are given in Table I, the six possible combinations being
given in the six lines. The order of brightness of the satel-
lites was always, III, I, II and IV. The brighter of the
two satellites compared is given in the first column, the
faunter in the second. The times of observation, expressed
in Julian Days and decimals, omitting the three left-hand-
figures 241, are given in the third column. The mean of the
measures is given in the fourth column, and the resi-
duals from the mean, expressed in hundredths of a magni-
tude are given for the different days in the next three
columns. A least square solution, from the results in the
fourth column, gave the values 0.42, 0.16, and 0.64, for
the three intervals, III to I, I to II, and II to IV, respec-
tively. The computed values of all the intervals are given
in the eighth column, and the residuals found by subtracting
them from the observed values given in the third column
are given in the ninth column. In 1877 and 1878, mea-
sures of the satellites of Jupiter were made here and are
described in Volume XI, Chapter VIII. The difference in
magnitude there found between Jupiter and the four satellites,
and given on page 246 in the second column of Table XLVIII,
is for Satellite I, 8.13; for II, 8.27; for III, 7.76; for IV,
8.89. The corresponding differences between the magnitudes
of the satellites are given in the tenth column of Table I.
Thus, for Satellites I and III, we have, 8.13 — 7.76 = 0.37,
which is entered in the first line of the column. The differ-
cences between these and the computed values are found
by subtracting the values in the eighth column from those
in the tenth and are entered in the eleventh column. It
will be noticed that all of these differences are negative,
that is, that the interval between the satellites appeared to
be less in the earlier than in the later observations. Cor-
recting this difference, for which there is no obvious ex-
planation, by multiplying the results in the tenth column by
1.08 and subtracting the products from the computed values
given in the eighth column, we have the residuals given in
the twelfth column.

Table I. Results of observations.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>I</td>
<td>6900.592, 6907.524</td>
<td>0.42</td>
<td>00</td>
<td>00</td>
<td>00_0</td>
<td>0.42</td>
<td>+0.00</td>
<td>0.37</td>
<td>+0.05</td>
<td>—0.02</td>
</tr>
<tr>
<td>III</td>
<td>II</td>
<td>6904.538, 6906.528, 6918.542</td>
<td>0.62</td>
<td>00</td>
<td>00</td>
<td>00.04</td>
<td>01.03</td>
<td>+0.04</td>
<td>0.51</td>
<td>—0.07</td>
<td>—0.03</td>
</tr>
<tr>
<td>III</td>
<td>IV</td>
<td>6905.526, 6915.524</td>
<td>1.16</td>
<td>00.01</td>
<td>02.00</td>
<td>02.01</td>
<td>1.22</td>
<td>—0.04</td>
<td>1.13</td>
<td>—0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>I</td>
<td>II</td>
<td>6902.528, 6909.533, 6916.547</td>
<td>0.14</td>
<td>05.05</td>
<td>05.00</td>
<td>00_0</td>
<td>0.16</td>
<td>—0.02</td>
<td>0.14</td>
<td>—0.02</td>
<td>—0.01</td>
</tr>
<tr>
<td>I</td>
<td>IV</td>
<td>6922.518</td>
<td>0.83</td>
<td>00.00</td>
<td>—</td>
<td>—</td>
<td>0.80</td>
<td>+0.03</td>
<td>0.76</td>
<td>—0.04</td>
<td>+0.02</td>
</tr>
<tr>
<td>II</td>
<td>IV</td>
<td>6911.549, 6920.520, 6928.518</td>
<td>0.66</td>
<td>08.00</td>
<td>04.06</td>
<td>02.00</td>
<td>0.64</td>
<td>+0.02</td>
<td>0.62</td>
<td>—0.02</td>
<td>+0.03</td>
</tr>
</tbody>
</table>

The average value of the 26 residuals in the fifth,
sixth and seventh columns is ±0.020, and of the 6 resi-
duals in the eighth column, is ±0.025. The average value
of the residuals in the twelfth column is even smaller, ±0.018.
There appears therefore to be no evidence of variation during
the time that these measures were made.

Edward C. Pickering.

Osservazioni di piccoli pianeti e di comete
fatte col micrometro circolare al rifrattore equatoriale di 8 pollici del R. Osserv. di Brera in Milano.

<table>
<thead>
<tr>
<th>Data</th>
<th>T.m. Milano</th>
<th>Δα</th>
<th>Δδ</th>
<th>Cf.</th>
<th>a app.</th>
<th>log p.A</th>
<th>δ app.</th>
<th>log p.A</th>
<th>Red. ad l. app.</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1904</td>
<td>Lugl. 9</td>
<td>11 h 11 m 7 s</td>
<td>+0 m 20.99</td>
<td>+1° 54.4</td>
<td>16</td>
<td>18 h 17 m 57 s 15'</td>
<td>7.734</td>
<td>−17° 1° 47.2</td>
<td>0.617</td>
<td>+3° 06</td>
</tr>
<tr>
<td>1905</td>
<td>Genn. 0</td>
<td>9 56 28</td>
<td>−0 20.28</td>
<td>+1 57.5</td>
<td>8</td>
<td>6 41 51.5</td>
<td>9.427 a</td>
<td>+36° 17 57.0</td>
<td>0.281</td>
<td>+1.21</td>
</tr>
<tr>
<td>1905</td>
<td>1</td>
<td>15 55 14</td>
<td>+0 53.33</td>
<td>+8 2.4</td>
<td>8</td>
<td>6 40 27.0</td>
<td>9.645</td>
<td>+36° 15 5.4</td>
<td>0.505</td>
<td>+1.23</td>
</tr>
<tr>
<td>1905</td>
<td>2</td>
<td>9 38 38</td>
<td>+0 3.42</td>
<td>+8 13.4</td>
<td>16</td>
<td>6 39 37.17</td>
<td>9.325 a</td>
<td>+39° 13 16.4</td>
<td>0.356</td>
<td>+1.24</td>
</tr>
<tr>
<td>1905</td>
<td>4</td>
<td>9 49 13</td>
<td>−35.21</td>
<td>−4 39.8</td>
<td>12</td>
<td>6 37 15.36</td>
<td>9.382</td>
<td>+36° 7.2</td>
<td>0.293</td>
<td>+1.27</td>
</tr>
<tr>
<td>1905</td>
<td>8</td>
<td>10 10 59</td>
<td>−1 36.77</td>
<td>+14 31.7</td>
<td>9</td>
<td>6 32 41.36</td>
<td>9.189 a</td>
<td>+35 53 6.8</td>
<td>0.206</td>
<td>+1.30</td>
</tr>
<tr>
<td>1905</td>
<td>12</td>
<td>9 50 5</td>
<td>+0 42.6</td>
<td>−4 34.6</td>
<td>8</td>
<td>6 28 25.57</td>
<td>9.193 a</td>
<td>+35 35 28.1</td>
<td>0.218</td>
<td>+1.33</td>
</tr>
<tr>
<td>1905</td>
<td>14</td>
<td>8 36 38</td>
<td>+0 8.14</td>
<td>+4 10.9</td>
<td>16</td>
<td>6 26 28.43</td>
<td>9.450 a</td>
<td>+35 25 46.7</td>
<td>0.374</td>
<td>+1.33</td>
</tr>
</tbody>
</table>

(419) Aurelia.

(78) Diana.

(71) Niobe.

John G. Wolbach Library, Harvard-Smithsonian Center for Astrophysics • Provided by the NASA Astrophysics Data System
Osservazioni della cometa 1905 a
fatte col micrometro circolare al rifrattore equatoriale di 8 pollici del R. Osserv. di Brera in Milano.

Le osservazioni furono fatte dal sottoscritto; ad alcuni dei calcoli di riduzione prese parte l’assissente Dottor
Giovanni Bottino Barsissa.

Milano, 1905 Marzo 29.

Ingegnere Luigi Gabba.

Beobachtungen von Kometen

Datum	M. Z. Kgst.	Δa	$\Delta \delta$	Vgl. Bb.	α app.	log φ_Δ	δ app.	log φ_Δ	Red. ad l. app.
1905 | | | | | | | | | |
Jan. 14 | 17h16m45s | -2m59s60 | -0'227 | 20.6 | K | 17h46m27s29 | 9.328 | +59°53'23"0 | 0.155 | -0'09 | -16'8 | 1
Febr. 9 | 11h58m48.3 | +2 15.66 | +0 49.9 | 20.6 | | 10 26 31.89 | 9.927 | +44 22 54.0 | 0.143 | +1.84 | -11.8 | 2

John G. Wolbach Library, Harvard-Smithsonian Center for Astrophysics • Provided by the NASA Astrophysics Data System