PROBABLE EXCESS OF LITHIUM IN THE ATMOSPHERE OF THE MAGNETIC STAR β CORONAE BOREALIS

ROSANNA FARAGGIANA AND MARGHERITA HACK Osservatorio Astronomico Merate, Italy

Four spectrograms of β Coronae Borealis (F0p) taken with the grating spectrograph of the Merate Observatory, at a dispersion of 35 Å/mm, show a moderately strong line at λ 6708. The only possible identification is that with the resonance doublet of Li I at λ 6707.74 and λ 6707.89. Table I gives the equivalent widths of the Li I line and, for comparison, those of a blend of Gd II and Fe I at λ 6704.5.

TABLE I
EQUIVALENT WIDTHS

Plate	Date (UT) 1963	$W_{\lambda6708}$	$W_{\lambda6704,5}$	Remarks
H 1680	May 5.98	0.21	0.28	
H 1695	16.85	(0.31)	(0.45)	defective plate
H 1696	16.89	0.15	0.30	
Fa 1700	17.05	0.16	0.30	

Using the solar curve of growth, with $\log c/v = 5.16^1$ and the curve of growth for β Coronae Borealis² with $\log c/v = 4.85$ and assuming $-\log W/\lambda$ (sun) = 6.52,³ we find that the total abundance of lithium in the atmosphere of β Coronae Borealis is at least 1000 times higher than in the solar atmosphere. The lower limit is obtained by reducing the measured equivalent width for Li I by a factor of two in order to allow for possible errors due to the relatively low dispersion. This result confirms the hypothesis proposed by Fowler, Burbidge, and Burbidge⁴ that light elements like deuterium, lithium, beryllium, and boron might be produced by a spallation process in the atmospheres of the magnetic stars. Another proof of this hypothesis has been recently given by the observations of Sargent, Searle, and Jugaku⁵ that beryllium is probably overabundant by a factor of 100 in the atmospheres of the magnetic stars.

Observations of several magnetic stars in the λ 6700 region of the spectrum are in progress.

- ¹ K. O. Wright, Pub. Dominion Astrophysical Obs., 8, 1, 1951.
- ² M. Hack, Mem. Soc. Ast. Italia, 29, 263, 1958.
- ³ Recherches Ast. Obs. Utrecht, 15, 1960.
- ⁴ W. A. Fowler, G. R. Burbidge, and E. M. Burbidge, *Ap. J. Supplements*, **2**, 167, 1955 (No. 17).
- ⁵ W. L. W. Sargent, L. Searle, and J. Jugaku, *Pub. A.S.P.*, **74**, 408, 1962; *Ap. J.*, **136**, 559, 1962.

Editor's note: This paper was received prior to publication of an abstract on the same subject by G. Wallerstein, G. H. Herbig, and P. Conti (A.J., 68, 298, 1963).