PROBABLE EXCESS OF LITHIUM IN THE ATMOSPHERE OF THE MAGNETIC STAR β CORONAE BOREALIS

ROSANNA FARAGGINA AND MARGHERITA HACK
Osservatorio Astronomico
Merate, Italy

Four spectrograms of β Coronae Borealis (F0p) taken with the grating spectrograph of the Merate Observatory, at a dispersion of 35 Å/mm, show a moderately strong line at λ 6708. The only possible identification is that with the resonance doublet of Li I at λ 6707.74 and λ 6707.89. Table I gives the equivalent widths of the Li I line and, for comparison, those of a blend of Gd II and Fe I at λ 6704.5.

TABLE I

<table>
<thead>
<tr>
<th>Plate</th>
<th>Date (UT)</th>
<th>W_{6708}</th>
<th>$W_{6704.5}$</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 1680</td>
<td>May 5.98</td>
<td>0.21</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>H 1695</td>
<td>16.85</td>
<td>(0.31)</td>
<td>(0.45)</td>
<td>defective plate</td>
</tr>
<tr>
<td>H 1696</td>
<td>16.89</td>
<td>0.15</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Fa 1700</td>
<td>17.05</td>
<td>0.16</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

Using the solar curve of growth, with $\log c/\nu = 5.16^1$ and the curve of growth for β Coronae Borealis2 with $\log c/\nu = 4.85$ and assuming $-\log W/\nu$ (sun) $= 6.52^3$, we find that the total abundance of lithium in the atmosphere of β Coronae Borealis is at least 1000 times higher than in the solar atmosphere. The lower limit is obtained by reducing the measured equivalent width for Li I by a factor of two in order to allow for possible errors due to the relatively low dispersion. This result confirms the hypothesis proposed by Fowler, Burbidge, and Burbidge4 that light elements like deuterium, lithium, beryllium, and boron might be produced by a spallation process in the atmospheres of the magnetic stars. Another proof of this hypothesis has been recently given by the observations of Sargent, Searle, and Jugaku5 that beryllium is probably overabundant by a factor of 100 in the atmospheres of the magnetic stars.

Observations of several magnetic stars in the λ 6700 region of the spectrum are in progress.
NOTES FROM OBSERVATORIES

Editor's note: This paper was received prior to publication of an abstract on the same subject by G. Wallerstein, G. H. Herbig, and P. Conti (AJ., 68, 298, 1963).