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1. Background on topology for astronomy
2. Introduction to persistent homology

OUU ine 3. Applications of Persistent Homology

i. Hypothesis testing: Cold Dark Matter vs. Warm Dark Matter
ii.  Finding holes in the Universe

Collaborators:
Brittany T. Fasy and Eric Berry (Montana State),
Wojciech Hellwing and Pawet Drozda (Polish Academy of Sciences),

Mark R. Lovell (U. of Iceland), Mike Wu (Stanford), Yen-Chi Chen (UW-Seattle), Xin Xu (Didi),
Sheridan Green (Susquehanna), Daisuke Nagai (Yale)



Euler characteristic (EC)

Leonhard Euler (1707-1783) made an observation about polyhedra:
#Vertices - #Edges + #Faces = 2

Vertices Edges | Faces | Euler characteristic:
v E F V-E+F If you glue together P polyhedral at a common face, this

becomes

Name Image

Tetrahedron 4 6 4 2

Hexahedron or cube ‘ 8 12 6 2 ﬁ
Octahedron ‘ 6 12 8 2
(a) 8-12+6-1=1 (b) 16-28+16-3=1
Dodecahedron 20 30 12 2
Worsley, K.J., 1996. The geometry of random images. Chance, 9(1), pp.27-40
Icosahedron . 12 30 20 2

Table from https://en.wikipedia.org/wiki/Euler_characteristic



Holes

But these formulas do not hold in general...if a hole is present, it
reduces V-E+F-Pby1l

v N W

(a) 8-12+6-1=1 (b) 16-28+16-3=1 (c) 32-64+40-8=0
Hollow
-
(d) 48-100+64-13=-1 (e) 56-120+78-16=-2 () 64-144+108-26=2

Worsley, K.J., 1996. The geometry of random images. Chance, 9(1), pp.27-40



Topology of the Universe

* |980s-1990s: investigations of matter distribution
* Sponge-like topology of Large-scale Structure (LSS, Gott+ 1986):

* “There has been a debate between hierarchical clustering models in which clusters are high-density
islands in a low-density sea, and models in which

”

e Third option: Sponge-like topology. “Sponges are characterized by many holes; chambers are
connected by tunnels. Thus both the high- and low-density regions are multiply connected.”

* Used genus (g) to describe galaxy distribution (EC = 2 — 2g for closed surfaces)
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Image: Gott, Melott, and Dickinson 1986 Image: Shandarin 1983



Bubble
topology

Meatball
topology

Euler characteristic, EC

pong
topglogy
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threshold, t

Worsley, K.J., 1996. The geometry of random images. Chance, 9(1), pp.27-40

Figure 4 Plot of the observed EC of the set of high-
density regions of the real galaxy data (points), and
the expected EC from the formula (curve) for a Gaus-
sian random field model, plotted against the density
threshold. The observed and expected are in reason-
able agreement, confirming the Gaussian random field
model: high thresholds produce a “meatball” topol-
ogy (Fig. 2a); medium thresholds produce a “sponge”
topology (Fig. 2b), and low thresholds produce a
“bubble” topology (Fig. 2c).




Holes in LSS

Millennium Simulation Sy ST S
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(Springel+2005) R =
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Motivation: TDA for Cosmology

Dark Matter Density

- i

=2 | : il |

11 Billion Years Ago ; £ Billion Years Ago

Warm dark matter

Image credit: Figure 1.10 from Vennin, V., 2014. Cosmological inflation: theoretical aspects and observational
constraints (Doctoral dissertation, Université Pierre et Marie Curie).

z=0
Present

Image credit: Ben Moore (University of Zurich)

Can persistent homology discriminate LSS generated
under different models?




Persistent homology

Homology — Persistent homology
Count holes Count holes in data

Betti Numbers
fo = Connected Components

31 = Loops
ﬁz = Voids




HOmOlogy ConS|der|ng data o = Connected Components

1 = Loops

Bo=1p06=1 Bo=15p1 =0 ’)

Image of LSS: http://astro.berkeley.edu

Persistent homology is a multi-scale version of homology

(e.g., Edelsbrunner+2002; Edelsbrunner and Harer 2008; Carlsson 2009)

11



Persistent homology: Vietoris Rips filtration

radius = 0.45 radius = 0.48 radius = 0.92

Birth of loop: diameter =2 x 0.48 = 0.96
Death of loop: diameter=2x0.92=1.84
Persistence (or lifetime) of loop: 1.84 - 0.96 = 0.88

* Define S¢ =U’{‘=1 B(Y;, €) (union of balls with radius € centered at observations Y, ..., Y, )
* Persistent homology tracks the changing homology of S across a range of €’s

 The birth and death times of different holes (homology group generators) are plotted on a persistence diagram.
12



Simplex

* A o is the convex hull of p+1 affinely independent points x,,
X1y ooy Xy € Rd. Denote 0 = convi{Xxy,...,X,}, and the dimension of g is p.

* A O-simplex is a vertex, 1-simplex an edge, 2-simplex a triangle, and 3-simplex

a tetrahedron
0 1 2 3
Point Line segment Triangle Tetrahedron

° A of o is convS where SC{Xx,...,x,} is a subset of the p+1 vertices.

13



Simplicial complex

A simplicial complex K is a finite collection of simplices such that
1) o € Kand tbeing a face of o implies t €K, and
2) 0,0 € Kimplies onao’is either empty or a face of both o and ¢'.

Simplicial complex Not a simplicial complex
14



Finding a hole (basic illustration)

* Loops (1-cycles) for simplicial complex below: Z, ={0, ¢4, ¢,, ¢c5}
* Uninteresting loops: B, = {0, ¢,} (“boundary cycles”)
* Interesting 1-cycles are c, + B; = c3 + B; = {c,, ¢3}

Cq Ch Cj3

Xiaojin Zhu, Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing, In IJCAI, 2013.

15



Persistent homology summaries
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A persistence diagram D is a collection of birth (b;) and death (d ;) times of homology group
generators of a particular dimension (7;):

D={(r,b,d)j=1,..,n7}

where 1, is the number of homology group generators off the diagonal.

- Rather than defining the filtration using a Rips Complex over the data points, a function can be used for persistent homology
- Kernel density estimates or Distance-to-Measure (DTM) functions (Chazal+2011) are popular approaches in TDA for turning a
point-cloud of data into a function
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Some examples from astronomy

Monthly Notices

MNRAS 486, 1523-1538 (2019) doi:10.1093/mnras/stz908
Advance Access publication 2019 March 30

Persistent topology of the reionization bubble network — I. Formalism and
phenomenology

Willem Elbers “* and Rien van de Weygaert

Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700AV Groningen, the Netherlands
Monthly Notices

MNRAS 465, 4281-4310 (2017) doi:10.1093/mnras/stw2862
Advance Access publication 2016 November 10

The topology of the cosmic web in terms of persistent Betti numbers

Pratyush Pranav,'->* Herbert Edelsbrunner,® Rien van de Weygaert,! Gert Vegter,*
Michael Kerber,” Bernard J. T. Jones! and Mathijs Wintraecken*¢

A&A 648, A74 (2021)
https://doi.org/10.1051/0004-6361/202039048 tro nomy
OESO2021 Astrophysics

Persistent homology in cosmic shear: Constraining parameters
with topological data analysis

Sven Heydenreich!, Benjamin Briick?, and Joachim Harnois-Déraps’>*

Alpha, Betti and the Megaparsec Universe:
On the Topology of the Cosmic Web

Rien van de Weygaert!, Gert Vegter?, Herbert Edelsbrunner®, Bernard J.T. Jones!,
Pratyush Pranav'!, Changbom Park®, Wojciech A. Hellwing®,
Bob Eldering?, Nico Kruithof?, E.G.P. (Patrick) Bos!, Johan Hidding',
Job Feldbrugge!, Eline ten Have®, Matti van Engelen?,
Manuel Caroli’, and Monique Teillaud”

Monthly Notices

MNRAS 507, 2968-2990 (2021) https://doi.org/10.1093/mnras/stab232¢
Advance Access publication 2021 August 17

Persistent homology of the cosmic web — 1. Hierarchical topology in
A CDM cosmologies

Georg Wilding ©,123* Keimpe Nevenzeel,! Rien van de Weygaert,' Gert Vegter,23
Pratyush Pranav ©,45 Bernard J. T. Jones ©,! Konstantinos Efstathiou?*¢ and Job Feldbrugge*

17



Hypothesis testing

References:
C-K, Fasy, Hellwing, Lovell, Drozda, and Wu (2022)
Berry, Chen, C-K, and Fasy (2020)



Copernicus Complexio (COCO) simulations

Figure 1. Projected density along the z-axis of a 70.4 x 70.4 x 1.5k~ Mpc
slice centred on the middle of the coco simulation at redshift z = 0. The vari-
ous colours show the density at different resolution levels: lowest resolution
(grey), medium resolution (orange and purple) and high resolution (blue to
yellow). Note the amazing level of the cosmic web details seen inside the
high-resolution region.

Figure credit: Hellwing+2016

e COCO cosmological simulation data
o Cold Dark Matter (CDM, Hellwing+2016)
o Warm Dark Matter (WDM, Bose+2016)

* N-body simulations of structure formation

» Simulation box: 70.4 Mpc/h per side
o High-resolution central sphere with radius 17.4 Mpc/h

* Objects in data are dark matter halos with a particular mass

Note:
1 pc =1 parsec = 3.26 light years
h = encodes uncertainty about the expansion rate of the Universe

19



Two-sample hypothesis test

Given two sets of persistence diagram,

D",...,DY ~ DM DY . DEZ ~ DO

where D and D@ are the true underlying distributions of persistence diagrams for group 1
and 2, respectively (existence of distributions established in Mileyko+2011).

Then consider the two-sample hypothesis testing framework with

Hy: DY =D vs. Hy : DY £ D)

Test statistic: Persistence diagrams are difficult objects to work with (e.g., computationally
expensive to compute distances between two diagrams)
— consider functional summaries of persistence diagrams

Reference: Berry, Chen, C-K, and Fasy (2020) 20



Functional summaries of persistence diagrams

Many functional summaries have been proposed
(e.g., Chazal+2014; Adams+2017; Bubenik 2015; Chen+2015; Biscio and Mgller 2019)

Functional summary
F: D — F where D is the space of persistence diagrams and F is a collection of functions.

Random diagrams, Dy, ..., D,, € D become random functions F;, = F(D,), ..., F, = F(D,,)) € F

Test statistics
Let F; = [F(Di(s)), for diagram i of sample s = 1,2, and F; = n, "t Y7 Fy ;(t)
F; is a consistent estimator of the population mean functional summary, IE(FS(t))

> Use T = d(F}, F,) as test statistic for some metric d (")

d(Fy, Fy) = [ |Fi(t) — Fy(t)|dt

Reference: Berry, Chen, C-K, and Fasy (2020)

21



Landscape and Silhouette functions

Landscape functions (Bubenik 2015, Bubenik and Dlotko 2017) are the collection of functions
t—b; te by, %t
Ap(k,t) = kmax A, (1), where A, (t) = {d] —t te [dj;bj,dj] Eand (I, /r, t) — GB]{;EIADT (k, t)

p; €D .
0 otherwise

bj+d; dj—b;j
where kmax selects the kth largest value, k € N, pj = ( > ) j=1,..,n,risthe

homology group dimension and T be an index set of Iandscape Iayers.

Weighted Silhouette Functions are weighted , ST 1d 1PN, . (t)

L , , ’ __ g=1 177" br.; Pr,j

combinations of landscape function, defined as Jrsil(T, t ’ p) = ST Tdy o —
71=1 ,J

br,j|P

—H

v Persistence diagram Landscapes and Silhouette

— Ap(1,t)
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Euler Characteristic and Betti Functions

The Betti functions track the number of homology group generators (i.e., the

homology group rank) that persist across the filtration parameter t for each
dimension 7, defined as

Foetti(r,t) = [{(r,b5,d;) : b; <t,d; >t}

The Euler Characteristic function is the alternating sum of the Betti functions,
defined as

Fec(t) = 272:0 (—1)" Foetti(r, t)‘

23



'COCO-CDM - b N " COCO-WDM

e 23x23x10 Mpc slide of COCO-CDM (left) and COCO-WDM (right).

e Eight of the 77 volumes used in this study are displayed: the MW-analog halos are enclosed by a green circle with a
radius 3 Mpc indicated by a white circle.

« Selected haloes have masses between 0.5x10%? Mg, and 2x10*? Mg, with no haloes with masses > 0.5x102 Mg, within 0.7 Mpc.

24



Comparison Methods

Persistence Diagram Test (PDT, Robinson & Turner 2017) compares persistence diagrams directly using the
following test statistic

2
7—PDT(D1,1:n1|r7 D2,1:n2|r | P, Q) — Zl:l 2’”4(7}&1—1) Z?;l Z;bl:1 Wp(Dl,i|r7 Dl,j|7“)q

Dy 1.n,|r = set of n; persistence diagrams for homology dimension r from population [ = 1,2
W, (-,-) is the p-Wasserstein distance, with1 <p < ocoand1 < g < o0

Wp(Dl, DQ) = (infn:D1—>D2 ZCEEDl HCU o 77(56)”2090) g

We use the Bottleneck distance withp = ccandg =1
Weo (D1, Ds) = inf77:D1—>D2 SUP.cp, |z —n(2) oo

Spatial Point Process Functions:
G-function (distribution function of the nearest-neighbor distance)

Pair-correlation function (aka two-point correlation function, 2PCF)
25




Results (p-values, 20,000 permutations)

Test statistic Notation Homology dimension Pperm Benatched
Landscape Fiana(1 : 10,0,¢) 0 0 0
Silhouette Far(0,t | p=0.5) 0 0.009 0
Silhouette Fsit(0,t | p=1) 0 0.001 0
Silhouette Feu1(0,2 | p=2) 0 0 0

Betti Fhoetti(0,1) 0 0.001 0
PDT Tepr(D;,.j0, D2,.10 | 00,1) 0 0.003 0
/" Landscape Flana(l: 10,1,%) 1 0 0 "\
Silhouette Feil(1,t | p=0.5) 1 0.009 0
Silhouette Far(L,t | p=1) 1 0.007 0
Silhouette Far(1,t | p=2) 1 0.014 0
Betti Foetri(l,1) i § 0 0
\__ PDT Tepr (D11, Da,j1 | 00,1) 1 0.255 0.036_/
/Landscape  Faaa(1:10,2,¢) 2 0 0 Y\
Silhouette Fei1(2,t | p = 0.5) 2 0.123 0.003
Silhouette Fir(2,t | p=1) 2 0.158 0.009
Silhouette Far(2,t | p=2) 2 0.135 0.008
Betti J:betti(z, t) = 0.001 0
. PDFT Tept(Dy,.12, D212 | 00,1) 2 0.009 0 )
Euler characteristic Fec(t) 0-2 0.001 0
G-function Fa(t) N/A 0 0
2PCF Fapcr(t) N/A 0 0

26



Interpretation

)
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F gitt betti(O

0

100

1=1
CDM has morei connected components 0. CDMEhas more loops 2 CDM has more VOidé
/ = 10 : ~
: 2 o 30
IJ-_o 10 2 \LI-_c -1
J WDM has more loops
. —20 : -2 WDM has more voidsi
000 025 050 075 1.00 00° 05 10 15 20 00 05 10 15 20 25
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Y 150
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-200
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Finding holes in the
Universe

Reference: Xu, C-K, Green, and Nagai (2019)



Visualization of Holes

Significant Cosmic Holes in Universe (SCHU) identifies representations of cosmic voids
and loops of filaments in cosmological datasets and assigns statistical significance

60 80 100

100

l | I l | l
/\ _ 100
& a 2

£ z[Mpc/h] z[Mpc/h]
8
10
80
60
40 ' 40
20 20
[ T T 1 0 '
0 5 10 15 yiMpchl

yMpc/h] °
Birth x[Mpc/h]

x[Mpc/h]
(left) Persistence diagram with 90% confidence band for H,; (middle) 23 voids identified with SCHU; (right) example of a filament loop with a p-value =0.011

Data based on simulation motivated by Voronoi Foam (Icke and van de Weygaert1987; van de Weygaert+1989; van de Weygaert1994)

Reference: Xu, C-K, Green, and Nagai (2019); builds on confidence sets for persistence diagrams from Fasy+2014.
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Confidence sets on persistence diagrams

* Inference on persistence diagrams requires a notion of distance.
Popular choice: bottleneck distance

* Bottleneck distance between two diagrams, D, and D, and bijection n:

W (Dlv DZ) — inf77:D1—>D2 SUP.e D, H:E — n(x)Hoo

e Examples of two matchings for Diagrams 1 and 2:

1.0

1.0

S—
/°\

o Diagram 1 o Diagram 1
A Diagram 2 A Diagram 2

* A

—

00 02 04 06 08 10 00 02 04 06 08 10
Death Death

06 0.8
06 0.8

Birth
Birth

0.4
0.4

0.2

0.0
0.0




Fasy+2014 define a (1 — a) confidence set, C,,, for a persistence diagram D as an interval

[0, Gl with €, = coYy, . .., Ya), such that .o o p (WOO([)n, D) > cn) <a

n—,o0

where 5n is the observed diagram. Then ‘Cn = {ﬁ ; WOO (bn, 15) < Cn}

Persistence Diagram Persistence Diagram
O — (o)
n — n —
. o
< — [ J - < -
£ £
8§ R 8”7
N // N
- s, o -
o _‘/ o
| | | | | | | | | | | | | |
0o 1 2 3 4 5 8 o 1 2 3 4 5 8
Birth Birth

Relies on the Stability Theorem of Cohen-Steiner et al. (2007): W..(D(f), D(g)) £ IIf - gll.
(the L..—norm between two functions, f and g, bounds the bottleneck distance between their corresponding persistence diagrams)

Image: Fasy+2014 31



* Approximate the distribution of
W..(D,, D) with a bootstrz?\}o sample of size N,
w® @
— denote the resulting empirical distribution

as F_(w)

* Instead of confidence bands, SCHU assigns p-
values to each homology group generator i as

. (di—b,
p—value(i) =1- Fn (T)

Reference: Xu, C-K, Green, and Nagai (2019), https://github.com/xinxuyale/SCHU

R: TDA package

Death

1.5 20 25 3.0

1.0

0.0 05

| | | | | | |
00 05 10 15 20 25 3.0
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Simulation Study

z[Mpc/h]

z[Mpc/h]

Death

10

yiMpe/h] °

z[Mpc/h]

10(

80 80
60 60
40 40
20 20
0 5 10 15 yiMpch) © yiMpc/h) °
Birth x[Mpc/h] x[Mpc/h]
x[Mpc/h]
Table 1
p-values, birth and death times of all the 23 void generators found by SCHU, as shown in Fig. 10(c).
Generator A B C D E F G H I ] K L
Birth 9.16 5.37 5.14 7.48 8.12 9.64 9.70 9.64 8.74 8.92 9.46 9.64
Death 10.79 9.06 11.46 12.12 11.80 11.71 12.74 12.48 10.26 11.28 10.22 12.30
p-value 0.866 0.001 <0.001 <0.001 0.001 0.406 0.034 0.058 0.931 0.192 >0.999 0.084
Generator M N 0 P Q R S T U \% \
Birth 8.13 9.42 9.08 8.97 9.08 8.68 9.18 10.14 6.93 9.79 8.00
Death 12.10 11.97 11.82 9.92 12.42 9.63 13.25 11.05 11.12 12.29 10.65
p-value 0.001 0.114 0.071 >0.999 0.009 >0.999 0.001 >0.999 0.001 0.133 0.088

 Mapped the volume center of each of the 23 most persistent H, generators to its nearest void seed point
e Each of the 23 void seeds were uniquely matched with a corresponding generator suggesting that SCHU was
able to accurately locate the cosmic voids

Data based on simulation motivated by Voronoi Foam (Icke and van de Weygaert1987; van de Weygaert+1989; van de Weygaert1994)
Simulation box: 100 h-*Mpc per dimension and a grid spacing of 1 h-*Mpc.
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z[Mpc/h] z[Mpc/h]

y[Mpc/h] xIMpc/h] y[Mpc/h] XMpc/h]

(a) Filament loops (H) (b) Cosmic voids (H5)

Fig. 15. Filament loops (a) and voids (b) identified in the Libeskind et al. (2018) dataset using SCHU. The DTM function was constructed with my = 0.0002. The
most significant 10 filament loops (a) and the most significant 15 cosmic voids generators (b) are shown in different colors. All of their p-values are less than 0.001.
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Death

15

10

C%nfidence Band for H,
Overlap of Hy and H, Bands

10 15

Birth

* Libeskind+2018 carried out comparison of methods for finding different cosmological structures
o Used GADGET-2 dark-matter only N-body simulation code with 5123 particles

o The simulation cube is 200 h-1 Mpc per side

* Libeskind+2018 used this dataset to compare several cosmic environment classification methods
* Compare cosmic voids because filament loops are not defined/detected by other methods

mo=0.002 (corresponds to using 58 nearest neighbors)

Persistence diagram (right): displays 90% confidence band for H; (pink) and H, (blue) , used DTM filtration with

34
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Y[Mpe/h]

Y[Mpc/h)
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Concluding remarks

Spatially complex data are prevalent in science (e.g., Cosmic Web, fibrin)
— However, analyzing these data is not always straightforward

Persistent homology can extract summaries from data characterized by holes
— Functional summaries of persistence diagrams tend to be easier to work with than the diagrams for inference (e.g.

hypothesis testing) or prediction
Reference: Berry, E., Chen, Y.C., Cisewski-Kehe, J. and Fasy, B.T., 2020. Functional summaries of persistence diagrams. Journal of Applied and Computational Topology, 4(2), pp.211-262.
Code: https://github.com/JessiCisewskiKehe/generalized landscapes

TDA-based hypothesis tests detect differences between the WDM and CDM COCO data of MW-analog halo neighborhoods

—> Statistically significant differences detected on different scales from spatial point process functions
Reference: Cisewski-Kehe, J., Fasy, B.T, Hellwing, W., Lovell, M.R., Drazda, P., Wu, M., 2022. Differentiating small-scale subhalo distributions in CDM and WDM models using persistent

homology, Physical Review D, 106(2), p.023521.
Code: https://github.com/JessiCisewskiKehe/DarkMatterTDA

Representations of homology group generators may be used for visualization
— Significant Cosmic Holes in Universe (SCHU) can identify cosmic voids and filaments loops and assign statistical
significance

References: Xu, X., Cisewski-Kehe, J., Green, S.B. and Nagai, D., 2019. Finding cosmic voids and filament loops using topological data analysis. Astronomy and Computing, 27, pp.34-52.
Code: https://github.com/xinxuyale/SCHU

Many thanks! )


https://github.com/JessiCisewskiKehe/generalized_landscapes
https://github.com/JessiCisewskiKehe/DarkMatterTDA
https://github.com/xinxuyale/SCHU

