$

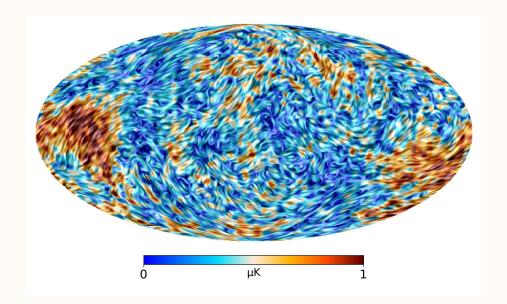
MFs have plenty of applications

- Any deviation is due to non—Gaussianity and/or anisotropy
- Early Universe (e.g., T): test for primordial non—Gaussianity
 - Planck 2018 VII (isotropy & statistics)
- Late Universe (e.g., κ): extract more cosmological information
 - Euclid Preparation XXIX (2023), Grewal+ (2022),
 Zürcher+ (2022), ...
- Foregrounds (e.g., Galactic):
 - o Martire+ (2023), Krachmalnicoff+ (2020), ...
- Large Scale Structure (e.g., galaxy distribution):
 - Liu+ (2023), Jiang+ (2023) Appleby+ (2022),
 Spina (2021), ...



We want to extend MFs to CMB polarization

- CMB polarization is an information-rich complement to CMB temperature
- It is a **complex** spin-2 field defined on the sphere
- We extend the MF formalism in two ways



We extend MFs to the modulus of polarization P^2

arXiv: 2211.07562

Minkowski Functionals of CMB polarization intensity with Pynkowski: theory and application to *Planck* and future data

Alessandro Carones^{1,2*}, Javier Carrón Duque^{1,2}, Domenico Marinucci³, Marina Migliaccio^{1,2}, Nicola Vittorio^{1,2}

- ullet We generalize the theoretical formula for $\,P^2=Q^2+U^2\,$
- This field is not Gaussian (χ^2 + spin effects)

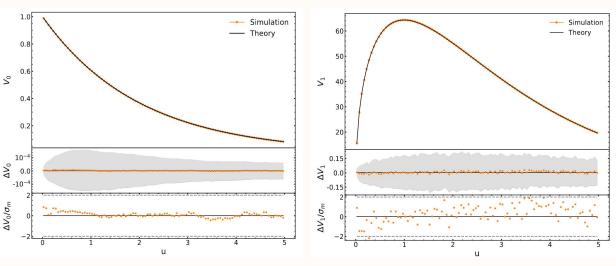
$$\frac{\mathbb{E}\left[V_0(A_u)\right]}{4\pi} = \exp\left(-\frac{u}{2}\right)$$

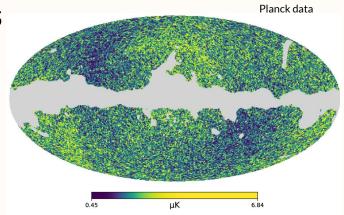
$$\frac{\mathbb{E}\left[V_1(A_u)\right]}{4\pi} = \frac{\sqrt{2\pi}}{8}\sqrt{\mu u}\exp\left(-\frac{u}{2}\right)$$

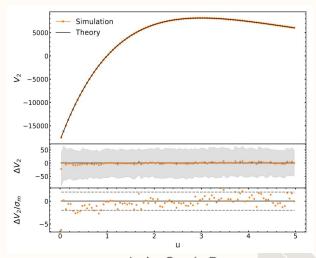
$$\frac{\mathbb{E}\left[V_2(A_u)\right]}{4\pi} = \mu\frac{(u-1)\exp(-u/2)}{2\pi}$$

We verify theory and simulations

- Simulation are fully compatible with predictions (shown below with residuals and residual over std)
- But realistic simulations must include anisotropic noise (observational strategy)



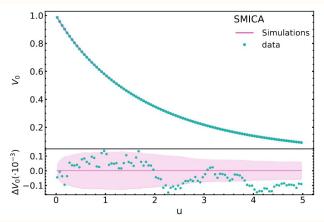


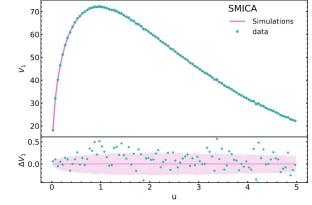


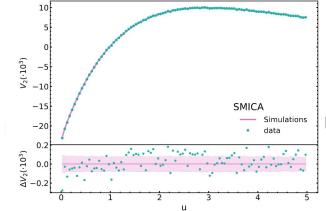
Planck P^2 is compatible with realistic simulations

- Realistic simulations must include anisotropic noise
- There is no significant deviation (SMICA & SEVEM)
- Significant improvement for **future observations**

		χ^2	p_{exc} (%)
V_0	SMICA	1.02	43.7
	SEVEM	0.81	75.3
V_1	SMICA	0.91	60.7
	SEVEM	1.36	8.3
V_2	SMICA	1.22	21.0
	SEVEM	0.82	68.0







There is more information in the polarization field

- Polarization is a spin-2 complex field
- Information is lost in any scalar projection (P, E, B, Q, U, ...)
- We analyze the full polarization information using

$$f(\phi, \theta, \psi) = Q(\phi, \theta)\cos(2\psi) - U(\phi, \theta)\sin(2\psi)$$

• This is defined in SO(3), a 3D manifold

arXiv: 2301.13191

Minkowski Functionals in SO(3) for the spin-2 CMB polarisation field

J. Carrón Duque, a,b,1 A. Carones, a,b D. Marinucci, a,b M. Migliaccio, a,b and N. Vittorio a,b

We obtain the theoretical expectation

- More complicated case due to:
 - Anisotropy of the field (in the ψ direction) 0
 - Non-diagonal metric 0
- Expanding the formalism, we obtain:

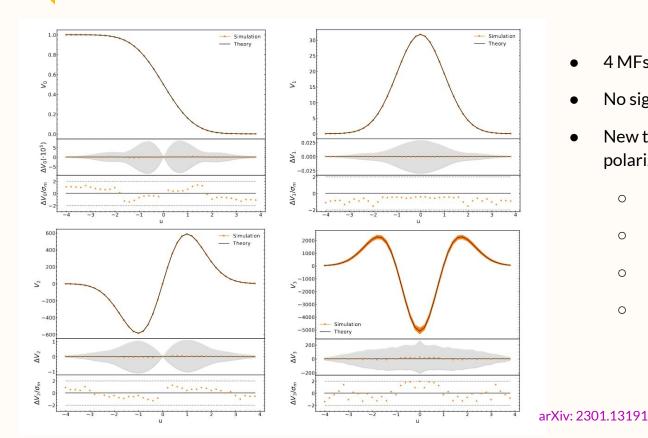
$$\mathbb{E}[v_0] = 1 - \Phi(u)$$

$$\mathbb{E}[v_1] = K_1 \frac{5}{6\pi\sqrt{2}} \mu^{1/2} \exp\left(\frac{-u^2}{2}\right)$$

$$\mathbb{E}[v_2] = K_2 \frac{5}{24\pi^{3/2}} \mu u \exp\left(\frac{-u^2}{2}\right)$$

$$\mathbb{E}[v_3] = \frac{5}{8\sqrt{2}\pi^2} \mu (u^2 - 1) \exp\left(\frac{-u^2}{2}\right)$$

Simulations are fully compatible with theory



- 4 MFs in 3D space
- No significant deviation found
- New tool to explore polarization:
 - Blind deviations 0
 - Cleaning techniques 0
 - Foreground models 0
 - Non-Gaussianity/ 0 anisotropy

MFs can be applied to the 3D density field

The LSS is NOT Gaussian: lots of information in its non—Gaussianities

Primordial non—Gaussianities

- Consequence of Inflation
- MFs are well suited for some models
- Blind or model dependent
- Can MFs distinguish both origins?
 - Can we include the effect of Gravity?
- Can MFs constrain cosmological parameters?
 - Yes, at least with forward modelling
- How do they compare to other statistics?
 - o Theoretical models, degeneracies, systematics, ...

Late Universe non—Gaussianities

- Consequence of Gravity and Baryonic effects
- Dominant, especially at small scales

MFs can have many other applications

- We are looking into:
 - Galactic dust polarized emission
 - Morphology of the LSS
 - Forecasts for future missions
 - CMB power asymmetry
 - o + new ideas?

We developed Pynkowski as a Python package

- Pynkowski is fully documented and modular
 - \circ Theory module: theoretical predictions of different kinds of fields (Gaussian, χ^2 , f, ...)
 - Data module: different kinds of data structures (numpy arrays, healpix maps, ...)
 - Stats module: different higher-order statistics (MFs, maxima/minima distribution, ...)
- All modules are easy to use and expand

Now available!

https://github.com/javicarron/pynkowski

\$ pip install pynkowski

Pynkowski is easy to use

\$ pip install pynkowski

```
import numpy as np
import healpy as hp
import pynkowski as mf
# Define the thesholds for the excursion sets
us = np.linspace(-5., 5., 100)
my_map = ...
my_cls = hp.anafast(my_map) # or load from file
data_map = mf.Healpix(my_map, normalise=True, mask=None)
                                                             # Default parameters
v0_data = mf.V0(data_map, us)
v1_data = mf.V1(data_map, us)
v2_data = mf.V2(data_map, us)
# Compute the Minkowski Functionals on a Gaussian random field with the same power spectrum
gaussian_field = mf.SphericalGaussian(my_cls, normalise=True, fsky=1.)
                                                                             # Default parameters
v0_theory = mf.V0(gaussian_field, us)
v1_theory = mf.V1(gaussian_field, us)
v2_theory = mf.V2(gaussian_field, us)
                                                                                                      Python
```

Beyond isotropy

- What are the main cosmological observables?
- Why are Gaussianity and isotropy important?
- What are Minkowski Functionals?
- Why are they useful?
- How can they be extended to CMB polarization?
- What about anisotropy?

Anisotropy: how and why?

• Homogeneity and isotropy simplify the 1 and 2-point correlation functions:

$$\langle a_{\ell m} a_{\ell' m'}^* \rangle = \begin{cases} C_{\ell} \, \delta_{\ell, \ell'}^K \delta_{m, m'}^K \\ C_{\ell m \ell' m'} \end{cases} \qquad \langle \delta(\vec{k}) \delta^*(\vec{k'}) \rangle \propto \begin{cases} P(|\vec{k}|) \, \delta^D(\vec{k} - \vec{k'}) \\ P(\vec{k}, \vec{k'}) \end{cases}$$

- Hints for possible violation of statistical isotropy at large scales
- CMB anomalies: Lack of correlations at $\theta > 60\deg$, power asymmetry, quadrupole–octupole alignment, parity violation
- Kinematic dipole: tension between CMB and LSS
- Bulk flows at large scales

Some models predict anisotropy

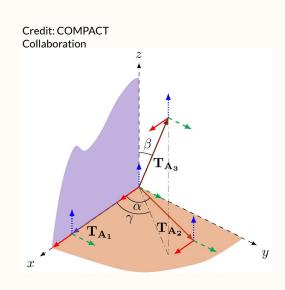
- There are phenomenological and theoretical models that break isotropy and homogeneity
- Tilted cosmology, modulating fields, ...
- Bianchi Universe
- Non-trivial topology

- FLRW metric (locally homogeneous and isotropic)
- In the flat case: 18 possible topologies (\mathbb{R}^3 is just one of them)

Cosmic Topology has observable effects

- The simplest case is the flat 3-torus
- The Universe repeats itself in every direction
- Defined by three vectors, pointing to your "clones" (6 physical dof)
- The repetition size must be large (larger than the CMB)
- So does it affect the observable Universe?
 - Discretization of modes
 - \circ Correlation between modes with the same $|\vec{k}|$

$$\langle \delta(\vec{k}) \delta^*(\vec{k}') \rangle \propto P(|\vec{k}|) \, \delta^D(\vec{k} - \vec{k}')$$
 for allowed \vec{k}



- What are the main cosmological observables?
- Why are Gaussianity and isotropy important?
- What are Minkowski Functionals?
- Why are they useful?
- How can they be extended to CMB polarization?
- What about anisotropy?

Takeaway points

- Minkowski Functionals are useful tools to study fields beyond Gaussianity and Isotropy, with many applications in both the Early and Late Universe
- We have expanded the formalism to CMB polarization in two ways: with the polarization intensity P², and with the full information in the spin map
- We have created Pynkowski to ease the application of MFs to the community
- It is important to test the **isotropy** of the Universe for many reasons, such as to understand its **topology**

Takeaway points

- Minkowski Functionals are useful tools to study fields beyond Gaussianity and Isotropy, with many applications in both the Early and Late Universe
- We have expanded the formalism to CMB polarization in two ways: with the polarization intensity P², and with the full information in the spin map
- We have created **Pynkowski** to ease the application of MFs to the community
- It is important to test the **isotropy** of the Universe for many reasons, such as to understand its **topology**

Thank you!

