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| will talk about

What are the main cosmological observables?
Why are Gaussianity and isotropy important?
What are Minkowski Functionals?

Why are they useful?

How can they be extended to CMB polarization?

What about anisotropy?
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Introduction

e What are the main cosmological observables?

e Why are Gaussianity and isotropy important?
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There are two main cosmological observables

10* seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Credit:

Beginning
of the
Universe

Inflation Formation of Light and matter Light and matter  Dark ages First stars
light and matter are coupled separate

«— Cosmic Microwave
Background (CMB)

— Large Scale
Structure (LSS)

Planck data
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The Cosmic Microwave Background ( )

Credit of the three
images: Planck

Planck data

>
Plasma becomes transparent Light is bent by the space Light is modified by massive The galaxy emits light in e
Photo of the plasma at this time curvature caused by the structures similar wavelengths
(~380000 years) mass distribution (Integrated Sachs-Wolfe,

Sunyaev-Zeldovich)
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The Cosmic Microwave Background ( )

Credit:
Planck

100 GHz 143 GHz 217 GHz

353 GHz 545 GHz

B The CMB is reconstructed
within the confidence mask

through different methods
The CMB is observed in

different wavelength bands (Temperature and

polarization information)
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And the Large Scale Structure (LSS)

Credit: Center for
Cosmological Physics

Evolves due to gravity
and baryonic effects

Initial conditions for the plasma
(Gaussian, homogeneous, isotropic)
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are simple

Let f(x) be areal random field

We observe at points 7, ..., %y

The field is Gaussian iff, for any set of observed points:
o  The probability distribution is a multivariate Gaussian N (i, X)
With i = {E[f(Z)],..., E[f(ZN)]} the expected value at the points

and %, = Cov[f(Z:), f(Z;)] the covariance between pairs

Fully defined by 1-point and 2-point correlation functions!
Higher order correlation functions are given by these two (Isserlis’ Theorem)

Primordial perturbations and CMB are Gaussian fields (or very close to it)
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Homogeneity and isotropy are typically assumed

e Homogeneity: invariance to translations
o  The expected value is constant
o  The covariance only depends on the relative distance (vector)

e |sotropy:invariance to rotations
o Typically requires a center
o  With homogeneity: the covariance only depends on the relative distance (modulus)

CMB Power spectrum Matter power spectrum
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Itis important to go these assumptions

(Near) Gaussianity in the primordial plasma is predicted by Inflation
Non-Gaussianity can provide useful information

About Inflation and Early Universe Physics

(CMB) About Late Universe effects on the CMB

(LSS) About non-linear gravity and baryonic effects
About systematics, biases, foreground contamination, ...

o O O O

Homogeneity and isotropy is assumed by the Cosmological Principle
Deviations can provide useful information

About the topology of the Universe

About gradients in the Universe (i.e., dipoles)

About the velocity of the Milky Way and other structures
About systematics, biases, foreground contamination, ...

o O O O
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Other statistics can probe further information

N points correlation functions (bispectrum, trispectrum, ...)

Anisotropic power spectrum, density-split power spectrum, ...

Extrema statistics (maxima, minima, saddle points)

Stacking

Topological descriptors: Minkowski Functionals, Betti numbers, persistent homology
Wavelet Scattering transform

Field-level inference

Machine Learning

fn1 isveryimportant, but not the only way
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Minkowski Functionals

What are Minkowski Functionals?
Why are they useful?

How can they be extended to CMB polarization?
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describe the geometry and
topology of the field

We consider afield (e.g., T'or 6)

Let u be a threshold (e.g., 20)

We define the excursion set A(u) as the regions of the field above u
Minkowski Functionals (MFs) are:

o Vo:areaof A(u)
o  Vi:boundary length of A(u)

o  V.:Euler—Poincaré characteristicof A(u) (#regions - #holes)

They are higher-order statistics (complement N-point correlation functions)
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MFs are accurately predicted

For Gaussian isotropic fields, the expected value is known and the variance is small

It is independently affected by only three factors: threshold, manifold, correlation length

E[V;(Au)] & pj(u)Vo(S*) '

Threshold Ambient Correlation length
manifold of the map
° (u): gaussian x Hermite polynomial 3000
pPi\u)-
» 20001 | M
. %(S ) = 47 X [fsky] Z':;
. . 1000
e [i:inverse of correlation length
0
0 50 100 150
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\ MFs are accurately predicted
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MFs have plenty of

Any deviation is due to non—Gaussianity and/or anisotropy

Early Universe (e.g., T): test for primordial non—Gaussianity
o Planck 2018 VIl (isotropy & statistics)

Late Universe (e.g., x): extract more cosmological information
o  Euclid Preparation XXIX (2023), Grewal+ (2022),
Zurcher+ (2022), ...

Foregrounds (e.g., Galactic):
o  Martire+ (2023), Krachmalnicoff+ (2020), ...

Large Scale Structure (e.g., galaxy distribution):
o  Liu+(2023), Jiang+ (2023) Appleby+ (2022),
Spina (2021), ...
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\ We want to extend MFs to CMB polarization

CMB polarization is an information-rich complement to CMB temperature

It is a complex spin-2 field defined on the sphere

We extend the MF formalism in two ways

,. _4u‘ »\..
/IL;

pK
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\ We extend MFs to the modulus of

arXiv: 2211.07562

Minkowski Functionals of CMB polarization intensity with Pynkowski:
theory and application to Planck and future data

) 3 5 b 5 3 & A i < b) 5 . o
Alessandro Carones!'2*, Javier Carrén Duque"-, Domenico Marlnuc013, Marina Mlghacmo"-, Nicola Vittorio!+2

e We generalize the theoretical formula for P? = Q? + U?

e Thisfieldis not Gaussian ( y2+ spin effects)

E [Vo(Au)] exp( u)

47 2
E[Vi(A)] V2 u
ar 8 We"p(_ 5)
E[V2(Au)] = (u—1)exp(-u/2)
4 - K 2
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\ We verify theory and simulations

Vo

AV,

AVolom
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Simulation are fully compatible with predictions
(shown below with residuals and residual over std)

But realistic simulations must include anisotropic noise

(observational strategy)
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arXiv: 2211.07562
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Vo

AVo(-1073)
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is compatible with realistic simulations

arXiv: 2211.07562
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X2 Pexc (%)
Vo SMICA | 1.02 43.7
e Realistic simulations must include anisotropic noise SEVEM | 0.81 75.3
Vi SMICA 0.91 60.7
e Thereis nosignificant deviation (SMICA & SEVEM) SEVEM | 1.36 8.3
Vo,  SMICA | 1.22 21.0
e Significant improvement for future observations SEVEM | 0.82 68.0
SMICA 70 ,"’M\"a. SMICA 10 M
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There is more information in the polarization field

Polarization is a spin-2 complex field
Information is lost in any scalar projection (P, E, B, @, U, ...)

We analyze the full polarization information using
f(9,0,9) = Q(¢,0) cos(2¢) — U(¢, 0) sin(2¢)
This is defined in SO(3), a 3D manifold arXiv: 2301.13191

Minkowski Functionals in SO(3) for
the spin—2 CMB polarisation field

J. Carrén Duque,*"! A. Carones,’ D. Marinucci,* M.
Migliaccio,*’ and N. Vittorio®’
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\ We obtain the

e More complicated case due to:

expectation

o  Anisotropy of the field (in the  direction)

o  Non-diagonal metric

e Expanding the formalism, we obtain:

E[vg] =1— ®(u)

s 1 g o ()
67/ 2 2
5) —u?

i iee (5)

Elus) = o (e~ Dewp ()
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AV, /om

Simulations are fully compatible with theory

AV,

AVA /O,

AV

AVs/on,

e 4 MFsin 3D space
e Nosignificant deviation found

e Newtool toexplore
polarization:

o Blind deviations

O

Cleaning techniques
o  Foreground models

o  Non-Gaussianity/
anisotropy
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MFs can be applied to the 3D

e The LSS is NOT Gaussian: lots of information in its non—Gaussianities

Primordial non—Gaussianities

e Consequence of Inflation
e MFsare well suited for some models
e Blind or model dependent

e Can MFsdistinguish both origins?
o  Canwe include the effect of Gravity?

e Can MFs constrain cosmological parameters?
o Yes, at least with forward modelling

e Howdothey compare to other statistics?

Late Universe non—Gaussianities

e Consequence of Gravity and Baryonic effects
e Dominant, especially at small scales

o  Theoretical models, degeneracies, systematics, ...
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MFs can have many other applications

e Wearelookinginto:
o  Galactic dust polarized emission
o  Morphology of the LSS
o  Forecasts for future missions
o CMB power asymmetry

o +newideas?
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We developed as a Python package

Pynkowski is fully documented and modular
o  Theory module: theoretical predictions of different kinds of fields (Gaussian, 3 f,...)
o Datamodule: different kinds of data structures (numpy arrays, healpix maps, ...)
o  Stats module: different higher-order statistics (MFs, maxima/minima distribution, ...)

All modules are easy to use and expand

\la'\\ab\e\'

)
D () https://github.com/javicarron/pynkowski

$ pip install pynkowskt
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Pyn kOWSki iS easy tO use O https://github.com/javicarron/pynkowski

my_cls = hp.anafast(my_map)

data_map = mf.Healpix(my_map,
v0_data

v1_data
v2_data mf.v2(data_map, us)

gaussian_field mf.SphericalGaussian(my_cls, n

v0_theory = mf.vVO(gaussian_field, us)

vi_theory mf.Vi(gaussian_field, us)

v2_theory f.v2(gaussian_field, us)
Javier Carréon Duque
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Beyond isotropy

What about anisotropy?
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: how and why?

Homogeneity and isotropy simplify the 1 and 2-point correlation functions:

Cy 65, 0K s P(|k|)
m >|</ / — ’ m’m 5 k 5* k — —
(Qom ) Con (0(k)o™(K')) o PURLF

Hints for possible violation of statistical isotropy at large scales

CMB anomalies: Lack of correlations at § > 60 deg, power asymmetry, quadrupole-octupole
alignment, parity violation

Kinematic dipole: tension between CMB and LSS

Bulk flows at large scales
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Some models predict anisotropy

There are phenomenological and theoretical models that break isotropy and homogeneity
Tilted cosmology, modulating fields, ...
Bianchi Universe

Non-trivial topology

FLRW metric (locally homogeneous and isotropic)

COMPACT

In the flat case: 18 possible topologies (R? is just one of them)
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Cosmic Topology has effects

The simplest case is the flat 3-torus

The Universe repeats itself in every direction

Defined by three vectors, pointing to your “clones” (6 physical dof)
The repetition size must be large (larger than the CMB)

So does it affect the observable Universe?

o Discretization of modes
o  Correlation between modes with the same |k|

—

(6(k)6*(K")) o< P(|k|) 6P (k — ') for allowed k

Credit: COMPACT
Collaboration
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What are the main cosmological observables?
Why are Gaussianity and isotropy important?
What are Minkowski Functionals?

Why are they useful?

How can they be extended to CMB polarization?

What about anisotropy?
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Takeaway points

Minkowski Functionals are useful tools to study fields beyond Gaussianity and
Isotropy, with many applications in both the Early and Late Universe

We have expanded the formalism to in two ways: with the
polarization intensity P? and with the full information in the spin map

We have created to ease the application of MFs to the community

It is important to test the isotropy of the Universe for many reasons, such as to
understand its topology
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