PUBBLICAZIONI DEL REALE OSSERVATORIO DI BRERA IN MILANO. N. XIV.

RESOCONTO DELLE OPERAZIONI

FATTE

A MILANO ED A PADOVA NEL 1875

IN CORRISPONDENZÀ COGLI ASTRONOMI AUSTRIACI E BAVARESI

PER DETERMINARE LE DIFFERENZE DI LONGITUDINE

FRA GLI OSSERVATORJ ASTRONOMICI DI MILANO E DI PADOVA E QUELLI DI VIENNA E DI MONACO.

PER

G. CELORIA | G. LORENZONI

IIO ASTRONOMO

mico

teca *

DIRETTORE ALL'OSSERVATORIO DI MILANO. DELL'OSSERVATORIO DI PADOVA.

MILANO ULRICO HOEPLI, EDITORE-LIBRAJO

1879.

PUBBLICAZIONI

DEL REALE OSSERVATORIO DI BRERA IN MILANO. N. XIV.

RESOCONTO DELLE OPERAZIONI

FATTE

A MILANO ED A PADOVA NEL 1875

IN CORRISPONDENZA COGLI ASTRONOMI AUSTRIACI E BAVARESI

PER DETERMINARE LE DIFFERENZE DI LONGITUDINE

FRA GLI OSSERVATORJ ASTRONOMICI DI MILANO E DI PADOVA E QUELLI DI VIENNA E DI MONACO.

PER

G. CELORIA | G. LORENZONI

IIO ASTRONOMO

DIRETTORE ALL'OSSERVATORIO DI MILANO. DELL'OSSERVATORIO DI PADOVA.

> MILANO ULRICO HOEPLI EDITORE-LIBRAJO

> > 1879.

PICTUREACTOR

ONATH ALEMAN MEDIROTE FOR A DAME AND

MORESTO BLEE OFFERENCE

WHILL SAFEE A TENNIN AND LINE OF THE SAFE

Designation of the expension of the property and

THE GIT STRUCKING ATTROVORMS OF BRIDE E OF PLOOPA

LANSAN BOIL A REPLACED

RECTANTS . OCCUPANTS IN THE PROPERTY OF STATE OF

TUNELOG HOEPLI EDITORNIBERGO

NOTA PRELIMINARE.

Le operazioni descritte in questa Memoria ebbero origine da un accordo fatto dal sottoscritto, a nome dell'Osservatorio di Milano e della Commissione italiana del Grado, col cav. prof. Oppolzer, direttore delle operazioni astronomico-geodetiche nell'impero Austro-Ungarico. Da principio si era convenuto di determinare soltanto la differenza di longitudine fra l'Osservatorio di Milano (Brera) e l'Osservatorio della Türkenschanze a Vienna; più tardi, dietro desiderio espresso dal signor colonnello Orff, Capo dell'Ufficio Topografico Militare di Baviera, e dal signor prof. Lorenzoni, direttore dell'Osservatorio di Padova, furono accolti nel piano d'operazione anche l'Osservatorio di Bogenhausen (Monaco) e l'Osservatorio di Padova, combinando fra le quattro stazioni un sistema di segnali telegrafici, quale nella Memoria qui appresso è indicato.

Il lavoro qui pubblicato dà conto generale di tutte le operazioni dei quattro Osservatori di Vienna, di Monaco, di Padova e di Milano, ed offre anche i risultamenti definitivi di tutto il sistema delle osservazioni. Ma in quanto concerne l'esposizione minuta dei particolari, e i calcoli di tutte le operazioni così astronomiche come telegrafiche, esso si restringe a quanto si è fatto dai due operatori italiani in Padova ed in Milano: le analoghe particolarità delle osservazioni eseguite in Monaco ed in Vienna si dovranno cercare in una pubblicazione analoga, che sarà fatta dai nostri cooperatori di Austria e di Baviera.

In queste operazioni, la parte del sottoscritto si è limitata a concertare gli accordi di natura generale, e a fare le preparazioni necessarie per la stazione di Milano. I signori professori Lorenzoni e Celoria daranno eglino stessi conto esatto del loro operato. A me tuttavia, anche a nome di tutti i collaboratori, corre l'obbligo di esprimere pubblicamente la più viva gratitudine verso la Direzione Generale dei Telegrafi dello Stato per la concessione liberale dell'uso delle linee telegrafiche, e verso il Direttore Compartimentale dei Telegrafi di Milano, signor commendatore Caccia, per l'efficace concorso, coll'avviso e coll'opera prestato alle operazioni dell'Osservatorio di Brera.

Saremmo ingrati altresi quando volessimo tacere, che le operazioni furono di molto facilitate, ed assicurato il loro felice esito, dall'invenzione della tavoletta telegrafica (Schaltbrett) del prof. Oppolzer, della quale per la prima volta in Italia qui si fece uso. L'ordine tenuto nelle osservazioni per la determinazione del tempo, che ognuno troverà opportunissimo, è stato consigliato dallo stesso Oppolzer; ed a lui pure devono gli operatori italiani la comunicazione delle posizioni apparenti delle stelle osservate, comunicazione che risparmiò ai medesimi un lavoro non piccolo. Abbiasi egli dunque i sinceri ringraziamenti di tutti noi.

Milano, il 12 aprile 1879.

Il Direttore dell'Osservatorio di Milano SCHIAPARELLI. Preparazioni ed osservazioni astronomiche, fatte in Milano, per la determinazione del tempo: Resoconto del prof. G. CELORIA.

La determinazione telegrafica delle differenze di longitudine fra Vienna, Monaco, Padova e Milano essendo stata decisa dalla Commissione nazionale geodesica italiana, sul piano generale delle operazioni da eseguirsi, essendosi accordati i professori Oppolzer e Schiaparelli, questi mi incaricò delle osservazioni da farsi all'Osservatorio di Milano, soggiungendo che in massima le disposizioni rispetto alle medesime erano quelle già seguite nel 1870 in occasione della differenza di longitudini fra l'Osservatorio di Brera, quello di Neuchâtel, e la Stazione trigonometrica del Sempione.

Non si doveva pensare agli strumenti stabili dell'Osservatorio, al circolo meridiano di Starke, e allo strumento dei passaggi di Reichenbach, ma i passaggi delle stelle si dovevano osservare ad uno strumento trasportabile collocato in stazione opportuna; si doveva inoltre per la determinazione del tempo e per la trasmissione dei segnali far uso del pendolo Arnold esistente nella sala dei passaggi, e del cronografo attiguo costruito per l'Osservatorio di Milano nel 1865 dal signor M. Hipp di Neuchâtel, mantenendo e l'uno e l'altro nel loro posto attuale.

Pur conservando queste disposizioni generali, importava però introdurre tutte le modificazioni, che l'esperienza del 1870 aveva dimostrate od utili o necessarie.

Nel 1870 erasi adattato al pendolo Arnold, quale interruttore, una specie di scappamento, indipendente dall'orologio, e mosso da peso speciale (1). Ad ogni pulsazione di secondo esso faceva alternativamente aprire e chiudere il circuito elettrico che andava al cronografo, e la corrente rimanendo ogni volta chiusa per un secondo intero, interrotta per tutto il secondo consecutivo, e la penna cronografica rimanendo per conseguenza successivamente attratta e libera per un intero secondo, segnava sul cronografo i tratti successivi d'una linea spezzata, rappresentanti ciascuno un secondo di tempo, ma non tutti di una stessa precisa lunghezza. Quell'interruttore voleva inoltre che ogni sedici ore lo si caricasse del peso da cui riceveva movimento, e perciò nel 1870, invece di far correre il pendolo Arnold sotto la sua continua influenza, lo si era caricato di esso solo per quel tempo per cui ogni giorno duravano le registrazioni del cronografo. Ne era nata una irregolarità di andamento nell'Arnold, di cui solo con calcolo un po' complicato si potè allora tener conto, e che importava evitare nel 1875.

coll' Osservatorio di Neuchâtel e colla Stazione trigonometrica del Sempione per G. V. Schiaparelli e G. Celoria. Pubblicazioni del R. Osservatorio di Brera in Milano, N.º VIII, pag. 6.

⁽¹⁾ Resoconto delle operazioni fatte a Milano nel 1870 in corrispondenza cogli astronomi della commissione geodetica svizzera per determinare la differenza di longitudine dell' Osservatorio di Brera

Vi riescì il meccanico del nostro Osservatorio, signor cav. Kohlschitter, adattando al pendolo un nuovo interruttore affatto diverso da quello del 1870. Mentre questo era mosso da un peso proprio indipendente da quello dell'orologio, e che bisognava con qualche precauzione (1) caricare ogni sole sedici ore, il nuovo interruttore faceva parte integrante dell'orologio, e qualunque fosse la sua azione sull'andamento del medesimo, era però incessante, continua, uniforme, nè per essa erano a temersi irregolarità di sorta nell'andamento del pendolo. Un'altra utile innovazione arrecava con sè questo interruttore, e riguarda la segnatura sul cronografo. Collocato esso in un fianco del castello dell'orologio, ad ogni seconda oscillazione del pendolo chiudeva per brevissimo istante il circuito, e la penna cronografica attratta ogni due secondi per brevissimo tempo, poi abbandonata a sè, segnava sulla carta un piccolo angolo acuto ben definito, che l'uno dall'altro separava distintamente i diversi tratti d'una medesima linea, lunghi tutti ugualmente, e rappresentanti ciascuno due secondi di tempo. Non fu quindi necessario nella lettura dei fogli cronografici usare in seguito quelle precauzioni, che l'interruttore del 1870 aveva rese indispensabili (2). Non fu possibile al signor Kohlschitter dare un disegno e una descrizione del proprio interruttore, ma quanto si è detto basta allo scopo del presente lavoro.

Una lieve modificazione fu inoltre nel 1875 arrecata al cronografo. Ogni suo cilindro poteva accogliere solo un'ora di registrazione (3), facendo esso in tal intervallo di tempo sessanta giri precisi, uno per ogni minuto. Il signor Kohlschitter, senza alterare la velocità di rotazione del cilindro, fece tuttavia in modo che l'intervallo di cui orizzontalmente si trasporta il carretto, che porta le penne cronografiche, durante un minuto, fosse un po' minore; rese cioè più piccolo il diametro delle carruccole, che al carretto stesso trasmettono il movimento. Diminuendo così il passo dell'elica descritta sul cilindro dalla penna dei secondi, si mantenne il vantaggio originario del cronografo, che cioè i segnali dei secondi distanti fra loro di un minuto venissero a collocarsi sempre con mirabile esattezza, o sopra una generatrice del cilindro, o sopra una perfetta elica pochissimo inclinata alla generatrice suddetta, e si ottenne ad un tempo che sopra uno stesso cilindro venissero ad essere contenuti settantacinque invece che sessanta minuti. Questo si fece perchè su uno stesso cilindro venisse ad essere registrata intera ogni determinazione completa di tempo, la cui durata, quasi sempre intorno ad un'ora, la oltrepassava però qualche volta di pochi minuti.

Nelle operazioni del 1870 eransi incontrate alcune difficoltà dipendenti in ultima analisi dalla diversa intensità e dalla diversa direzione delle correnti, alle quali inevitabilmente veniva a soggiacere l'elettro-magnete da cui era mossa la penna dei segnali (4). Si evitarono le medesime addottando la tavoletta commutatrice e regolatrice (Schaltbrett) del professore Oppolzer, la quale in modo ingegnosissimo raggiunge appunto questo scopo importante, che tutte le correnti, e quelle che servono pei lavori locali, e quelle che attraverso alla linea trasmettono i segnali, percorrano i rocchetti dell'elettro magnete, avendo sempre una medesima intensità ed una direzione identica (5). Questa tavoletta vuol essere intercalata alle varie correnti locali, ed alla corrente di linea. La corrente di linea, poi per mezzo di un commutatore vuol essere posta in comunicazione ora colla tavoletta e per essa col crono-

- (1) Memoria citata, pag. 8.
- (2) Memoria citata, pag. 9.
- (3) Memoria citata, pag. 8.
- (4) Memoria citata, pag. 10.
- (5) Das Schaltbrett der österreichischen Grad-

messung vom Prof. Dr. Theodor Ritter v. Oppolzer. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen österreichischen Akademie der Wissenschaften - LXIX Band II Abtheilung - Jahrgang 1874. grafo, ora coll'apparato telegrafico di Morse. Le correnti locali furono tutte ottenute per mezzo di elementi Meidinger, la corrente di linea fu per qualche giorno ottenuta da 250 elementi Daniel, ma andando la medesima contro ogni aspettazione stranamente indebolendosi fu in seguito sostituita, per cortesia del comm. Caccia, Direttore dell'ufficio telegrafico di Milano, da un numero sufficiente di elementi D'Amico. Le disposizioni richieste dalle correnti locali e dalla connessione loro colla tavoletta di Oppolzer furono eseguite dal signor Kohlschitter più volte nominato; le altre che riguardano la corrente di linea e l'apparato di Morse dal signor Perego, meccanico addetto all'ufficio dei telegrafi di Milano.

Nel 1870 i passaggi delle stelle al meridiano eransi osservati ad uno strumento trasportabile di Ertel (1); nel 1875 fu a tale scopo concesso dalla Commissione nazionale geodesica italiana altro strumento analogo, acquistato dalla celebre officina dei Repsold. Risulta essenzialmente d'un cannocchiale spezzato, in cui il diametro dell'obbiettivo misura sette centimetri, le distanze dall'obbiettivo al centro del prisma, da questo all'oculare sono rispettivamente 44 e 36 centimetri. Riposa sopra guanciali portati da due robusti piedritti di ferraccio facenti un unico tutto con un disco orizzontale, che forma una base solidissima all'insieme dello strumento.

Ciò che sovratutto distingue questo strumento stà nella cura con cui i particolari sono in esso eseguiti. L'apparato d'inversione non potrebbe essere migliore. Muovendo le capocchie di due viti orizzontali, l'osservatore solleva il cannocchiale dai suoi guanciali; continuando a muovere le viti nello stesso verso fa fare al cannocchiale un giro di 180 gradi; ad un certo punto lo scatto di una molla avverte che il cannocchiale ha raggiunto la fine della sua corsa; allora si girano le viti stesse in verso opposto, e il cannocchiale discende riadagiandosi sui suoi guanciali. Tutta l'inversione si fa con moto dolce, senza sottoporre lo strumento a sforzo alcuno, e senza che la mano dell'osservatore debba mai toccare il cannocchiale. L'illuminazione del campo di quest'ultimo si fa per mezzo d'una lampadina portata da un braccio ricurvo, che parte dall'asse di rotazione stesso, sicchè, invertendo il cannocchiale, contemporaneamente si trasporta, senza pur toccarla, la lampada da cui il campo è illuminato. La livella annessa allo strumento è disposta in guisa che può rimanere ad esso appesa anche durante le osservazioni.

Due sole modificazioni furono necessarie a questo strumento; bisognò cambiare il reticolo dei fili, ed il meccanico signor ingegnere Salmoiraghi vi sostituì una lastra di vetro su cui sono incisi tredici fili divisi in tre gruppi. I due gruppi laterali contengono quattro fili ciascuno, il centrale cinque; la distanza fra i fili di ciascun gruppo è uguale a quattro secondi equatoriali circa, quella da gruppo a gruppo è poco più di otto. Queste strie incise sul vetro hanno il vantaggio di non essere igrometriche, vantaggio utilissimo in un clima umido e ad intervalli caldo come quello di Milano; viste con ingrandimenti mediocri, appaiono distinte ed uniformi in tutta la loro lunghezza, ma hanno l'inconveniente che ad essere vedute distintamente richiedono un'illuminazione del campo maggiore che non i soliti fili di ragno, cosa che disturba assai quando si vogliono osservare stelle piccole. Bisognò inoltre aumentare l'illuminazione del campo, ma di questo si parlerà in seguito.

Quanto al luogo d'osservazione erasi dapprima pensato di utilizzare una delle quattro cupole esistenti nella torre australe dell'Osservatorio, quella sotto cui per molti anni era stato l'Alt-azimuth di Reichenbach a cui osservarono Oriani e Carlini. Il piedestallo robustissimo

⁽¹⁾ Resoconto delle operazioni, ecc., già citato, pag. 15.

ivi esistente, la sua solida connessione al resto del fabbricato, la stagione relativamente temperata in cui si dovevano fare le osservazioni, lasciavano sperare una stabilità sufficiente al delicato problema della determinazione assoluta del tempo. Ma alcune osservazioni eseguite in via di esperimento distrussero ogni speranza concepita, e si decise allora di tornare al pilastro nel 1870 innalzato nell'Orto botanico, che ad una profondità di 25 metri sotto il livello superiore della torre ricordata ed ai piedi della torre stessa si estende specialmente nella direzione di levante a tramontana (1).

Di questo pilastro esisteva tuttora il largo basamento in muratura giacente sotto il livello del suolo. Sovr'esso si adagiò un robusto lastrone di granito, nel quale si infissò una colonna granitica sormontata da altro lastrone esso pure di granito, su cui si posò in seguito lo strumento dei passaggi. Naturalmente e la colonna e la sua base si mantennero sempre interamente isolate dal terreno circostante. Sovra questo si pose, colle precauzioni già altra volta usate (2), un pavimento in legno, dal quale si fecero poi partire i piedritti d'una cupola mobile pure in legno, appartenente alla Commissione geodesica italiana. Questa cupola, a dir vero, riescì alquanto bassa, e sott'essa, nelle ore meridiane sovratutto, avevasi tal temperatura, che io temetti sempre potesse esercitare una sinistra influenza sulla posizione dello strumento; ma con qualche precauzione, in ispecie aprendola alcune ore prima che cominciassero le osservazioni, fu sempre possibile ottenere una giusta aerazione, ed un andamento regolare delle correzioni strumentali.

L'essere stati costretti a porre lo strumento d'osservazione tanto lontano dalla sala dei passaggi, in cui erano e il pendolo e il cronografo, fece sì, che l'osservatore non potesse egli medesimo sorvegliare l'andamento di quest'ultimo. Cortesemente vi sorvegliarono sempre con attenzione scrupolosa il collega prof. Frisiani ed il signor Kohlschitter. Questi inoltre collocò nella cupola d'osservazione un suo quadrante d'orologio cui tenne sempre in comunicazione elettrica con un pendolo siderale Robin esistente nell'Osservatorio. Di esso servivasi l'osservatore per puntare le stelle e per prepararsi all'osservazione dei loro passaggi.

II.

Essendo stato deciso fra i professori Schiaparelli ed Oppolzer che negli ultimi giorni di aprile si sarebbero determinate a Milano le equazioni personali fra i diversi osservatori, io collocai alcune settimane prima lo strumento in posto, feci le osservazioni preliminari necessarie a portarlo prossimamente nel piano del meridiano, e inoltre vi osservai i passaggi di alcune stelle polari per dedurne la distanza dei fili con una prima approssimazione sufficiente al calcolo delle equazioni personali stesse.

Il prof. Lorenzoni avendo di qualche giorno preceduto l'arrivo del prof. Oppolzer e del colonnello Orff, fu deciso di fare intanto qualche osservazione sulla nostra equazione personale. Avendo io preparato un piccolo catalogo di stelle, nei giorni 17, 19 e 20 aprile ne osservammo i passaggi, alternandoci al cannocchiale in modo che l'uno di noi osservasse di ogni stella il passaggio ad una metà dei fili, l'altro all'altra metà, e che quello il quale

⁽¹⁾ Resoconto delle operazioni, ecc., già citato, pag. 14.

⁽²⁾ Resoconto delle operazioni, ecc., già citato, pag. 15.

aveva osservato per una data stella gli ultimi sei fili, osservasse invece i primi sei per la stella successiva. Osservammo ogni sera, tenendo il piccolo circolo, collocato all'estremità dell'asse di rotazione opposta a quella che porta l'oculare, e destinato a puntare le stelle, rivolto ora ad ovest ora ad est; e chiamando con L i passaggi osservati da Lorenzoni e ridotti al filo di mezzo, con C quelli da me osservati, ottenemmo per l'equazione personale nel senso L-C i risultati contenuti nel seguente specchietto. In esso la seconda e la quarta colonna danno i valori dell'equazione personale trovati ogni sera, osservando col circolo rivolto rispettivamente ad ovest e ad est, le colonne terza e quinta contengono il numero delle stelle osservate ogni sera in ciascuna posizione del circolo, la penultima colonna contiene la media dei due valori dati dalle colonne seconda e quarta, l'ultima la loro differenza.

-	Data	Circolo ad Ovest	Numero delle Stelle osservate ad Ovest	Circolo ad Est	Numero delle Stelle osservate ad Est	L-C	Ov. — Est
	1875 Aprile 17	_ o. 276	18	_ 0°. 087	21	_ s _ 182	s. 189
	n 19	— 0. 172	. 17	-0.057	21	— 0. 115	— 0. 115
	n 20	— 0. 141	20	-0.080	19	— 0. 111	- 0. 061

Arrivati il prof. Oppolzer e il colonnello Orff trovarono l'illuminazione del campo forse troppo debole, od almeno certo non corrispondente a quella a cui essi erano assuefatti nei proprii strumenti. Pensai che ciò potesse provenire dal reticolo di vetro sostituito ai fili di ragno, e che l'illuminazione combinata dall'artefice, sufficiente per questi ultimi non bastasse a rendere le strie incise sul vetro ugualmente distinte. L'illuminazione era ottenuta per mezzo di una piccola macchia sulla faccia maggiore del prisma prodotta con acido fluoridrico; dubitai che la luce diffusa da questa macchia in ogni direzione fosse insufficiente, ed applicai alla faccia stessa nel luogo medesimo della macchia un piccolissimo prisma in modo che le ipotenuse dei due prismi maggiore e minore si combaciassero. Ne ottenni così una buonissima illuminazione, senza punto turbare le immagini prodotte dall'obbiettivo, e nulla togliere al loro splendore.

In grazia di questa modificazione apportata al sistema di illuminazione del campo io non tenni in seguito più conto delle osservazioni già eseguite nei giorni 17, 19 e 20 aprile, e solo nei giorni 26, 27 e 28 successivi fu possibile procedere alla determinazione delle equazioni personali fra i quattro osservatori.

Dietro consiglio del prof. Oppolzer si procedette così: ogni sera ciascun osservatore determinò la propria equazione personale rispetto a ciascuno degli altri tre, e la determinò paragonandosi con ciascuno di essi ad uno ad uno, osservando cioè con ognuno nel modo già indicato più sopra dodici stelle successive, sei tenendo il circolo dello strumento rivolto ad ovest, sei tenendolo invece rivolto ad est. Si facevano così ogni sera sei determinazioni indipendenti di equazione personale, e da una sera all'altra si aveva cura soltanto di cambiare l'ordine secondo cui i diversi osservatori si combinavano.

Questo piano fu eseguito appuntino nelle sere del 26 e del 27; in quella del 28, non ugualmente favorita dal tempo, invece che dodici stelle per ogni coppia di osservatori se ne osservarono otto soltanto, quattro ad ovest, quattro ad est, nè per questo si credette di dover dare ai risultati di quella sera un peso minore.

Il prof. Oppolzer e il colonnello Orff trovarono, nel loro breve soggiorno, tempo di leggere i diversi fogli cronografici e di fare colle letture ottenute un primo calcolo delle equazioni personali; io rifeci in seguito ad agio e le letture e i calcoli, ed ecco nello specchietto seguente i risultati ottenuti. Per orientarsi in esso basta sapere essersi indicati colle lettere W, M, L, C i passaggi osservati rispettivamente da Oppolzer, Orff, Lorenzoni e Celoria; allora si capisce tosto che in esso le diverse colonne contengono i valori delle equazioni personali dedotti ogni sera dalle osservazioni fatte da ciascuna coppia di osservatori, tenendo il circolo dello strumento rivolto rispettivamente ad ovest e ad est.

Data		L-	- W	М -	- W	c -	- W	C -	-L	М-	_ <i>L</i>	C -	- M
-	2.85 - 54	Ovest	Est	Ovest	Est	Ovest	Est	Ovest	Est	Ovest	Est	Ovest	Est
	1875 Aprile 26	+ 0.048	+0-027	+ 0.187	+ 0.026	+ 0.173	- 0.017	+0.270	+ 0.073	+ 0.208	+ 0.030	- 0.138	+ 0.188
	n 27	+0.067	+ 0.033	+0.247	- 0.012	+0.185	+0.033	+0.093	+0.027	+0.257	- 0.098	+0.003	+0.192
	n 28	+0.092	+0.194	+0.250	+0.017	+ 0.250	+0.112	+0.125	+0.027	+0.308	- 0.085	- 0.017	+0.072

Per ogni coppia di osservatori esiste una differenza fra il valore dell'equazione personale trovato col circolo dello strumento ad ovest oppure ad est. La differenza conserva in tutte e tre le sere, una sola eccezione fatta, il medesimo segno, ed accenna per conseguenza ad una causa costante avente sua sede nello strumento. Siccome però e gli strumenti delle altre stazioni erano di costruzione analoga, e in ogni determinazione del tempo era deciso si sarebbero osservate metà delle stelle orarie col circolo ad ovest, metà col circolo ad est, così a ragione si potè ritenere per cadauna sera il valore osservato dell'equazione personale fra ogni coppia di osservatori uguale alla media dei due valori trovati nelle due posizioni del circolo. Lo specchietto che segue contiene appunto il medio di questi due valori, non che la differenza loro presa nel senso ovest-est.

-	Data	L-	- W	M-	- W	C -	- W	C -	-L	M -	- L	C -	- M
	is a single!	Me dia	Ov E.	Media	OvE.	Media	Ov E.						
	1875 Aprile 26	+ 0.038	+ 0.021	+ 0.107	+ 0.161	+ 0.078	+0.190	+ 0.172	+0.197	+ 0.119	+ 0.178	+0.025	- 0.326
	» 27	+0.050	+ 0.034	+0.118	+0.259	+0.109	+ 0.152	+ 0.060	+ 0.066	+0.080	+ 0.355	+0.098	- 0.189
	n 28	+ 0.143	- 0.102	+0.134	+0.233	+0.181	+0.138	+0.076	+0.098	+0.112	+0.393	+0.028	- 0.089

Evidentemente i sei valori L-W, M-W, C-W, C-L, M-L, C-M dedotti direttamente dalle osservazioni di ciascuna sera, e contenuti nelle colonne pari del quadro precedente intestate colla parola Media, non sono indipendenti fra loro. La differenza di due qualunque fra essi deve necessariamente essere uguale ad uno degli altri quattro, e questa è condizione alla quale essi non soddisfanno in modo rigoroso, unicamente in grazia degli errori inevitabili

d'osservazione. I valori trovati ed affetti da questi errori devono per conseguenza essere compensati, e sostituiti da altri i quali rigorosamente soddisfino alla condizione enunciata. Applicando alle osservazioni di ogni sera il metodo dei minimi quadrati, si trovano valori compensati delle equazioni personali, che differiscono dai valori osservati di quantità minime, comprese nei limiti degli errori d'osservazione, e che devono essere presi come i veri valori delle equazioni personali stesse.

Questi valori compensati delle equazioni personali sono dati per ogni sera dal quadro che segue, il quale contiene inoltre in tre righe orizzontali successive i valori compensati delle equazioni personali stesse dedotti da osservazioni analoghe fatte il 20, 21 e 22 maggio, compiute le operazioni di longitudine, allo strumento ed alla stazione di Vienna, e cortesemente comunicati dal professore Oppolzer.

II quadro stesso nell'ultima riga orizzontale contiene i valori definitivi delle equazioni personali, ritenuti uguali ciascuno alla media dei diversi valori per esso dedotti dalle osservazioni delle singole sere.

-	Data	L-W	M-W	C-W	C-L	M — L	C-M
	1875 Aprile 26	_ o. 007	+ 0. 106	+ 0. 124	+0.131	+ 0. 113	+ 0°. 018
1	n 27	+ 0.047	+0.094	+ 0. 136	+ 0.089	+0.047	+0.042
1	» 28	+ 0. 103	+0.169	+ 0. 186	+ 0.083	+ 0.066	+ 0.017
1		assail or a	ESTITION 1	nd-new a	iga ding an	li door	TE 67.76
-	Maggio 20	+0.157	+0.168	+ 0. 165	+ 0.008	+0.011	— 0. 003
-	» 21	+ 0. 156	+ 0. 148	+ 0. 189	+ 0. 033	- 0. 008	+ 0. 041
	» 22	+0.180	+ 0. 174	+ 0. 247	+ 0.067	- 0. 006	+ 0.073
	de Relacionire	+ 0. 106	+ 0. 143	+ 0. 174	+ 0.068	+ 0. 037	+ 0. 031

III.

Le osservazioni astronomiche, destinate alla determinazione dell'ora, e lo scambio dei segnali fra le diverse stazioni cominciarono la sera del 3 maggio e terminarono in quella del 16. E nelle osservazioni e nello scambio dei segnali furono seguite le norme ideate dal professore Oppolzer per le numerose longitudini austriache da lui determinate. Ogni sera, avanti e dopo lo scambio dei segnali, furono fatte diverse determinazioni del tempo, risultanti ciascuna dall'osservazione dei passaggi di un certo numero di stelle orarie e di una polare. E questa e quelle erano scelte in modo che in una data posizione dello strumento si cominciavano ad osservare i passaggi completi di parte delle orarie ed il passaggio della polare alla prima metà dei fili; si invertiva lo strumento, e nella nuova posizione di esso si osservavano la seconda parte del passaggio della polare e i passaggi delle rimanenti orarie; e prima e dopo l'inversione dello strumento si facevano di esso numerose livellazioni.

Dal 3 al 16 maggio, esclusion fatta per la sera del 3, il tempo a Milano, singolarmente

bello, permise sempre di osservare; almeno una determinazione completa del tempo riesci sempre, ma in generale fu possibile farne ogni sera parecchie, due prima dello scambio dei segnali, due e più dopo il medesimo.

Terminate le osservazioni venne il momento delle riduzioni loro. Di queste la parte per me più pesante è quella che presentasi la prima, la lettura cioè dei fogli cronografici. Mi servii del noto *rilevatore* di Hipp, e per fortuna vennemi in soccorso la cortesia del collega ed amico prof. Frisiani, il quale ebbe la bontà di scrivere sotto dettatura i numeri che di mano in mano io andava leggendo.

Il rilevatore di Hipp ha un inconveniente conosciuto. Per la forma sua, e pel fatto che le due righe dei secondi e dei segnali, sebbene parallele, stanno sul foglio cronografico l'una sopra, l'altra sotto, esso dà la frazione di secondo affetta da un piccolo errore. Per aver questa frazione rigorosa bisognerebbe con esso leggere due volte ogni segnale, l'una essendo, rispetto a chi legge, la riga dei secondi più alta, quella dei segnali più bassa, l'altra, capovolto il foglio, essendo invece la più alta la riga dei segnali.

Io feci per una serie di segnali questa doppia lettura, e trovai le due letture diverse fra loro d'una quantità costante, sicchè ai segnali letti nel modo usato avrei dovuto aggiungere un centesimo di secondo per ridurli alla vera lettura. L'avere però trovata a più riprese questa quantîtà costante, fece che io mi arrestassi per la lettura dei segnali fiducioso al rilevatore. Si possono infatti leggere con questi i segnali in una sola posizione del foglio cronografico, nè occorre aggiungere alle letture fatte la costante poc'anzi trovata, poichè dovendo essa essere aggiunta ad un tempo ed ai segnali dei passaggi delle stelle ed ai segnali scambiati colle altre stazioni, il trascurarla non può esercitare influenza alcuna sul risultato finale.

Compiute le letture dei fogli cronografici potei determinare senz'altro le distanze equatoriali dei singoli fili da quello di mezzo, e le dedussi dalle ripetute osservazioni dei passaggi di 15 stelle orarie le cui declinazioni andavano da 17 gradi australi a 32 gradi boreali. Da un totale di 125 passaggi diversi risultarono per le distanze equatoriali dei fili dal medio, essendo il circolo dello strumento rivolto ad est, i valori seguenti:

Con queste distanze equatoriali mi fu facile ridurre per ogni stella al filo medio i passaggi osservati ai singoli fili, determinare quindi il tempo osservato del passaggio di ciascuna stella, al quale apportai senz'altro la piccola correzione dovuta alla parallasse delle due penne del cronografo.

Mi occupai in seguito delle inclinazioni dell'asse di rotazione dello strumento. Da determinazioni del valore di una parte della livella fatte il 21 marzo, il 14 aprile, il 10 giugno, io dedussi essere il medesimo indipendente dalle temperature, almeno nei limiti espressi dalle lunghezze considerate della bolla, e poichè entro questi limiti stavano tutte le osservazioni

-titt .0 + .0

eseguite io lo ritenni uguale alla media dei diversi valori per esso trovati, uguale cioè ad 1",38217 equivalente a 0,092145.

Il giorno 15 aprile appoggiata la livella allo strumento, e lasciatala immobile sui perni, feci fare lentamente, arrestandomi di quando in quando, una rotazione di 180 gradi all'asse dello strumento, portando per tal guisa l'obbiettivo da nord a sud. La bolla rimase perfettamente immobile, sicchè ne dedussi essere la forma dei perni, nei limiti della sensibilità della livella, esattamente circolare.

Della livella io non ebbi mai ad essere interamente soddisfatto. Malgrado tutte le cure nel livellare, malgrado che io tenessi la bolla sempre discretamente lunga, malgrado che io la facessi sempre nel posare la livella discendere da una stessa parte, mi succedette qualche volta che in pose successive della livella, le quali io facevo appunto per esperimento, lasciando alla bolla tutto il tempo necessario a quietarsi, questa non si fermava esattamente alla stessa parte. È un inconveniente questo che io non riescii mai a vincere, ed esso può aver fatto sì che nelle livellazioni eseguite durante le osservazioni si ottenesse, sebbene di rado, qualche risultato contradditorio, e che fu per conseguenza scartato.

Dalle livellazioni fatte nel corso delle osservazioni immediatamente prima e dopo l'inversione dello strumento dedussi una differenza di segno costante, la quale proviene certamente da un diverso diametro dei due perni, e il cui valor medio è dato dalla seguente espressione:

Circolo Est—Circolo Ovest=
$$+0^{\circ},0518\pm0,0171$$

Alle inclinazioni determinate essendo il circolo dello strumento rivolto ad est bisognò quindi sottrarre 0°, 01295, a quelle determinate, essendo il circolo ad ovest bisognò aggiungere la quantità stessa. Così fu possibile determinare per ogni sera il valore dell'inclinazione dell'asse di rotazione dello strumento da usarsi nel calcolo di riduzione delle osservazioni.

Durante ogni determinazione di tempo si facevano più livellazioni dello strumento; una almeno durante il passaggio delle prime stelle orarie, una durante la prima parte del passaggio della polare; invertito lo strumento, una tosto durante la seconda parte del passaggio della polare, a cui seguivano una o più altre durante il passaggio delle rimanenti orarie. Il quadro che segue contiene appunto per ogni giorno e per ogni determinazione di tempo, distinta questa da un numero romano, le inclinazioni trovate, espresse in secondi di tempo e corrette per la differenza dei perni. Le due inclinazioni con a fronte le lettere e (est) ed o (ovest) sono le fatte durante il passaggio della polare nelle due posizioni dello strumento, le altre precedono e seguono rispettivamente il passaggio stesso. Le poche chiuse fra parentesi sono le scartate dal calcolo; in questo, quando le inclinazioni corrispondenti ad una stessa determinazione di tempo accennano ad un andamento regolare, se ne tenne conto prendendo a parte la media delle inclinazioni est, la media delle ovest, e la media delle due riferentisi alla polare; quando tal andamento non esiste, si ritenne il valor medio costante per tutte le stelle della determinazione stessa.

esse"

Inclinazioni dell'asse di rotazione dello strumento.

Maggio 4.

III.	IV.	VII.
— 0. 0478	— 0. 1162	— 0. 0939
o. — 0. 1151	e . — 0. 0858	o. — 0. 1261
e. — 0. 1042	o. — 0. 0874	e. — 0. 1273
— 0. 0673	- 0. 1123	— 0. 1457
		- 0.1116

Maggio 5.

IV.	VII.	VIII.
— 0. 0397	— 0. 1169	— 0. 1065
e. — 0.0673	o. — 0. 1145	e. — 0.0581
o. [— 0. 0063]	e. — 0. 1111	o. — 0. 0616
— 0. 0681	— 0. 0766	— 0. 0823
- 0. 0847	— 0, 0695	- 0, 0662

Maggio 6.

п.	III.	IV.	VII.	VIII.
o. + 0. 1641	+ 0. 1538	+ 0.1134	+ 0.0685	+ 0.0766
e. + 0.1192	+ 0. 1215	+ 0.0834	e. + 0.1145	o. + 0.0766
+ 0. 1284	e. + 0. 1538		o. + 0.0904	e. + 0.0524
+ 0.1284	o. + 0. 1641	D SUPERIOR DESIGNATION AND ADDRESS OF THE PERIOR ADDRESS OF THE PERIOR AND ADDRESS OF THE PERIOR ADDRESS OF THE PERIOR AND ADDRESS OF THE PERIOR ADDRESS OF THE PERIOR AND ADDRESS OF THE PERIOR AND ADDRESS OF THE PERIOR AND ADDRESS OF THE PERIOR ADDRE	+ 0.0926	+ 0.1123
+	+ 0.1180	un oscur siui ,	+ 0.0720	+ 0.0869
	+ 0. 1134			are, a cui saga

MAGGIO 7.

Maggio 8.

111.	IV.	V.	VI.	VII.	VIII.
+ 0. 1157	+ 0.0915	+ 0.0628	e. + 0.0662	+ 0.0351	+ 0. 0547
o. + 0.0812	e. + 0.0893	o. + 0.0628	o. + 0.0581	o. + 0. 0282	
e. + 0. 1215	o. + 0. 1019	e. + 0.0662	+ 0.0904	e. + 0.0524	e. + 0.0847
+ 0.1054	+ 0.0904		+ 0.0673		○. + 0. 0904
	+ 0.0720		1-0.0010	+ 0.0386	+ 0.0858
	1 0.0.20			+ 0.0893	+ 0.0650

Maggio 9.

III.	IV.	VII.	VIII.
+ 0.1883	+ 0.1273	e. + 0.0247	+ 0.0310
e. + 0. 1883	o. + 0.1157	o. + 0.0673	0. + 0.1181
o. + 0.1457	e. + 0.1077	+ 0.0696	e. + 0.0893
+ 0.1572	+ 0.1537	+ 0.0834	+ 0.0801
+ 0. 1203			+ 0.0939
	no id.	的特殊	+ 0.1077

Maggio 10.

III.	IV.	v.	VII.
+ 0.1180	+ 0.1468	+ 0. 1226	e. + 0.1054
o. + 0. 1479	e. + 0. 1538	o. + 0. 1180	o. + 0.0765
e. + 0.1722	o. + 0.1341	e. + 0.1054	+ 0.1088
+ 0.1699	+ 0. 1319		+ 0.0466
→ 0, 1538	+ 0, 1134		

Maggio 11.

VII.	quadro che segue la esso, per unity con, a hance
+ 0. 1319	silet ergis + 0.1468 cussi in incularing slow
o. + 0.1387	ni elle e. + 0. 1514 graf el orb con obnogeisto
e. + 0.1541	o. + 0. 1433
+ 0. 1169	+ 0.1180
+ 0. 1400	+0.1065
	+ 0.0950

Maggio 12.

III.	IV.	V.	VII.	VIII.
+ 0.1860	+ 0. 1411	+ 0.1307	o. + 0.0420	+ 0.0847
e. + 0. 1906	o. + 0.1088	e. + 0.1376	e. + 0.0731	e. + 0.1376
o. + 0. 1802	e. + 0.1353	o. + 0. 1318	+ 0.0893	o. + 0. 1273
+ 0.1479	+ 0.1261	[+ 0.1710]	+ 0.0961	+ 0.0996
+ 0.1502	+ 0, 1192			+ 0.1157

Maggio 13.

III.	IV.	V.	VIII.
+ 0. 2078	+ 0. 1929	+ 0.1273	+ 0. 1077
o. + 0.1710	e. [+ 0.0847]	o. + 0.1180	e. + 0. 1215
e. + 0. 1837	o. + 0.1710	e. + 0. 1077	o. + 0. 1457
+ 0. 1952	+ 0.1940	+ 0.0984	+ 0.0996
+ 0.1860	+ 0.1549		+ 0.0858

Maggio 14.

IV.	V.	VII.	VIII.
+ 0. 1837	+ 0.1595	e. + 0. 1353	+ 0.0788
e. + 0.1653	o. + 0. 1273	o. + 0.1157	o. + 0.0788
o. + 0. 1802	e. + 0. 1330	+ 0.1180	e. + 0.0708
+ 0. 1572	+ 0.1307	+ 0.0857	+ 0.0731
+ 0.1618	+ 0.1607		+ 0.1192
	+ 0. 1837 e. + 0. 1653 o. + 0. 1802 + 0. 1572	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		Maggio 15.		
III.	IV.	v.	VII.	VIII.
[+ 0. 2781]	+ 0.1963	+ 0.1837	+ 0.1503	+ 0.1307
e. + 0.2252	o. + 0.1779	e. + 0.1537	o. + 0. 1318	e. + 0. 1584
o. + 0.2078	e. [+ 0. 1330]	o. + 0. 1964	e. + 0. 1399	o. + 0. 1226
+ 0.2217	+ 0.1929	+ 0.1641	+ 0.1376	+ 0.1273
+ 0.2055	+ 0.1883	+ 0.1687	+ 0.1584	+ 0.1019
Here is the		Maggio 16.	. Wal	
III.	IV.	v.	VII.	VIII.
+ 0.2355	+ 0.2344	+ 0.1894	+ 0.1146	+ 0.1111
o. + 0. 2032	e. + 0. 2321	o. + 0. 1595	e. + 0. 1330	o. + 0.0650
e. + 0. 1837	o. + 0. 1918	e. + 0.1768	o. + 0. 1549	e. + 0.1077
+ 0.2205	+ 0.1733	+ 0.1722	+ 0.1483	+ 0.1054
+ 0. 2275	+ 0.1848	+ 0. 1860	+ 0.0788	+ 0.1492
- 0.00				L 0 1100

Dopo l'inclinazione venne naturalmente la volta delle collimazioni. Le polari osservate ogni sera nelle due posizioni dello strumento, hanno datto della collimazione i valori che, corretti dell'errore dipendente dall'ineguaglianza dei perni più sopra determinata, stanno raccolti nel quadro che segue. In esso, per ogni sera, a fianco del numero romano caratteristico delle singole determinazioni di tempo, sta il valore della collimazione che alla determinazione stessa corrisponde, non che la lunghezza della bolla in parti della livella.

Valori osservati della collimazione.

Data	Determinazione	Collimazione	Lunghezza della bolla	Data	Determinazione	Collimazione	Lunghezza delle bolle	Data	Deferminazione	Collimazione	Langhezza della bolla
Maggio 4 Maggio 5	III IV VII IV	0. 3878 0. 3527 0. 3161 0. 2948	42. 8 43. 5 44. 3 43. 8	Maggio 9	III IV VII VIII	0. 3352 0. 2546 0. 2857 0. 2921	41. 1 42. 0 43. 0 43. 0	Maggio 13	V VIII	0. 3237 0. 3110 0. 2936 0. 2294	41. 5 42. 5 42. 8 44. 0
Maggio 6	VII VIII II IV*	0. 2797 0. 2454 0. 3257 0. 3254 0. 3283	44. 7 44. 7 42. 0 42. 8 43. 2	Maggio 10 Maggio 11	III IV V VII	0. 3193 0. 2392 0. 2889 0. 3092 0. 2347	40. 9 41. 9 42. 0 42. 9 43. 4	Maggio 14	III V VIII VIII	0. 2715 0. 2341 0. 2081 0. 1645 0. 1667	40. 7 41. 6 41. 8 43. 0 43. 1
Maggio 7 Maggio 8	VIII IV VIII	0. 2749 0. 2585 0. 2950 0. 3627 0. 3331	44. 0 44. 1 43. 0 42. 4 43. 0	Maggio 12	VIII IV V VIII	0. 2650 0. 2661 0. 2776 0. 3033 0. 2137	43. 4 42. 1 42. 8 43. 1 44. 0	Maggio 15	VIII VIII VIII	0. 2570 0. 2750 0. 2307 0. 1655 0. 2339	40.6 41.5 41.7 43.0 43.0
	VI VIII VIII	0. 2899 0. 2742 0. 3117	43. 5 43. 5 43. 7	100 10 4	VIII	0. 2349	44.0	Maggio 16	III V VII VIII	0. 2803 0. 2625 0. 1849 0. 1762 0. 2197	40 3 41.4 41.8 42.6 42.7

Un esame attento dei numeri appena scritti conduce alle conseguenze seguenti:

1º in una stessa sera la collimazione andò in generale diminuendo dal principio alla fine delle osservazioni. Diminuendo la temperatura, ossia aumentando la lunghezza della bolla, diminuisce la collimazione;

0.25.0

^{*} Di questa determinazione IV il tempo permise di osservare la sola polare.

2° se si guardano in ogni sera le collimazioni successivamente determinate trovasi questa legge della loro diminuzione soggetta a non piccole anomalie;

3º se si guardano tutte le collimazioni date da una medesima stella polare durante l'intero corso delle osservazioni, trovasi che tutte dal principio al fine di esso hanno dato una collimazione sempre minore, e quello che è più strano seguendo rispetto alla lunghezza della bolla un andamento opposto al precedente.

Avuto riguardo a tutte queste cose io pensai che il calcolare le collimazioni con una formola la quale contenesse un primo termine costante, un secondo termine formato da un coefficiente moltiplicato per la lunghezza della bolla, un terzo termine risultante da un coefficiente moltiplicato per il tempo trascorso da un'origine comune, dovesse portare più lontano dal vero, che il ritenere semplicemente per ogni determinazione di tempo il rispettivo valore della collimazione direttamente osservato. Ciò malgrado volli tentare di esprimere i numeri del quadro precedente, riferentisi alle collimazioni osservate, con una formola analoga alla appena accennata, e il calcolo mi condusse alla seguente:

Collimation =
$$+1.3851 - 0.0240$$
 [Bolla] -0.0123 [Tempo]

nella quale la parola *Bolla* esprime la sua lunghezza in parti della livella, *Tempo* esprime il numero dei giorni e frazioni di giorno trascorsi da zero ore siderali del maggio quattro.

Con questa formola calcolai i valori delle collimazioni corrispondenti a ciascuno dei tempi ed a ciascuna lunghezza di bolla per cui si hanno i valori delle collimazioni osservate, e formai così il quadro seguente abbastanza chiaro per sè e che contiene appunto il

Paragone delle collimazioni osservate e delle calcolate.

Data	Determinazione.	COLLIM OSSERVATA	AZIONE calcolata	Osserv. — Calc.	on Datas in	Determinazione	COLLIM 055ervata	calcolata	Osserv. — Cale.
Maggio 4	III IV	0. 3878 0 3527	0. 3521 0. 3345	+0.0357 $+0.0182$	Maggio 11	VII VIII	0. 2347 0. 2650	0. 2492 0. 2487	$-0.0145 \\ +0.0163$
Maggio 5	VII IV VII VIII	0. 3161 0. 2948 0. 2797 0. 2454	0. 3137 0. 3150 0. 2918 0. 2913	$\begin{array}{c c} +0.0024 \\ -0.0202 \\ -0.0121 \\ -0.0459 \end{array}$	Maggio 12	III IV V VII VIII	0. 2661 0. 2776 0. 3033 0. 2137 0. 2349	0. 2705 0. 2529 0. 2452 0. 2225 0. 2220	$\begin{array}{c} -0.0044 \\ +0.0247 \\ +0.0581 \\ -0.0088 \\ +0.0129 \end{array}$
Maggio 6	II IV VII VIII	0. 3257 0. 3254 0. 3283 0. 2749 0. 2585	0. 3472 0. 3275 0. 3171 0. 2963 0. 2934	$\begin{array}{c c} -0.0215 \\ -0.0021 \\ +0.0112 \\ -0.0214 \\ -0.0359 \end{array}$	Maggio 13	III IV V VIII	0. 3237 0. 3110 0. 2936 0. 2294	0. 2726 0. 2478 0. 2401 0. 2097	$\begin{array}{c} +0.0511 \\ +0.0632 \\ +0.0535 \\ +0.0197 \end{array}$
Maggio 7 Maggio 8	IV V VI VII	0. 2950 0. 3627 0. 3331 0. 2899 0. 2742	0. 3096 0. 3117 0. 2968 0. 2842 0. 2837	$\begin{array}{c} -0.0146 \\ +0.0510 \\ +0.0363 \\ +0.0057 \\ -0.0095 \end{array}$	Maggio 14	III V VIII VIII	0. 2715 0. 2341 0. 2081 0. 1645 0. 1667	0. 2795 0. 2571 0. 2518 0. 2219 0. 2190	- 0. 0080 - 0. 0230 - 0. 0437 - 0. 0564 - 0. 0523
Maggio 9	VIII III IV VIII VIII	0. 2142 0. 3117 0. 3352 0. 2546 0. 2857 0. 2921	0. 2834 0. 3314 0. 3090 0. 2834 0. 2829	$ \begin{array}{r} -0.0035 \\ +0.0333 \\ +0.0038 \\ -0.0444 \\ +0.0023 \\ +0.0092 \end{array} $	Maggio 15	III IV V VII VIII	0. 2570 0. 2750 0. 2307 0. 1655 0. 2339	0. 2696 0. 2472 0. 2419 0. 2096 0. 2091	$\begin{array}{c} -0.0126 \\ +0.0378 \\ -0.0112 \\ -0.0441 \\ +0.0248 \end{array}$
Maggio 10	III V V	0. 3193 0. 2392 0. 2889 0. 3092	0. 3239 0. 2991 0. 2962 0. 2735	$\begin{array}{c c} -0.0046 \\ -0.0599 \\ -0.0073 \\ +0.0357 \end{array}$	Maggio 16	III IV V VII VIII	0. 2803 0. 2625 0. 1849 0. 1762 0. 2197	0. 2645 0. 2373 0. 2272 0. 2069 0. 2040	$\begin{array}{c} + 0.0158 \\ + 0.0252 \\ - 0.0423 \\ - 0.0307 \\ + 0.0157 \end{array}$

Le differenze fra le collimazioni osservate e calcolate toccano perfino i sei centesimi di secondo, e sono frequenti fra esse quelle di due e di tre centesimi. Differenze tali non mi parvero da attribuirsi ad errori di osservazione, ma piuttosto a ciò che i fatti non sono integralmente rappresentabili con una formola. Per decidere la questione io calcolai l'error probabile di una collimazione osservata, e il calcolo lo feci appunto sulla polare della determinazione IV per la quale si incontrano nel quadro che precede differenze un po' grandi. Trovai l'errore probabile del passaggio della polare a ciascun filo, ridotto all'equatore uguale a 0.03121, e poichè la polare in ognuna delle posizioni dello strumento era stata osservata a sei fili dedussi risultarne nella collimazione l'error probabile 0.00901. Questo però vuole essere accresciuto ancora d'una piccola quantità dovuta all'error probabile dell'ineguaglianza dei perni, uguale dietro quanto fu già detto a 0.00428. L'error probabile che per esso passa nella collimazione essendo rappresentato da 0.00428 cos (9-8) ne risultò l'error probabile definitivo di una collimazione osservata uguale alla radice quadrata di (0.0090)2 + (0.0028)2, uguale cioè a 0.0094. Desso è molto minore delle differenze che non di rado s'incontrano fra le collimazioni osservate e calcolate del quadro precedente, sicchè non dubitai un istante essere più opportuno ritenere per ogni determinazione di tempo il valore corrispondente della collimazione osservato. Ritenni infatti questo valore, nè altro in proposito mi rimane ad aggiungere se non che nella riduzione delle stelle e per la culminazione superiore delle medesime esso vuol essere preso col segno positivo per le stelle osservate col circolo dello strumento rivolto ad ovest, col segno negativo per le altre osservate nella posizione diametralmente opposta del circolo. E poichè le collimazioni vogliono inoltre essere corrette della costante dell'aberrazion diurna, uguale per la latitudine di Milano a 0s.0145 trascrivo qui le collimazioni così corrette, e quali io applicai più tardi nella riduzione delle stelle secondo che queste erano state osservate nell'una o nell'altra posizione dello strumento.

Collimazioni usate nella deduzione del tempo dai passaggi delle stelle osservate.

Dat	a	Determinazione	Ovest	Est	Data	Determinazione	Ovest	Est	Data	Determinazione	Ovest	Est
Magg.		III IV VII IV	+ 0. 3733 0. 3382 0. 3016 + 0. 2803	0. 3306		III IV VII VIII	+ 0. 3207 0. 2401 0. 2712 0. 2776	- 0. 3497 0. 2691 - 0. 3002 0. 3066	Magg. 13	III IV V VIII	+ 0. 3092 0. 2965 0. 2791 0. 2149	0. 3255 0. 3081
Magg.		VII VIII II	0. 2652 0. 2309 + 0. 3112	0. 2942 0. 2599	Magg. 10	III IV V	+0.3048 0.2247 0.2744	- 0. 3338 0. 2537 0. 3034	Magg. 14	III IV V	+0.2570 0.2196 0.1936	0. 2486 0. 2226
magg.		III IV VII	0. 3109 0. 3138 0. 2604	0. 3399 0. 3428 0. 2894	Magg. 11	VII VII VIII	0. 2947 + 0. 2202 0. 2505	0. 3237 - 0. 2492 0. 2795	Magg. 15	VII VIII III	0.1500 0.1522 $+0.2425$	0. 1812
Magg.	7 8	VIII IV IV	0. 2440 + 0. 2805 + 0. 3482	A TOTAL PORT	Magg. 12	III IV V	+ 0. 2516 0. 2631 0. 2888	- 0. 2806 0. 2921 0. 3178		VIII	0. 2605 0. 2162 0. 1510 0. 2194	0. 2452 0. 1800
22086		V VI VII	0. 3186 0. 2754 0. 2597	0. 3476 0. 3044 0. 2887		VII	0. 1992 0. 2204	0. 2282 0. 2494	Magg. 16	III IV V	+ 0. 2658 0. 2480 0. 1704	6 - 0. 2948 0. 2770
1071	1 4	VIII	0. 2972	0. 3262			7 - 1 - 5 - 1		0 7 200	VIII	0.1617	0. 1907

Rimaneva a determinare l'azimuth dello strumento, ossia il valore di k nella nota formola di Mayer. Delle tre correzioni istrumentali che entrano in questa formola il k solo essendo oramai incognito, io lo dedussi, per ciascuna determinazione di tempo, combinando l'equazione data dal passaggio della rispettiva polare colla media delle equazioni analoghe riferentisi ai passaggi delle singole stelle orarie. Riescii così per ogni determinazione di tempo ad ottenere un'equazione della forma a=bk dalla quale ricavai in seguito i valori contenuti nel quadro qui appresso, abbastanza chiaro per sè.

Data	Determinazione	K	Data	Determinazione	K	Data	Determinazione	K	Data	Determinazione	K
Magg. 4	III IV VII	+ 0. 6697 0. 6782 0. 6846	Magg. 8	VI V. VI	+ 0. 7450 0. 5419 0. 7665	Magg. 11	VIII.	+ 0. 6453 0. 6538	Magg. 14	III IV V*	+ 0. 8111 0. 7367 0. 5404
Magg. 5	IV VIII*	+ 0.8175 0.7447 0.5908	Magg. 9		0. 7784 0. 5352 + 0. 8117	Magg. 12	VII V. VIII	+ 0.8274 0.7766 0.5743 0.6733	Magg. 15	VIII*	0. 7107 0. 7271 + 0. 7862
Magg. 6	VII	+ 0. 7454 0. 8167 0. 6120		AIII. AII IA	0. 7488 0. 6827 0. 6849	Magg. 13	III VIII.	0. 6028 + 0. 8397 0. 8112		AIII. AII A.	0. 7828 0. 5970 0. 7679 0. 6575
Magg. 7	IV VIII.	0. 6194 + 0. 7655	Magg. 10	VII V. IV III	+ 0. 8562 0. 7836 0. 5792 0. 6397		AIII.	0. 5853 0. 5995	Magg. 16	III IV V*	+ 0. 7683 0. 7847 0. 6938
					140					VIII*	0. 7563 0. 7164

Valori osservati dell'azimuth istrumentale.

Nelle due determinazioni di tempo V e VIII, controssegnate con un asterisco, si osservava la culminazione superiore della rispettiva polare; nelle rimanenti se ne osservava la culminazione inferiore. Ora questo è strano che in una stessa sera, l'azimuth dato dalla polare osservata nella culminazione superiore è generalmente più piccolo degli altri dati dalle rimanenti polari, e ciò senza che in generale la sua piccolezza possa spiegarsi con un movimento progressivo dell'azimuth durante cadauna sera. Vi sono qua e là delle anomalie, non tali però da poter distruggere la generalità del fatto.

Non fu così facile immaginarne la causa. Egli pare che io osservi in modo diverso i passaggi delle polari, secondochè esse sono nella superiore o nell'inferiore culminazione. Basta supporre che io osservi nella culminazione inferiore il passaggio troppo presto d'una certa quantità, nella superiore troppo tardi della quantità stessa per avere la spiegazione del fatto accennato. Per trovare il valore di questa quantità, basta combinare fra loro per ogni sera due delle equazioni determinatrici dell'azimuth, l'una che corrisponda ad un passaggio inferiore della polare, l'altra ad un passaggio superiore, e cercare quale è la correzione da arrecarsi alla costante delle medesime perchè da esse derivi uno stesso azimuth. Se si chiama x questa correzione, si avranno così due equazioni

$$a - x = b k$$
$$a' + x = b' k$$

riferentisi la prima alla determinazione di tempo, in cui la polare culminava sotto al polo, la seconda alla determinazione in cui osservavasi la culminazione superiore della polare, e da esse si ricaverà il valore cercato di m.

Questo procedimento suppone implicitamente, che durante le due determinazioni di tempo considerate l'azimuth non siasi cambiato; io combinai quindi sempre fra loro le equazioni di due determinazioni successive, per le quali potevasi con fondamento ritenere appunto questa costanza d'azimuth. Quando in una sera erasi osservata una sola delle due determinazioni di tempo V ed VIII, ottennevo un solo valore di x, quando amendue erano state osservate, due ne ottenevo. Così pel giorno 5, combinando le equazioni riferentisi alle determinazioni VII ed VIII, dedussi un valore di x; pel giorno 8 combinando l'equazione IV colla V, la VII colla VIII, ne dedussi due. Fa eccezione il giorno 13, in cui fu ottenuto un solo x dalla combinazione della IV colla V. Ecco ora i diversi valori di x ottenuti col descritto procedimento.

Maggio	5	+0.4177	
*	6		— 0. 0200
*	8	+0.7396	
*	>>	+0.6599	
*	9		-0.0060
>	10	+0.4951	4000
"	11		-0.0230
»·	12		
*	>>		
*			
*	14	+0.7162	0.0440
*	>>		-0.0443
»			
>>			
* >>	16		
*	>>	+ 0.1081	
	» » » » » » » » » »	* 6 * 8 * 8 * 9 * 10 * 11 * 12 * * 13 * 14 * * 15 * 15 * 16	* 6 * 8 + 0.7396 * 9 + 0.6599 * 9 * 10 + 0.4951 * 11 * 12 + 0.5427 * * + 0.1909 * 13 + 0.8218 * 14 + 0.7162 * * * * * 15 + 0.6778 * * + 0.2993 * 16 + 0.3313

La costanza del segno ed i valori sensibili trovati per x mostrano che realmente esiste la causa escogitata, e che dell'effetto suo vogliono per conseguenza essere corretti gli azimuth osservati. Ritenni in media x=+0.3692, e sottraendolo a tutte le costanti delle equazioni determinatrici dell'azimuth dipendenti dalla culminazione inferiore di una polare, aggiungendolo alle costanti delle rimanenti equazioni, calcolai così i seguenti

Valori definitivi dell'azimuth istrumentale.

Data	Determinazione	K	Data	Deferminazione	K	Data	Determinazione	K	Data	Determinazione	K
Magg. 4	III IV VII	+0. 6390 0. 6371 0. 6257	Magg. 8	IV V VI	+ 0. 7045 0. 6027 0. 7160	Magg. 11	VIII	+ 0. 5864 0. 7308	Magg. 14	III V V	+ 0. 7804 0. 6961 0. 6009
Magg. 5	IV VII VIII	+ 0. 7769 0. 6858 0. 6678	Magg. 9	VIII	0. 7195 0. 6123 +0. 7810	Magg. 12	III IV V VII	+ 0. 7967 0. 7359 0. 6351 0. 6143	Moss 15	VII VIII	0.6517 0.8041
Magg. 6	II III VII	+0.7042 0.7859	magg.	IV VII VIII	0. 7082 0. 6240 0. 7620	Magg. 13	VIII	0.6799	Magg, 15	V VII	+ 0. 7555 0. 7422 0. 6576 0. 7090
Magg. 7	VIII	0. 5531 0. 6965 + 0. 7250	Magg. 10	III IV V	+ 0, 8255 0, 7430 0, 6397	ent	V VIII	0. 7706 0. 6462 0. 6765	Magg. 16	IV	0. 7346 + 0. 7345 0. 7441
				VII	0. 5807				an a s	V VII VIII	0. 7544 0. 6974 0. 7935

Determinati così tutti gli elementi necessarî, potei procedere senz'altro al calcolo delle correzioni dell'orologio. Tal calcolo è dato in tutti i suoi dettagli per ciascuna sera di osservazione nella serie dei quadri che seguono. In essi la colonna I contiene il nome della stella osservata; la II la posizione dello strumento in cui essa fu osservata, se cioè col circolo rivolto ad ovest o ad est; la III l'ora dell'orologio in cui fu osservato il passaggio della stella al filo di mezzo; la IV il numero dei fili su cui il passaggio stesso riposa; la V la differenza fra l'ascension retta apparente della stella, desunta da effemeridi cortesemente comunicate dal prof. Oppolzer, ed il tempo del passaggio osservato, già scritto nella colonna III; la VI, la VII e la VIII i valori rispettivi dei termini $i\cos(\varphi - \delta)\sec\delta - c\sec\delta - k\sec(\varphi - \delta)\sec\delta$ della formola di Mayer, i valori di i, di c, e di k in esse rispettivamente adottati essendo quelli dell'inclinazione, della collimazione, dell'azimuth dedotti per ciascuna sera e per ciascuna determinazione di tempo nella parte appena scritta del presente resoconto; la IX la riduzione a 14^h,5 di tempo siderale; la X la correzione dell'orologio data da ciascuna stella e ridotta all'ora 14,5 che corrisponde press'a poco al mezzo dei passaggi osservati. Sulle tre ultime colonne XI, XII e XIII tornerò più tardi; qui mi soffermo un momento sulla colonna IX.

I numeri contenuti in essa dipendono evidentemente dall'andamento orario incognito finora dell'orologio, e furono così dedotti. Per mezzo delle colonne V, VI, VII, VIII fu determinata la correzione dell'orologio che corrisponde all'istante del passaggio della stella rispettiva; fu fatta la media delle correzioni date dalle stelle d'una medesima determinazione di tempo, e fu calcolata l'ora dell'orologio per la quale essa valeva; fu fatta in seguito per ogni sera la media delle correzioni dell'orologio date dalle singole determinazioni di tempo in essa osservate, ed insieme fu calcolata l'ora dell'orologio a cui la medesima corrispondeva.

Paragonando i numeri così ottenuti per le diverse sere successive fu dedotto un primo andamento orario dell'orologio, per mezzo del quale furono dedotte le correzioni dell'orologio ad un'identica ora. Su queste fu ripetuto il calcolo appena descritto, e ne risultò un secondo andamento orario, dal primo poco diverso, e da cui furono dedotti i numeri della colonna IX.

Calcolo delle correzioni dell' orologio.

I Nomi delle stelle	II III T Passaggio delle stelle al filo di mezzo	Numero dei fili Al A — A — A — A — A — A — A — A — A —	$i\frac{\cos(\varphi-\delta)}{\cos\delta}i$	VII	$h \frac{\sin(\varphi - \delta)}{\cos \delta}$ III	Riduzione X a 14 ^h .5	Correzione dell'orologio M K	Correzione ridotta alla media $\frac{K}{E-0}$	XII Λα.	Correctioni definitive del- Y X l'orologio L H a 14 5
δ Leonis	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 13 \\ 11 \\ 12.668 \\ 11 \\ 12.81 \\ 12.78 \\ 11.85 \end{bmatrix}$	DETERMI 3 -0.080 7 -0.054 -0.064 5 -0.077	$ \begin{array}{c} $	*N. III +0.281 +0.479 +0.403 +0.333		12.127 12.061	+12.134 .084 .139 .049	$\begin{bmatrix} -0.015 \\ +0.035 \\ -0.020 \\ +0.070 \\ -0.068 \end{bmatrix}$	12.126 12.054
			DETERM	INAZIONE	N. IV.	CL CONTRACTOR		.119		August 5
$ \begin{array}{ccccc} \rho & \cdot & \cdot & \cdot \\ d^2 & \cdot & \cdot & \cdot \\ \theta & \cdot & \cdot & \cdot \\ 61 & \cdot & \cdot & \cdot \end{array} $	E 12 30 10.58 35 23.31 39 7.92 O 13 3 17.64 11 40.88 18 25.44	$egin{array}{cccc} 6 & . & 11.99 \\ 0 & . & 12.08 \\ 7 & . & 12.87 \\ 6 & 4 & 12.97 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & -0.374 \\ & -0.371 \\ & +0.339 \\ & +0.355 \end{array} $	+0.368 $+0.388$ $+0.492$ $+0.596$	$ \begin{vmatrix} +0.032 \\ +0.031 \\ +0.030 \\ +0.023 \\ +0.021 \\ +0.019 \end{vmatrix} $	12.181 12.126 12.094	.154 .153 .121	$ \begin{array}{r} -0.034 \\ +0.049 \\ -0.018 \\ -0.017 \\ +0.015 \\ +0.002 \end{array} $	12.174 12.149 12.096

I	II	III	IV V	VI	VII	VIII	IX	X A T	XI g	XII	XIII A T ₄
Nomi delle stelle	18	T Passaggio delle stelle al filo di mezzo	Numero dei fili	$\frac{\partial \cos^2 \theta}{\partial \cos^2 \theta}$	c sec d	$h \frac{\operatorname{sen}(\varphi - \delta)}{\cos \delta}$	Riduzione a 14 ^h . 5	Correzione dell'orologio	Correzione ridotta alla media $\frac{1}{E} = 0$	Λα.	Correzioni definitivo del- l'orologio a 14,5
ender verge Strambarder Mandar	DETERMINAZIONE N. VII.										
α Serpentis ε γ ε Ophimhi. γ Herculis.	E 1	44 24.310 50 30.151 6 11 32.117	12. 12. 12. 12.	$ \begin{array}{c c} $	$ \begin{array}{r} +0.310 \\ +0.321 \\ -0.332 \\ -0.351 \end{array} $	+0.408 $+0.320$ $+0.480$ $+0.291$	$ \begin{array}{r} -0.020 \\ -0.022 \\ -0.027 \\ -0.028 \end{array} $	$\begin{array}{c} *\\ +12.157\\ 12.201\\ 12.166\\ 12.232\\ 12.164\\ 12.101 \end{array}$.162 .236 .168	$ \begin{array}{r} $	+12.156 12.210 12.161 12.161 12.180 12.143 12.192
die otaya allo otaya			om is	18 Determ	75 Maggio		ia UX	6,61 8			
$ \begin{array}{cccc} \rho & & & \\ d^2 & & & \\ \theta & & & \\ \beta & \text{Comæ} \end{array} $		2 30 9.998 35 22.761 39 7.293 3 317.394 5 51.630 11 40.561 18 25.136	12. 12. 11 13. 13 12. 13 13.	$\begin{array}{c} 811 \\ 545 \\ -0.045 \\ -0.045 \\ -0.048 \\ -0.048 \\ 947 \\ -0.088 \\ 302 \\ -0.036 \\ 217 \end{array}$	$ \begin{array}{r} -0.315 \\ -0.313 \\ +0.281 \\ +0.319 \\ +0.294 \end{array} $	$ \begin{array}{r} +0.448 \\ +0.474 \\ +0.600 \\ +0.258 \\ +0.727 \end{array} $	$ \begin{array}{r} +0.032 \\ +0.031 \\ +0.025 \\ +0.024 \\ +0.022 \end{array} $	+12.587 12.489 12.624 12.316 12.477 12.339 12.340	.390 .525 .415 .576 .438	$ \begin{array}{r} +0.077 \\ -0.058 \\ +0.052 \\ -0.109 \\ +0.029 \\ +0.028 \end{array} $	+12.563 12.519 12.617 12.339 12.427 12.341 12.365
		sin Selah,		DETERM	INAZION	N. VII		rance self			
α Serpentis ε γ ε Ophiuchi γ Herculis. ω α Scorpii	. E 1	15 37 55.641 44 24.054 50 29.833 16 11 31.588 16 13.857 19 28.196 21 33.639	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 092 \\ -0.091 \\ -0.088 \\ 063 \\ -0.105 \\ -0.047 \\ -0.070 \\ -0.065 \\ -0.026 \\ \end{array} $	$ \begin{array}{c} -0.266 \\ -0.276 \\ -0.295 \\ -0.312 \\ -0.304 \end{array} $	$\begin{array}{c} +0.448 \\ +0.350 \\ +0.525 \\ +0.319 \\ +0.366 \end{array}$	$ \begin{array}{r} -0.021 \\ -0.023 \\ -0.028 \\ -0.030 \\ -0.031 \end{array} $	12.478 12.519 12.659 12.571 12.481	.545 .586 .592 .504 .414	$ \begin{array}{r} +0.022 \\ +0.010 \\ -0.031 \\ -0.037 \\ +0.051 \\ +0.141 \\ -0.159 \end{array} $	+12.465 12.487 12.514 12.607 12.550 12.572 12.722
				DETERM	INAZION	e N. VI	II.				
ζ Herculis. 20 Ophiuchi 49 Herculis. α v Serpentis w Herculis. α Ophiuchi	: : :	42 44.159 46 12.765 17 8 45.650 13 36.41 15 47.72	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 469 \\ -0.08 \\ -0.04 \\ -0.06 \\ -0.06 \\ -0.06 \\ -0.06 \\ -0.08 \\ -0.08 \\ -0.08 \\ -0.08 \\ -0.08 \\ -0.08 \\ -0.06 \\ -0.08 \\ -$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 4 \\ +0.563 \\ 9 \\ +0.349 \\ +0.354 \\ 7 \\ +0.583 \\ 4 \\ +0.170 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.670 12.509 12.512 12.495 12.776	.655 .494 .527 .510 .791	$ \begin{array}{r} -0.063 \\ +0.098 \\ +0.065 \\ +0.082 \\ -0.199 \\ +0.052 \end{array} $	12.669 12.563 12.529 12.537 12.722
					1875 Mag	gio 6. NE N. I	I.				
41 Leonis . 37 Sextantis 1 Leonis .		39 23.24	7 13 13	$\begin{array}{c c} 2.979 & +0.13 \\ 3.167 & +0.10 \\ 3.076 & +0.10 \end{array}$	$\begin{vmatrix} 31 & -0.37 \\ 1 & -0.34 \end{vmatrix}$	2 +0.28 $3 +0.44$	4 + 0.061 $1 + 0.061$	13.029	13.029	-0.030 -0.028	12.999
183291						NE N. II					
δ Leonis . φ β A^2 Virginis . π	0	14 29.599 42 29.070 48 26.27	9 13 0 13 4 9 13 1 13 13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} -0.38 \\ 2 \\ -0.49 \\ 2 \\ -0.41 \\ 5 \\ -0.47 \\ 3 \\ -0.48 \\ \end{array} $	$ \begin{array}{c} +0.051 \\ 6 +0.051 \\ 0 +0.044 \\ 2 +0.042 \\ 9 +0.041 \end{array} $	12.974 13.044 12.761 12.879 12.732	.86 .93 .86 .98 .98	$ \begin{array}{c} +0.019 \\ 6 \\ -0.05 \\ 9 \\ +0.00 \\ 7 \\ -0.10 \\ +0.03 \\ -0.06 \\ +0.06 $	2 12.98 8 13.04 9 12.75 9 12.83 8 12.74

I Nomi delle stelle	Circolo	T Passaggio delle stelle filo di mez	al on	\mathbf{V} $\alpha = T$	$i \frac{\cos(\varphi - \delta)}{\cos \delta}$	VII c sec ò	$h \frac{\sin(\varphi - \delta)}{\cos \delta}$	Riduzione Z a 14 ^h .5	Corregione dell'orologio L K	Correzione ridotta alla media $rac{K}{E-0}$	XII Λα.	Correzioni definitive del- > K l'orologio - H H a 14.5
DETERMINAZIONE N. VII.												
α Serpentis ε γ ε Ophiuchi. γ Herculis . ω α Scorpii .	: ::	h m s 15 37 55.3 15 44 23.8 50 29.6 16 11 30.6 16 12.6 19 27.1 21 33.0	79	13.314 13.265 13.805 13.736 13.557	+0.067 $+0.079$ $+0.057$ $+0.083$ $+0.077$	$ \begin{array}{r} -0.290 \\ -0.301 \\ +0.261 \\ +0.276 \\ +0.269 \end{array} $	+0.361 $+0.283$ $+0.424$	$ \begin{array}{r} -0.020 \\ -0.021 \\ -0.027 \\ -0.028 \\ -0.029 \end{array} $	+13.206 13.156 13.183 13.036 13.092 12.887 12.876	13.052 .079 .140 13.196 12.991	+0.025 -0.002 -0.063 -0.119	+13.205 13.165 13.178 12.984 13.071 12.978 12.817
		263	7.	D	ETERMI	NAZIONE	N. VII	I.	BENISS G			
C Herculis. Ophiuchi. Herculis. Serpentis. W Herculis.	:	16 36 22.8 42 43.2 46 11.6 17 8 45.5 13 36.1 15 47.6	38 82 74	13.905 13.660 13.181 13.560	+0.046 $+0.072$ $+0.072$ $+0.044$	+0.248 $+0.253$ -0.282 -0.280	$ \begin{array}{r} +0.193 \\ +0.588 \\ +0.364 \\ +0.370 \\ +0.607 \\ +0.184 \end{array} $	$ \begin{array}{r} -0.035 \\ -0.036 \\ -0.042 \\ -0.043 \end{array} $	+13.100 12.988 12.935 12.979 13.146 13.304	.056 .003 12.911 13.078	+0.019 $+0.072$ $+0.164$	+13.054 12.987 12.989 12.996 13.188 13.250
	201			D		5 Maggio	7. N. IV.		108.08 1 085.91 5.		idopio	op I I
d^2		2 30 9.35 35 22.08 39 6.79 3 5 50.81 11 39.81 18 24.45	9 13 3 6 5 3	-13.449 - 13.209 - 13.205 - 13.754 - 14.047 -	-0.096 -0.127 -0.122 -0.142 -0.062	$ \begin{array}{r} -0.311 \\ -0.315 \\ -0.313 \\ +0.319 \\ +0.294 \end{array} $		+0.031 $+0.030$ $+0.023$ $+0.021$	+13.326 - 13.264 13.228 13.359 13.158 13.096	.269 - .233 - .354 - .153 -	$ \begin{array}{r} -0.054 \\ +0.008 \\ +0.044 \\ -0.077 \\ +0.124 \\ +0.186 \end{array} $	$\begin{array}{c} +13.302\\ 13.294\\ 13.221\\ 13.309\\ 13.160\\ 13.121\end{array}$
SET FROM	635.			Der	TERMINA	ZIONE N	VII.	**	5 44.15 8 5 5 7 0 7 7	0.12		
α Serpentis.	. 0	15 37 54.97 44 23.33 50 29.1	20	+13.790 13.886 13.806	-0.145	+0.281	+0.474	-0.020	$egin{array}{c} +13.184 -13.256 \\ 13.295 \end{array}$.256	+0.061 -0.011 -0.050	13.265
1135-310.03		NA LITTER	144	DE		5 Maggio	8. N. III. *	***				or I b
\emptyset Leonis . σ A^2 Virginis . π η	. O	11 7 14.7 14 28.5 48 26.5 54 15.8 [2 13 18.4	669 5 209 13 375	+14.316 14.272 13.783 13.750	+0.108 +0.087 +0.090 +0.088	$\begin{array}{r} +0.374 \\ +0.351 \\ -0.382 \\ -0.380 \end{array}$		+0.062 $+0.060$ $+0.049$ $+0.047$	+13.600 13.471 13.722 13.671 13.706	.553 .640 .589	-0.065 -0.022 $+0.029$ -0.006	13.470 13.679 13.685
				7	DETERM:	INAZION	E N. IV	1 2 2 4 4		WEE A		
$\begin{array}{c} \rho \text{ Virginis } . \\ d^2 \cdot \cdot \cdot \cdot \cdot \\ \theta \cdot \cdot \cdot \cdot \cdot \cdot \\ \beta \text{ Comæ. } . \\ 61 \text{ Virginis } . \\ \alpha \cdot \cdot \cdot \cdot \end{array}$		12 35 21.4 39 6.1 13 3 16.4 5 50.1 11 39.5 18 23.6	132	13.863 14.459 14.372 14.584	+0.072 $+0.057$ $+0.097$ $+0.042$	$ \begin{array}{r} -0.381 \\ +0.349 \\ +0.396 \\ +0.365 \end{array} $	$egin{array}{c} +0.407 \\ +0.430 \\ +0.544 \\ +0.234 \\ +0.659 \\ +0.593 \\ \end{array}$	+0.034 $+0.026$ $+0.026$ $+0.024$	+13.776 13.776 13.535 13.671 13.542 13.486	.668 .643 .779 .650	$ \begin{array}{r} -0.001 \\ -0.001 \\ +0.024 \\ -0.112 \\ +0.017 \\ +0.073 \end{array} $	13.768 13.558 13.621 13.544
** In quest	ta dete	i, nella pres erminazione erminazione lla media d	furono	ritenute q	uali costa	nti della	collimazion	ne e dell'u	azimuth que	4. elle date da		

Nomi delle stelle	II III Passag delle ste filo di m	ggio de le	VI VII VII (9 soo)	$\frac{\sin(\varphi-\delta)}{\cos\delta}$	Riduzione a 14 ^h .5	Corresione dell'orologio L X	ridotta alla media $B - O$ $A \propto A$	Correzioni definitive del- v X l'orologio 'L' III a 14". 5
			DETERMINAZIO	NE N. V.				
l^2 Virginis ζ m	28 6	$5.328 \begin{vmatrix} 13 \\ +14.65 \\ 6.855 \\ 14.50 \\ 14.58 \end{vmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{19}{19} + 0.429$	+0.015 +0.016	+13.821 +- 13.731 13.750 13.930	13.902 - 0.054 $13.902 - 0.054$ $13.902 - 0.054$ $13.902 - 0.054$ $13.902 - 0.054$ $13.902 - 0.054$ $13.902 - 0.054$ $13.902 - 0.054$	13.742
191 2000		12.81 12.81 - 0.0231 12.81	DETERMINAZIO	NE N. VI	1975	in strain		grade The second
b Serpentis ε Libræ ζ' α Coronæ	171	2.838 14.7	$egin{array}{c} 40 & +0.050 & +0.3 \ 19 & +0.041 & +0.3 \ 31 & +0.035 & +0.3 \ 03 & +0.075 & +0.3 \end{array}$	$\frac{09}{17} + 0.597$	-0.014 -0.015	13.758	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 13.688
			DETERMINAZIO	NE N. VI	1.	\$48,574 8 48,574	VI. 3	
ε · · · · · · · · · · · · · · · · · · ·	. E 16 11 8 16 1	22.738	$\begin{array}{c} 10 \\ +0.025 \\ +0.024 \\ +0.24 \\ +0.029 \\ +0.29 \\ +0.039 \\ -0.2 \\ +0.053 \\ -0.21 \\ +0.053 \\ -0.21 \\ -0.21 \\ -0.21 \end{array}$	$ \begin{array}{r} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+13.750 + 13.704 + 13.754 + 13.787 + 13.765 + 13.624 + 13.924	$\begin{array}{c c} 13.769 & -0.01 \\ .723 & +0.03 \\ .773 & -0.01 \\ .768 & -0.01 \\ .756 & +0.00 \\ .605 & +0.15 \\ .905 & -0.14 \end{array}$	13.713 13.749 1 13.735 1 13.744 2 13.715
els Hers		egge light	DETERMINAZIO	NE N. VI	II.		810	
ζ Herculis. 20 Ophiuchi 49 Herculis. α v Serpentis w Herculis.	42 4 46 1 17 8 4 13	42.865 14.3 11.416 13.3 44.263 14.3 35.077 14.3	$\begin{array}{c} 813 \\ +0.087 \\ -0.8 \\ 818 \\ +0.043 \\ -0.8 \\ 603 \\ +0.068 \\ -0.8 \\ -0.8 \\ +0.081 \\ +0.088 \\ +0.088 \\ +0.088 \\ -0.0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 0 & -0.039 \\ 6 & -0.041 \\ 0 & -0.042 \\ 5 & -0.048 \\ 0 & -0.050 \end{array} $	14.050 13.871 13.786 13.796	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.049 13.925 13.803 13.838
			1875 May	igio 9.		11111111	.010	
			DETERMINAZI	ONE N. I				
δ Leonis . φ β A^2 Virginis . π η	0 42 48 54	5.212 14. 28.439 14. 27.809 14. 325.045 14. 14.699 5 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} $	14.199 14.168 13.993 14.084 14.048	$\begin{array}{c} +14.085 \\ -123 \\ -0.0 \\ -0.0 \\ -0.0 \\ -160 \\ -0.0 \\$	24 14.210 07 14.167 30 13.986 61 14.041 14.062
			DETERMINAZ					
f. Virginis. $ \begin{array}{cccc} \rho & \cdot & \cdot & \cdot \\ \theta & \cdot & \cdot & \cdot \\ \beta & \text{Come} & \cdot \\ 61 & \text{Virginis} & \cdot \\ \alpha & \cdot & \cdot & \cdot \end{array} $	E 13 8	5 20.451 14 8 16.007 14 5 50.289 11 14 1 39.113 13 14	$\begin{array}{c} .022 & +0.080 & +0.839 \\ .839 & +0.106 & +0.506 \\ .506 & +0.081 & -0.274 & +0.137 & -0.72 \\ .748 & +0.060 & -0.680 & -0.680 \\ -0.072 & -0.072 & -0.072 & -0.072 \\ \end{array}$.245 + 0.4 $.270 + 0.5$ $.306 + 0.2$ $.282 + 0.6$	$ \begin{array}{r} 09 \\ +0.036 \\ 47 \\ +0.027 \\ 35 \\ +0.027 \\ 62 \\ +0.027 \end{array} $	3 14.115 7 14.175 7 14.135 14.333	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	041 14.145 065 14.198 105 14.085 093 14.336
	Thos	00.402.42	DETERMINAZ					
ε Ophiuchi	. 0 16 11	1 29.526 14 6 11.566 14	.456 +0.056 -0.056 -0.056 +0.040 +0.058 +0.058 +0.054 +0.05	0.272 + 0.4 0.288 + 0.2	-0.08	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.295 —0	0.020 14.12 0.066 14.20

	I	II	111	IV	v	VI	VII	VIII	ıx	x	XI	XII	XIII
		- Managa	T	i fili		6		9	9	ΛΤ	Correzione ridotta alla media $\overline{E-0}$		Λ T ₄
	Nomi delle stelle		Passagg elle stell	e al e oi	$\alpha - T$	€ 800 0 (4 –	c sec o	en (φ − cos δ	Riduzione a 14°. 5	Correzione dell'orologio a 14 ^h .5	a alla 1 E — 0	Λα.	tive de ologio 14, 5
		Circolo	ilo di me	Numero		2.0		n Se	Rig	Cordell'dell'a	Co ridott		Correzioni definitive del- l'orologio a 14.5
			h m s		8	8	2	NE N. V	2				
20	Herculis . Ophiuchi.	. 01	6 36 21 42 42	.730 13 .178	15.025	+0.049	+0.282	+0.211 +0.643	-0.041	+14.242 14.010		$-0.111 \\ +0.121$	+14.196 14.009
0			7 8 44		14.471	+0.077	-0.317	+0.398 $+0.405$	-0.050	14.121 14.256	.191	$+0.010 \\ +0.005$	14.175 14.273
w	Serpentis Herculis. Ophiuchi.		15 46	.081	14.176	+0.100	-0.364	+0.664 +0.201	-0.052	14.295	.122	-0.034 $+0.074$	14 337 14.133
	Herculis .			.335 13				+0.423 +0.261		14.222 14.315	.250 .250 .196	-0.011 -0.054	14.236 14.282
						187	. Maggio	10.			.190		
-	de Leonis .	. 011	11 713	806 13	+15.285	1+0.130	1+0.327	E N. III	1+0.067	+14.531	+14.573	-0.011	+14.524
1	φ		10 4 14 27	.231	15.468 15.353	+0.088 +0.104	+0.305 $+0.307$	+0.618 +0.520	+0.066 +0.066	14.523 14.488	.565	$-0.003 \\ +0.032$	14.534 14.487
A	β	. E	48 25	.761	14.838	+0.135	-0.338	+0.430 +0.495	+0.054	14.669 14.600	.598	-0.065 -0.036	
- 11	π η	: : : : 1	2 13 17	.811 .351	14.801 14.904	+0.131 +0.116	-0.337 -0.334	+0.514 +0.588	+0.052 +0.046	14.545 14.580	.538	+0.059 +0.024	
						DETERM	INAZION	E N. IV			.562		
1	Virginis .	. E 1		723 13 - 340				+0.576 +0.429		+14.691 14.687	+14.686 $.682$	-0.010 -0.006	+14.667 14.717
P d d			39 5. 3 3 15.	040	14.947	+0.121	-0.256	+0.453 +0.573	+0.037	14.666 14.647		+0.024	14.659 14.670
- 11	Virginis.		11 38.	112 286	15.446 15.574	+0.138 $+0.060$	+0.256 +0.236	+0.247 $+0.695$	+0.028 +0.026	14.833 14.609	.838 .614	+0.062	14.783 14.611
a	N-pace-	.11	18 22.	857	15 498	+0.072	+0.229	1+0.626		14.595	.600	+0.076	14.620
7.2	Virginis	10119	95 14 9	3901131				E N. V. →0.5001		14.742	⊥14.74 2	-0.037	+14.690
\ m			28 5.3	392	15.470	+0.084	+0.274	+0.456	+0.021 +0.018	14.677 14.697	.677	+0.028 +0.008	14.736
		\$10 g								TOTAL PL	.705		edit i
	e Ophimhi.	. 0 1	61128	998 13 -	+15.543	+0.055	0.296	N. VI	_0.034	+14.713	+14.713	-0.035	+14.661
	Herculis.		16 11	.100	15.373 15.348	+0.080 +0.074	+0.313 +0.304	+0.270 +0.310	-0.036 -0.037	14.674 14.623	.647 .623	+0.004 +0.055	14.653
	z Scorpii .	.	21 31	.212 4	15.712	1-+0.030	10.328	610.614	. -0.037	14.703	.703	-0.025	14.644
					1		75. Maggi INAZION	o 11. E N. V	II.				
	ε Serpentis	.[0]			+15.92	7 +0.10	4 +0.22	1 +0.38	$\frac{3}{0} = 0.024$	+15.195 15.170	1+15.186	0.015	3 + 15.204
	γ ε Ophiuchi.	- 12	16 11 28	7.126	15.58	1 + 0.08	8 - 0.25	0 + 0.44	$\begin{vmatrix} 0 & -0.026 \\ 9 & -0.033 \\ 3 & -0.035 \end{vmatrix}$	15,261	.270	$\begin{vmatrix} +0.012 \\ -0.097 \\ -0.021 \end{vmatrix}$	15.209
- 8	γ Herculis.			1.129 5.546		5 + 0.13 + 0.12	0 - 0.25	7 + 0.31	$\begin{vmatrix} -0.036 \\ -0.036 \end{vmatrix}$	15.043		+0.121	
					I	DETERM	INAZION	E N. VI	III.		.116		
	ζ Herculis. O Ophiuchi.	· E		1.444 13	15.658	3 +0.08	5 - 0.28	4 1).61	6 -0.043	15.198	.167	-0.048	
4	9 Herculis.	0		0.046	15.38° 15.908	7 + 0.13 + 0.10	$\begin{vmatrix} 3 & -0.29 \\ 2 & +0.25 \end{vmatrix}$	0 + 0.38 9 + 0.38	$\begin{vmatrix} 2 & -0.044 \\ 8 & -0.052 \end{vmatrix}$	15.118 15.107	.087	+0.037 -0.014	15.172
1	Serpentis Herculis		13 33	3.885 5.198	15.984 15.848	$\frac{1}{3} + 0.06$	3 + 0.25 4 + 0.29	7 + 0.63 7 + 0.19	$\begin{array}{c c} 7 & -0.053 \\ 3 & -0.054 \end{array}$	14.974 15.165	.196	+0.119 -0.072	15.111
12	Ophiuchi. Herculis.		28 5	3.932 0.034	15.908	3 +0.10	0 + 0.25	7 +0.40	$\begin{vmatrix} 6 & -0.058 \\ 1 & -0.062 \end{vmatrix}$	15.087	.165	$\begin{vmatrix} +0.006 \\ -0.041 \end{vmatrix}$	
1	7										.124		4

1	PER I HX	III X	III I	v v	vi	VII	VIII	IX	X	XI II	XII	XIII A T ₄
	Nomi delle stelle	e del	assaggio	α— T	$i\frac{\cos(\varphi-\vartheta)}{\cos\vartheta}$	c sec o	$k \frac{\mathrm{sen}(\varphi - \delta)}{\cos \delta}$	Riduzione a 14 ^h . 5	Correzione dell'orologio	Correzione ridotta alla media $\frac{1}{E}$	Λα.	Correzioni definitive del- l'orologio a 14 ^h . 5
				10	1875. Determi	Maggio NAZION		045.65				- U 3 1
	δ Leonis γ β A^2 Virginis. π	. O	7 13.439 1 10 3.814 1 14 26.931 4 42 26.423 4 48 23.633 1 54 13.346 1 13 15.951 .	15.867 15.874 16.165 13 16.330 16.252	$ \begin{vmatrix} $	-0.261 -0.283 $+0.261$ $+0.255$ $+0.254$	$ \begin{array}{r} -0.500 \\ +0.502 \\ +0.415 \\ +0.478 \\ +0.496 \end{array} $	$ \begin{array}{r} +0.056 \\ +0.048 \\ +0.046 \\ +0.045 \end{array} $	15.563 15.404 15.521 15.429	.533 .434 .551 .459	$ \begin{vmatrix} s \\ +0.045 \\ +0.016 \\ -0.063 \\ +0.036 \\ -0.081 \\ +0.011 \\ +0.034 \end{vmatrix} $	15.448 15.495 15.562 15.397 15.478 15.443 15.438
-					DETERM						0.000	1 15 110
	f Virginis . $ \begin{array}{cccc} \rho & & & & \\ \rho^2 & & & & \\ \theta^2 & & & & \\ \beta & \text{Comæ} & & \\ 61 & \text{Virginis} & & \\ \alpha & & & & \\ \end{array} $	E 13	30 6.430 1 35 19.097 39 3.705 3 14.495 5 48.895 11 37.717 18 22.302	16.274 16.015 15.654	$\begin{array}{c} +0.080 \\ +0.106 \\ +0.102 \\ +0.081 \\ +0.137 \\ +0.060 \\ 3 +0.072 \end{array}$	+0.266 $+0.266$ -0.293 -0.332 -0.306	+0.449 $+0.568$ $+0.244$ $+0.688$	$ \begin{array}{r} +0.035 \\ +0.032 \\ +0.025 \\ +0.024 \\ +0.022 \end{array} $	+15.472 - 15.415 15.489 15.684 15.629 15.721 15.678	.599 .574 .519 .611 .568		15.445 15.445 15.482 15.707 15.579 15.723 15.703
					DETERMI	NAZION	e N. V.			.568		
	l^2 Virginis. ζ		25 13.810 28 5.374 34 49.010 55 2.810 59 51.814	16.030	$\begin{array}{c} 2 + 0.084 \\ 3 + 0.094 \\ 0 + 0.080 \\ 7 + 0.097 \\ 3 + 0.079 \end{array}$	-0.318 -0.321 $+0.289$	+0.452 $+0.516$ $+0.436$	+0.017 $+0.016$ $+0.010$	+15.909 15.777 15.771 15.505 15.514	.617 .659	$ \begin{array}{c c} -0.091 \\ +0.041 \\ +0.047 \\ +0.005 \\ -0.004 \end{array} $	+15.857 15.836 15.763 15.526 15.500
	大臣 - 15-20				DETERMI					1 2		
Control of the last	ε Ophiuchi. γ Herculis.		16 10.700	$\begin{array}{c c} 13 & +16.002 \\ & 15.802 \\ & 15.778 \end{array}$	2 +0.082	-0.242	+0.286	-0.030	+15.675 15.646 15.577	.646	$ \begin{array}{r} -0.042 \\ -0.013 \\ +0.056 \end{array} $	+15.623 15.625 15.668
					DETERMI				The last			
September 1 months and 1	ζ Herculis. 20 Ophiuchi α Herculis. υ Serpentis υ Herculis. α Ophiuchi		3 36 21.018 42 41.159 7 8 42.555 13 33.489 15 44.844 28 53.569	16.40 16.21	9 + 0.129 $2 + 0.064$ $0 + 0.109$ $2 + 0.061$ $7 + 0.133$ $2 + 0.09$	$\begin{array}{c} -0.254 \\ -0.228 \\ +0.226 \\ +0.265 \\ \end{array}$	$ \begin{array}{c} +0.574 \\ +0.361 \\ 6 +0.592 \\ +0.179 \end{array} $	$ \begin{array}{c} -0.038 \\ -0.039 \\ -0.045 \\ -0.047 \end{array} $	15.592 15.478 15.598	.639 .525 .645	$ \begin{array}{r} +0.029 \\ -0.032 \\ -0.038 \\ +0.076 \\ -0.044 \\ +0.010 \end{array} $	+15.573 15.679 15.609 15.520 15.544 15.558
					DETERM	5. Maggio						
	δ Leonis . φ β A ² Virginis. π	. E	1 7 12.523 10 2.969 14 26.144 42 26.412 48 23.709 54 13.408 2 13 15.990	16.65 16.16 16.24 16.18		5 + 0.33 $6 + 0.31$ $9 + 0.31$ 0.35 0.34 0.34 0.34	$ \begin{array}{c} 2 \\ +0.357 \\ 0 \\ +0.606 \\ 1 \\ +0.509 \\ 1 \\ +0.422 \\ 3 \\ +0.485 \\ 1 \\ +0.506 \\ \end{array} $	$\begin{array}{c} +0.064 \\ +0.063 \\ +0.061 \\ +0.053 \\ +0.051 \\ +0.049 \end{array}$	15.743 15.743 15.981 16.002 15.920	.856 .868 .889 .807	+0.007 -0.013 -0.025 -0.046 $+0.036$ $+0.036$	15.734 15.742 15.974 15.959 15.934
	or a tron				DETERM					T do it		
	f Virginis. d^2 d^2 θ β Com Θ . 61 Virginis. α	0 1	2 30 6.391 35 19.017 39 3.655 3 3 13.752 5 47.918 11 36.981 18 21.528	16.31 16.75 16.62 16.87	$ \begin{array}{c} 7 + 0.114 \\ 5 + 0.150 \\ 9 + 0.144 \\ 6 + 0.114 \\ 6 + 0.196 \\ 7 + 0.086 \\ 7 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} +0.445 \\ +0.470 \\ +0.595 \\ +0.256 \\ +0.720 \\ \end{array} $	+0.036 $+0.035$ $+0.028$ $+0.027$ $+0.025$	16.028 16.069 15.777 15.866 15.784	.908 .949 .897 .986	$ \begin{array}{r} +0.018 \\ -0.023 \\ +0.029 \\ -0.060 \\ +0.022 \\ +0.009 \end{array} $	16.058 16.062 15.800 15.816 15.786

ine I m	1 2 2	II IV	v	VI	VII	VIII	IX	X A T	XI XI	XII	XIII A T ₄
Nomi delle stelle	delle s	aggio ije oci mezzo N	$\alpha - T$	i cos (p - 0)	c sec o	$k \frac{\text{sen} (p - \delta)}{\cos \delta}$	Riduzione a 14 ^h . 5	Correzione dell'orologio a 14 ¹¹ .5	Correzione ridotta alla media $E = 0$	Λα.	Correzioni definitive del- l'orologio a 14 ^h . 5
			Ι	Determi	INAZIONE	N. V.					
l ² Virginis	E 55	13.058 13 - 4.617 48.159 2.748 51.661	16.745 16.882 16.381	+0.086 $+0.074$ $+0.075$	+0.279 $+0.282$ -0.308	$ \begin{array}{c} $	+0.019 $+0.017$ $+0.011$	+16.062 - 15.939 16.018 16.181 16.284	.052 .131 .068	$ \begin{array}{c c} & 0.056 \\ + 0.067 \\ - 0.012 \\ + 0.051 \\ - 0.052 \end{array} $	+16.010 15.998 16.010 16.202 16.270
			Di	ETERMIN	AZIONE	N. VIII.			2		
ζ Herculis . 20 Ophiuchi. 49 Herculis . α v Serpentis. w Herculis . α Ophiuchi . μ Herculis .		20 515 13 - 40.705	16.574 16.259 16.753 16.841 16.615 16.697	+0.064 $+0.100$ $+0.099$ $+0.061$ $+0.130$ $+0.097$	$ \begin{array}{r} -0.248 \\ -0.253 \\ +0.222 \\ +0.220 \\ +0.255 \\ +0.220 \end{array} $	$ \begin{array}{c cccc} +0.188 \\ +0.571 \\ +0.353 \\ +0.359 \\ +0.589 \\ +0.178 \\ +0.376 \\ +0.232 \end{array} $	$ \begin{array}{r} -0.042 \\ -0.043 \\ -0.050 \\ -0.052 \\ -0.052 \\ -0.056 \end{array} $	+16.128 - 16.145 16.016 16.023 15.919 16.000 15.948 15.991	16.085 - 15.956 - 16.088 - 15.979 - 16.060 - .008 -	$ \begin{array}{c c} -0.048 \\ +0.081 \\ -0.051 \\ +0.058 \end{array} $	+16.082 16.144 16.070 16.040 15.961 15.946 15.962 15.958
			Di		Maggio 1						6
δ Leonis , φ β A^2 Virginis . π η	10 14 20 442 20 48 20 54 15	5.900 3.177 2.809	17.184 - 17.128 - 16.671 - 16.771 - 16.775 -	+0.128 - +0.151 - +0.165 - +0.150 - +0.146 -	$ \begin{array}{r} +0.257 \\ +0.259 \\ -0.296 \\ -0.290 \\ -0.288 \\ -0.288 \\ -0.288 \end{array} $	-0.344 - -0.584 - -0.491 - -0.406 - -0.468 - -0.485 - -0.556 -	-0.066 -0.065 -0.055 -0.052 -0.051	-16.449 - 16.281 16.292 16.451 16.495 16.483 16.472	.348 - .359 - .384 - .428 - .416 -	-0.060 -0.049 -0.024 -0.020	+16.442 16.292 16.291 16.444 16.452 16.497 16.504
			DE	TERMIN	AZIONE	N. IV.					
f Virginis . ρ d^2	39 13 3 1 5 4	8.488 3.132	16.779 - 16.837 - 17.254 - 17.154 - 17.341	$ \begin{array}{r} +0.146 \\ +0.141 \\ +0.107 \\ +0.181 \\ +0.079 \end{array} $	$ \begin{array}{r} -0.253 \\ -0.251 \\ +0.220 \\ +0.250 \\ +0.230 \end{array} $	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c} +0.038 \\ +0.036 \\ +0.028 \\ +0.028 \\ +0.026 \end{array} $	$\begin{array}{c} +16.587 \\ 16.522 \\ 16.559 \\ 16.418 \\ 16.520 \\ 16.407 \\ 16.439 \end{array}$.467 - .504 - .473 - .575 - .462 -	$ \begin{array}{c c} -0.031 \\ -0.034 \\ -0.003 \\ +0.028 \\ -0.074 \\ +0.039 \\ +0.007 \end{array} $	+16.563 16.552 16.552 16.441 16.470 16.409 16.464
					NAZIONE				i ro		
l ² Virginis	28 34 E 55 59	12.607 13 - 4.130 47.724 2.294 51,207 58.700	17.231 17.317 16.837 17.010	+0.100 $+0.085$ $+0.104$ $+0.084$	+0.194 $+0.196$ -0.223 -0.225	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c c} +0.021 \\ +0.018 \\ +0.011 \\ +0.010 \end{array} $	+16.622 16.530 16.566 16.555 16.668 16.710	.565 .601 .520 .633	$ \begin{array}{r} -0.048 \\ +0.044 \\ +0.008 \\ +0.089 \\ -0.024 \\ -0.066 \end{array} $	+16.570 16.589 16.558 16.576 16.654 16.666
54 74 117 1 50 4 117 1			Di	ETERMIN	AZIONE	N. VII.			E1635		t.H.sr 400 \$
ε Ophiuchi. γ Herculis . ω	16	27.308 13 - 9 433 23.798	17.097	+0.101	+0.159	+0.303	-0.035	+16.543 -499 -414		-0.014	+16.491 16.478 16.505

		-		-										
	I		II	III	IV	v	VI	VII	VIII	IX	x	XI	XII	XIII
				T	fli		6		6		Λ T	Correzione ridotta alla media $E = 0$		A T ₄
	Nomi	-		Passaggi	o dei	$\alpha - T$	110	c sec ô	10	Riduzione a 14 ^h .5	Correzione dell'orologio a 14 ^h .5	ezionallar — 0	Λα.	Correzioni definitive del- l'orologio
	delle stell	е	0	elle stelle lo di mez	п	7 8 3	800 (b	0.000	sen (p	Riduzion a 14 ^h .	orrez Il'orc	Corr	. 685	finiti l'orol
			[]	10 di mez	Zo Z		.5		R		de	ride		del
-														
						D	ETERMI	NAZIONE	N. VIII					
				h m s		8	S	8	9	9	8	S	s	s
	ζ Herculis 20 Ophiuch		0 16	36 19.6 42 40.0	14 13	+17.114 17.251	+0.096	+0.179	+0.223 +0.678	-0.041		+16.613 -		+16.529 16.326
	49 Herculis.	1	T 15	46 8.4	08	17.076	+0.075	+0.158	-1-0.420	-0.043 -0.045	16.378	.416 -	-0.100 -0.049	16.432
	v Serpentis	3	E 17	8 42.0 13 32.8	21	17.112	+0.045	-0.186	+0.427 $+0.698$	-0.052 -0.054	16.488 16.501		[-0.015]	16.505 16.543
1	w Herculis c Ophiuchi			15 44.4 28 53.0	52	16.648	+0.097	-0.215	$+0.212 \\ +0.446$	-0.054	16 500	.462 -	-0.003	16.446
	μ Herculis.			41 19.1		16.780	+0.012 +0.091	-0.186 -0.205	+0.446 +0.276	-0.059 -0.064	16.474 16.554		$\begin{bmatrix} -0.029 \\ -0.051 \end{bmatrix}$	16.488 16.521
												.465		
						D		5. Maggi						
No. of Lot, Lot,	State The					D	ETERMI.	NAZIONI	N. III.	dest.				
	δ Leonis .	. 1	E 11	7 11.9	25 13	+17.112	+0.220	-0.291	+0.333	+0.057	+16.907	+16.847 +	0.020 -	16.900
1	φ			14 25.5	16	17.261	+0.131 +0.177	-0.272 -0.273	+0.565 +0.476	+0.056 $+0.055$	16.937 16.936	.877 — .876 —	0.010	16.948 16.935
	β A^2 Virginis .			42 24.8 48 22.2	46	11.724	0.190	+0.251	$+0.394 \\ +0.453$	10.048	16.937 16.846	.997 —	0.130	16.930
	π) 19	54 12.0 13 14.6	071	17.569	+0.168	± 0.244	+0.470	+0.044	16.731	.906 — .791 +	0.076	16.803 16.745
			.112	10 14.0	2011	17.603	+0.149	+0.243	+0.538	+0.0391	16.714	$\frac{.774}{.867}$ +	0.0931	16.746
						D	ETERMIN	NAZIONE	N. IV.			.001		
	f. Virginis.	16	110	20 400	71401									
	$ ho \ d^2 \ \vdots$			10 1 6 . UT	4	11.0201-	-J.100 -	1-0.265		+0.0331	+16.850 - 16.801	+16.944 - .895 +	0.031	-16.826 16.831
1	0	·	13	39 2,32 3 13.14	5	17.639 -	-0.152 -	+0.263	+0.452 - +0.573 -	1-0.032	16.804	.898 -	0.015	16.797
6	β Comæ . 1 Virginis.			5 47.45	5	17.079 -	-0.2061-	-0.329	1-0 246 -	L0 024	16.986 16.980	.892 +0	0.027	17.009 16.930
	α		1	11 36.30 18 20.95	8	17.546 -	-0.090 - -0.108 -	-0.304 - -0.294 -	+0.694 +0.625	-0.023 -0.021	17.089 16.975	.995 —0 .881 +0	0.082	17.091 17.000
												.913	.0021	11.000
						Di	TERMIN	AZIONE	N. V.					
	l ² Virginis.	. E	13 2	5 12.456	3 13 +	-17.505 +	-0.107 -	-0.246	-0.514 +	-0.01914	17.149	17 0601-0	0/8/1	17 007
8	$n : \dots$			8 4.042 4 47.508		17.319 + 17.534 +	0.110	U.440	-U.4001-	0.018	16.996	16.907 + 0.	105	17.097
9	τ	. 0	5	5 1.396	3	17.737 +	-0.1281 +	0216 4	-0 451 1	0.010	16.952	$ \begin{array}{c cccc} 17.073 & -0. \\ .041 & -0. \end{array} $.029	17.154 16.973
1	ł		14	9 50.477 5 57.961	8	17.743 + 17.801 +	-0.102	-0.219	-0.547	0.007	16.889 16.940	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.034	16.875 16.896
	Bootis .	. 1.	1	9 42.18	11	17.596	-0.1691+	-0.220	-0.302		16.911	.000 +0.	012	16.948
		,				DE	FERMINA	ZIONE I	V 1711			.012		
	Compand's													
1	Serpentis	. 0	15 4	4 19.637 0 25.372	13 +	-17.669 + 17.650 +	0.109 +	-0.152 +	-0.463 —	0.022 +	16.923 +	-16.888 +0	.027 +	16.932
	Ophiuchi Herculis.	. E	161	0.25.372 $1.27.168$ $6.9.316$	4	17.455	-0.093 —	-0.181	-0.543	0.029	16.978 16.971	$ \begin{array}{c c} .943 & -0 \\ 17.006 & -0 \end{array} $	0.028	16.973 16.919
à			1	9 23.760	13	17.228 + 17.099 +	0.137 - 0.127 - 0.127	0.191 + 0.186 +	-0.330 — -0.378 —		16.921 16.748	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.041	16.900
	0.00s 15.6			611.8							10	.915	.152	16.839
							ERMINAZ							
20	Herculis. Ophiuchi	E	16 36	39.816 39.816	13 +	17.063 +	0.165 -	0.292 +	0.204 —	0.037 +	16,949 +	-16.900 —(0.0071-1	16 909
	Herculis.		46	8.335		17.166 +	0.129 -	0.257 +	-0.384 _	0.039	17.013 16.871	.904 (0.0711	17.012
v	Serpentis		18	41.333 32.208		17.599 + 17.746 +	0.104	0.227 -	-0.3901	0.045	16.833	.822 +(0.011	16.925 16.850
w	Herculis.	.	15	43.549	8	17.570	0.136	0.261 +	-0.194 _	0.047	16.771 16.932	.820 +0	0.073	16.813
												.893	0.018	16.878
														II.

Nomi	I	III	III	IV	v	VI	WII	NITT.	777	-	777	VII	VIII
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				fili		395	VII			A T	edia Y	All	AT.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\alpha - T$		c sec ô	0 - 0 80	zione	ione logio 4 ^h . 5	ezione Illa m	Λα.	zioni re del ogio
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	delle stelle	Jircol		Vumer		i cos		sen (Ridu a 1	Correz ell'orc	Corr lotta s		Corresinitive l'orol
Determinazione N. III.		101		[4]			-17-5-			P	ii.		g
\$\$ Leonis O 11 711,007 13 +18,020 -0.214 +0.285 +0.324 +0.6058 +17.255 +17.297 -0.001 +17.245 \$\$ \qquad \qquad \qquad \qquad \qquad \qquad \qqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqqq						1875	i. Maggio	16.					2
\$ Leonis O 11 7 11.007 13 +18.020 + 0.214 +0.285 +0.284 +0.685 +17.256 +17.297 -0.001 +17.286 \$7 \					I	DETERMI	NAZIONE	N. III	•				
$\frac{7}{\sigma}$	& Leonis	10	11 7 11.007	13 -	+18.020	+0.214	s +0.285	+0.324	s +0 058	+17.255	+17.2971	_0.001	+17.248
\$\frac{\beta}{2}\$ \ \text{Virginis} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	σ	::	10 1.486	::	18.157	+0.146	+0.266	+0.552	+0.057	17.250	.292	+0.004	17.261
T. 1. 1. 1. 1. 1. 1. 1.	A ² Virginis	E	42 24.987 48 22.350		17.566 17.582	+0.189 +0.172	-0.306 -0.299	+0.384 $+0.442$	+0.048 +0.046	17.347	.305	-0.009	17.340
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			54 11.941		17.628	+0.167	-0.297	+0.459	-0.044		.301	-0.005	17.357
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								i kon	SIRES				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C 77:		1000 1000	12/14	hallo					e in test	ush etz	n organ	OTO H
θ	ρ		35 17.573		17.684	+0.196	-0.282	+0.430	+0.033	17.373	.265	+0.014	17.403
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	θ	0	13 3 12.423		18.079	+0.117	+0.249	+0.575	+0.025	17.163	.271	+0.008	17.186
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			11 35.676		18.173	+0.087	+0.260	+0.696	+0.022	17.152	.260	+0.019	17.154
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	. 1	18 20.271	11	18.078	1	1+0.252	1+0.627	0.021	17.116			17.141
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AND THE REAL PROPERTY.				1	DETERMI	NAZIONI	E N. V.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	13 25 11.794 28 3 361	13 -	-18.166 17.999	+0.112	+0.171	+0.589 +0.537	+0.018		+17.352	-0.032 -0.095	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m		34 46.824		18.218	+0.106	+0.172	+0.613	+0.015	17.342	.382	-0.062	17.334
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	95	1	59 50.325		17.898	+0.105	-0.202	+0.619	+0.008	17.384	.344	-0.024	17.370
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1::1			17.607	+0.170	-0.202	+0.347	+0.006		.258	+0.062	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	eusta nileh see				DE	TERMIN	AZIONE	N. VII.			.020		amesn)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	≈ Serpentis	E	15 37 50.955	2 +	-17.909	+0.099	-0.192	+0.439	-0.019 -	+17.544	+17.471	_0.070	+17.543
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε	1:	44 19.494 50 25.302	13	17.824 17.731	+0.096 +0.114	-0.191 -0.198	+0.455 +0.356	-0.021 -0.023	17.443 17.436	.363	+0.031 +0.038	17.452 17.431
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			da O MAM		18.183 17.992	+0.081 +0.120	$+0.162 \\ +0.171$	+0.535 +0.324	-0.029 -0.030	17.347	.420	-0.019	17.326
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ω	.			17.941	+0.111	+0.167	+0.372	-0.031	17.260	-	+0.068	17,351
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					D	ETERMIN	AZIONE	N. VIII	i.	bunico.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0			-17.963 18.089	+0.124	+0.242	+0.220	-0.036 -0.038	+17.341 -	+17.449 219	-0.112	+17.295
$\begin{array}{c} v \;\; \text{Serpentis.} & \dots \;\; 13\; 32.008 \; \dots \;\; 17.968 \;\; +0.058 \;\; -0.240 \;\; +0.691 \;\; -0.047 \;\; 17.412 \;\; & .304 \;\; +0.033 \;\; 17.454 \;\; \\ w \;\; \text{Herculis.} & \dots \;\; 15\; 43.588 \; \dots \;\; 17.550 \;\; +0.125 \;\; -0.278 \;\; +0.209 \;\; -0.047 \;\; 17.447 \;\; & .339 \;\; -0.002 \;\; 17.393 \;\; \\ \alpha \;\; \text{Ophiuchi.} & \dots \;\; 28\; 52.140 \;\; \dots \;\; 17.804 \;\; +0.093 \;\; -0.240 \;\; +0.441 \;\; -0.051 \;\; 17.459 \;\; & .351 \;\; -0.014 \;\; 17.473 \;\; \\ u \;\; \text{Herculis.} & \dots \;\; 41\; 18.369 \;\; \dots \;\; 17.628 \;\; +0.116 \;\; -0.265 \;\; +0.272 \;\; -0.055 \;\; 17.450 \;\; & .342 \;\; -0.005 \;\; 17.417 \;\; \\ \end{array}$	49 Herculis		46 7.522		17.995	+0.097	+0.213	+0.414	-0.039	17.232	.340	-0.003	17.286
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v Serpentis	E.	13 32.008		17.968	+0.058	-0.240	+0.691	-0.047	17.412	.304	+0.033	17.454
	a Ophiuchi.		28 52.140		17,804	+0.093	-0.240	+0.441	-0.051	17.459	.351	-0.014	17.473
	μ Herculis	· ·	41 10,009	11	11.020	_0.110	0.200	7-0.212	_0.0001	700		-0.000	11.11

Le correzioni dell'orologio ridotte tutte allo stesso istante di tempo e contenute nella colonna X del lungo quadro che precede mostrano ancora una differenza costante secondo che provengono da stelle osservate nell'una o nell'altra posizione dello strumento. Se si fa per ogni sera d'osservazione e per ogni determinazione di tempo la media delle correzioni dell'orologio, ΔT , dedotte rispettivamente dalle stelle osservate col circolo dello strumento rivolto ad est oppure ad ovest, se si sottrae l'una media dall'altra si trovano, nel senso est-ovest, le differenze seguenti:

T			8			S			S			8 2101			8
	Maggio	4	+0.024	Maggio	8	+0.164	Maggio	10	+0.084	Maggie	13	+0.240	Maggio	15	+0.179
-	n		+0.055	77		+0.217	77		+0.010	27		-0.226	"		-0.070
0.00	"		-0.009	27		+0.163				,,	+5	-0.120	"		+0.100
1	4 5 5 5		0,0	. 27		+0.038	Maggio	11	0. 019						
B	Maggio	5	+0.199	,,,		0.135	n		+0.063	Maggio	14	0.134	Maggio	16	+0.085
8	n	,	+0.134			CEI			10	n		+0.110	27	SIT	+0.216
3,	n		+0.030	Maggio	9	+0.153	Maggio	12	+0.060	77		+0.071	n		+0.081
				n		+0.085	n		+0.220	,,		+0.076	27		+0.146
1	Maggio	6	+0.216	,,		+0.236	"		+0.309				59		+0.217
	"		+0.209	27		+0.131	"		+0.095	Maggio	15	+0.121			
1	"		+0.136						1.0785	n		+0.189		1	
3							Maggio	13	+0.226					- 1	

È troppo l'accordo dei segni e dei valori appena trovati per poter dubitare un istante che i medesimi non sieno il risultato di un fatto reale e costante. È un fatto della stessa natura di quello già incontrato nelle osservazioni eseguite per determinare le equazioni personali. Qualunque ne sia la causa, uno stesso osservatore osserva allo strumento usato a Milano i passaggi diversamente nell'una o nell'altra posizione dell'oculare, e fra i passaggi osservati nelle due posizioni dello strumento esiste una differenza costante, la quale fa sì che le correzioni dell'orologio date dai passaggi osservati col circolo dello strumento ad est superano in media di 0°,127 le altre riferentisi a passaggi osservati col circolo dello strumento ad ovest.

Di questa differenza sarà tenuto conto più tardi nella deduzione delle correzioni definitive dell'orologio, e bisogna tosto tener conto nel determinare quali correzioni le osservazioni qui discusse apportino alle ascensioni rette stellari assunte. In questa ricerca la prima idea che mi nacque fu di correggere tutti i ΔT sottraendo a quelli determinati col circolo dello strumento ad est, aggiungendo agli altri determinati col circolo ad ovest la metà della costante 0,127 appena dedotta. Ma riflettendo meglio tosto mi persuasi che in essa, unico scopo essendo le correzioni delle ascensioni rette, così come sono date dalle osservazioni, meglio valeva considerare per ogni determinazione di tempo, invece che il valor medio 0,127, il rispettivo valore, ed apportare ai singoli ΔT la correzione speciale corrispondente a quest'ultimo valore.

Nacquero così le due colonne XI, XII del grande quadro precedente. La XI contiene i Δ T corretti nel modo appena detto della differenza speciale che in ciascuna determinazione di tempo incontrasi fra le correzioni dell'orologio determinate nell'una o nell'altra posizione dello strumento, non che la media dei Δ T così corretti riferentisi alla stessa determinazione di tempo; la XII dà i $\Delta \alpha$, ossia le correzioni cercate delle ascensioni rette stellari assunte.

Dai numeri della colonna XII, combinando insieme tutti quelli che si riferiscono ad una medesima stella, furono dedotte così come sono scritte nel quadro seguente con a fianco il numero g delle determinazioni su cui riposano le

Correzioni definitive delle ascensioni rette delle stelle desunte dalle osservazioni di Milano

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stella Δα	$\Delta \alpha$ g Stella	Δα g	Stella
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + 0.002 \\ + 0.025 \\ - 0.052 \\ - 0.052 \\ - 0.008 \\ - 0.008 \\ - 0.008 \\ - 0.014 \\ - 0.014 \\ - 0.044 \\ + 0.037 \\ - 0.005 \\ - 0.015 \\ - 0.070 \\ + 0.080 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Di queste correzioni delle ascensioni rette bisognava tener conto nel dedurre le correzioni definitive dell'orologio. Naturalmente esse non potevano apportarsi ai numeri della colonna XI del lungo quadro che precede; furono invece arrecate a quelli della colonna X, e così risultarono i numeri della colonna XIII, i quali esprimono per uno stesso istante di tempo le correzioni definitive dell'orologio, come per ogni stella sono date dalle osservazioni di Milano, correzioni però affette ancora della differenza che in esse proviene dall'essere osservate nell'una piuttosto che nell'altra posizione dello strumento.

Le singole correzioni ΔT_1 contenute nella colonna XIII servirono alla deduzione della correzione finale dell' orologio per l'istante di tempo scelto e per ogni sera d'osservazione. In questa deduzione furono considerate a parte le singole determinazioni di tempo; per ognuna di esse fu fatta la media dei rispettivi numeri della colonna XIII; quando nella medesima determinazione eransi osservate più stelle nell'una che nell'altra posizione dello strumento, oppure per eccezione tutte le stelle erano state osservate in una sola posizione di esso, allora alla media dedotta fu arrecata la piccola correzione dipendente dalla differenza media 0°,127 di cui fu a lungo parlato più sopra; inoltre alla media stessa fu apportata una seconda correzione D. $\Delta \alpha$, di cui ecco l'origine.

Come appena fu detto i numeri della colonna XIII furono ottenuti applicando le correzioni delle ascensioni rette stellari quali risultano dalle osservazioni di Milano. Ma correzioni analoghe, essendo state desunte dalle osservazioni di Vienna, di Monaco e di Padova, ragione voleva, che quali correzioni definitive delle ascensioni rette si assumessero quelle che risultano dalle osservazioni contemporaneamente eseguite nelle quattro stazioni. La differenza fra queste correzioni definitive e quelle date dalle osservazioni di Milano ha prodotto la piccola correzione D. $\Delta \alpha$ che bisognò arrecare alle medie desunte dai numeri della colonna XIII ed a cui fu appena accennato. Evidentemente D. $\Delta \alpha$ non è che la media di queste differenze corrispondenti alle stelle che entrano in una certa determinazione di tempo.

Ecco intanto raccolte in quadro nella pagina che segue le:

Correzioni delle ascensioni rette delle stelle
risultanti dalle osservazioni di Vienna, Monaco, Padova, Milano.

ego Hen starmaco s	VIENNA	Monaco	PADOVA	MILANO	Valori de	FINITIVI
STELLA	Δα g	Δα g	Δα σ	Δα g	Δα	Error probabile
α Leonis	$\begin{array}{c ccccc} + & 0.032 & 5 \\ - & 0.112 & 4 \\ + & 0.037 & 4 \\ + & 0.020 & 5 \\ - & 0.038 & 5 \end{array}$	may be obtained in a street in	o a perfer in a	+ 0.002 1 - 0.030 1	$\begin{array}{c} + & 0.032 \\ - & 0.112 \\ + & 0.037 \\ + & 0.017 \\ - & 0.037 \end{array}$	0. 022 0. 025 0. 025 0. 020 0. 020
l Leonis	$ \begin{array}{c cccc} + & 0.018 & 5 \\ + & 0.012 & 11 \\ + & 0.007 & 11 \\ + & 0.035 & 11 \\ + & 0.034 & 9 \end{array} $	$ \begin{vmatrix} -0.038 & 6 \\ +0.001 & 6 \\ 0.000 & 9 \\ +0.037 & 10 \end{vmatrix} $	$\begin{array}{c cccc} - & 0.055 & 4 \\ + & 0.015 & 5 \\ + & 0.011 & 4 \\ - & 0.022 & 5 \end{array}$	$ \begin{array}{c cccc} + & 0.028 & 1 \\ - & 0.007 & 10 \\ + & 0.011 & 9 \\ - & 0.001 & 10 \\ - & 0.007 & 9 \end{array} $	$\begin{array}{c} + \ 0.020 \\ - \ 0.012 \\ + \ 0.008 \\ + \ 0.012 \\ + \ 0.015 \end{array}$	0. 020 0. 009 0. 009 0. 000 0. 009
A^2 Virginis π	$ \begin{array}{c cccc} -0.009 & 8 \\ +0.032 & 9 \\ +0.047 & 7 \\ -0.036 & 7 \\ -0.010 & 7 \end{array} $	$\begin{array}{c cccc} + & 0 & 013 & 9 \\ + & 0 & 044 & 9 \\ + & 0 & 050 & 9 \\ + & 0 & 001 & 8 \\ + & 0 & 042 & 9 \end{array}$	$ \begin{array}{c cccc} - & 0.058 & 4 \\ - & 0.014 & 5 \\ + & 0.054 & 4 \\ + & 0.017 & 8 \\ - & 0.027 & 8 \end{array} $	$ \begin{vmatrix} -0.043 & 9 \\ +0.014 & 10 \\ +0.032 & 9 \\ -0.024 & 10 \\ +0.030 & 11 \end{vmatrix} $	$\begin{array}{c} -0.019 \\ +0.023 \\ +0.044 \\ -0.010 \\ +0.012 \end{array}$	0. 009 0. 009 0. 009 0. 009 0. 008
d^2 Virginis θ β Comæ	$ \begin{vmatrix} -0.049 & 7 \\ +0.003 & 7 \\ -0.040 & 9 \\ +0.007 & 7 \\ +0.069 & 8 \end{vmatrix} $	$ \begin{vmatrix} -0.013 & 9 \\ +0.003 & 10 \\ -0.026 & 11 \\ +0.004 & 10 \\ +0.040 & 10 \end{vmatrix} $	$ \begin{vmatrix} -0.064 \\ +0.059 \\ -0.110 \\ +0.051 \\ +0.141 \\ 6 \end{vmatrix} $	$ \begin{vmatrix} -0.007 \\ +0.023 \\ -0.050 \\ +0.002 \\ +0.025 \end{vmatrix} \begin{vmatrix} 10 \\ 10 \\ 10 \end{vmatrix} $	$\begin{array}{c} -0.028 \\ +0.023 \\ -0.055 \\ +0.014 \\ +0.060 \end{array}$	0.009 0.008 0.008 0.009 0.009
l^2 Virginis τ	$ \begin{array}{c cccc} -0.048 & 5 \\ +0.023 & 7 \\ -0.034 & 5 \\ +0.002 & 5 \\ -0.008 & 5 \end{array} $	$ \begin{vmatrix} -0.070 & 7 \\ +0.030 & 9 \\ -0.019 & 8 \\ -0.023 & 6 \\ -0.050 & 4 \end{vmatrix} $	$\begin{array}{c cccc} -0.076 & 4 \\ +0.004 & 5 \\ +0.003 & 5 \\ -0.074 & 4 \\ +0.051 & 4 \end{array}$	$\begin{array}{c c} -0.052 & 7 \\ +0.059 & 7 \\ -0.008 & 7 \\ +0.021 & 6 \\ -0.014 & 5 \end{array}$	$\begin{array}{c} -0.061 \\ +0.031 \\ -0.014 \\ -0.014 \\ -0.006 \end{array}$	0. 010 0. 009 0. 010 0. 011 0. 012
$\begin{array}{ccccc} & & & \text{Virginis} & . & . & . \\ & & & \text{Bootis} & . & . & . \\ & & & & & & . \\ & & & & &$	$ \begin{array}{c cccc} - & 0.008 & 5 \\ - & 0.042 & 4 \\ - & 0.033 & 3 \\ 0.000 & 4 \\ - & 0.008 & 6 \\ \end{array} $	$ \begin{vmatrix} -0.043 & 6 \\ -0.060 & 7 \\ \vdots & \vdots & \vdots \\ -0.010 & 1 \end{vmatrix} $	$\begin{array}{c cccc} + & 0.020 & 3 \\ \hline & \ddots & \ddots \\ - & 0.067 & 7 \\ + & 0.005 & 7 \\ + & 0.027 & 8 \\ \end{array}$	$ \begin{array}{c cccc} -0.044 \\ +0.037 \\ \vdots \\ \vdots$	$\begin{array}{c} -0.022 \\ -0.039 \\ -0.057 \\ +0.003 \\ +0.010 \end{array}$	0. 012 0. 014 0. 016 0. 015 0. 013
δ Serpentis	$ \begin{array}{c cccc} -0.038 & 6 \\ -0.080 & 6 \\ 0.000 & 5 \\ -0.040 & 7 \\ +0.021 & 9 \end{array} $	$ \begin{vmatrix} -0.100 & 1 \\ -0.110 & 1 \\ -0.045 & 2 \\ -0.061 & 7 \\ +0.006 & 9 \end{vmatrix} $	$ \begin{array}{c cccc} - & 0.053 & 7 \\ - & 0.069 & 7 \\ + & 0.023 & 7 \\ - & 0.062 & 8 \\ 0.000 & 9 \end{array} $	$ \begin{array}{c cccc} + & 0.015 & 1 \\ - & 0.070 & 1 \\ + & 0.080 & 1 \\ - & 0.027 & 1 \\ - & 0.001 & 6 \\ \end{array} $	$\begin{array}{c c} -0.046 \\ -0.076 \\ +0.010 \\ -0.053 \\ +0.007 \end{array}$	0. 013 0. 013 0. 013 0. 010 0. 009
ε Serpentis	$ \begin{vmatrix} -0.026 & 5 \\ -0.024 & 5 \\ -0.041 & 8 \\ -0.030 & 8 \\ +0.097 & 7 \end{vmatrix} $	$ \begin{vmatrix} -0.036 & 8 \\ -0.036 & 7 \\ -0.043 & 9 \\ +0.021 & 8 \\ +0.119 & 8 \end{vmatrix} $	$ \begin{array}{c cccc} + & 0.008 & 9 \\ - & 0.070 & 9 \\ + & 0.097 & 9 \\ - & 0.018 & 9 \\ + & 0.113 & 8 \end{array} $	$ \begin{array}{c cccc} + & 0.009 & 8 \\ - & 0.005 & 9 \\ - & 0.052 & 11 \\ - & 0.021 & 11 \\ + & 0.091 & 11 \end{array} $	- 0.009 - 0.035 - 0.011 - 0.013 + 0.104	0.009 0.007 0.008 0.008 0.009
α Scorpii	$ \begin{vmatrix} -0.046 & 8 \\ -0.085 & 9 \\ +0.042 & 9 \\ -0.019 & 8 \\ +0.010 & 7 \end{vmatrix} $	$ \begin{vmatrix} . & . & . & . \\ -0.046 & 8 \\ +0.001 & 8 \\ +0.093 & 6 \\ +0.040 & 7 \end{vmatrix} $	$\begin{array}{c cccc} + & 0.166 & 7 \\ - & 0.098 & 1 \\ + & 0.075 & 1 \\ + & 0.026 & 1 \\ - & 0.010 & 1 \end{array}$	$ \begin{array}{c cccc} - & 0.059 & 4 \\ - & 0.046 & 10 \\ - & 0.001 & 10 \\ + & 0.054 & 9 \\ + & 0.017 & 10 \end{array} $	+ 0.029 - 0.060 + 0.016 + 0.038 + 0.020	0. 011 0. 009 0. 009 0. 010 0. 010
v Serpentis w Heculis	$ \begin{vmatrix} +0.037 \\ -0.002 \\ +0.070 \\ -0.060 \end{vmatrix} $	+ 0.060 1	$ \begin{vmatrix} + & 0.051 \\ - & 0.003 \\ + & 0.025 \\ \vdots & \vdots & \vdots \end{vmatrix} $	$ \begin{vmatrix} +0.042 \\ -0.054 \\ +0.014 \\ -0.033 \end{vmatrix} $	+0.032 -0.029 $+0.033$	0.010 0.010 0.014

Con g si è qui sopra espresso il numero delle osservazioni su cui ogni valore di $\Delta \alpha$ riposa; gli errori probabili dei singoli $\Delta \alpha$ definitivi, scritti nell'ultima colonna, non furono determinati indipendentemente per ogni stella, ma in quest'altro modo che certo deve condurre a risultati più sicuri. Considerando le quattordici stelle fra δ Leonis ed α Virginis, ho calcolato il valore dell'error probabile corrispondente all'unità di peso; lo trovai uguale a 0,04975; da esso, mantenuto costante per ogni stella, dedussi poi i singoli errori probabili scritti.

Il quadro che segue contiene in dettaglio per ogni sera d'osservazione l'or ora descritta:

Deduzione delle correzioni finali dell'orologio a 14,5.

Data	Determinazione	Media dei ΔT_1	$\begin{array}{c} \text{per la} \\ \text{differenza} \\ E = 0 \end{array}$	D. Δα	Σ-	Data	Determinazione	$\begin{array}{c c} \operatorname{Media} \\ \operatorname{dei} \\ \Delta \ T_{t} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D. A &	Σ
Maggio 4	III IV VII	+12.119 $+12.144$ $+12.174$	0.000	+0.007 $+0.004$ $+0.004$	12.148	Maggio 11	VII	$+15.175 \\ +15.116$			+15.166 15.135
Maggio 5	IV VII VIII	+12.453 +12.559 +12.593	+0.009 -0.009 $+0.009$	+0.002 $+0.016$ $+0.003$	+12.464 12.566 12.605		III IV V VII VIII	+15.466 $+15.581$ $+15.696$ $+15.639$ $+15.580$	-0.009 -0.012 -0.063	+0.002 -0.014 $+0.021$	+15.485 15.577 15.670 15.597 15.602
Maggio 6	II III VII VIII	+12.998 +12.862 +13.057 +13.077	+0.009 +0.009 0.000	+0.010 $+0.016$ $+0.001$	12.881 13.082 13.078	Maggio 13	III IV V VIII	+15.859 $+15.909$ $+16.098$ $+16.020$	+0.009 +0.012	+0.002 -0.014	$\begin{array}{c} +15.860 \\ 15.920 \\ 16.096 \\ 16.039 \end{array}$
Maggio 7	IV VII	+13.266 +13.246 +	-0.063	-0.013	+13.269 13.296	Maggio 14	III	+16.417 $+16.493$ $+16.602$	+0.009	+0.010 $+0.002$ -0.008	+16.418 16.504 16.594
Maggio 8	V	+13.633 - +13.635 + +13.813 +	-0.02 1 -0.031	0.000 -0.019	+13.632 13.656 13.825 13.710	0100102	V VII VIII	+16.602 $+16.491$ $+16.474$	+0.063	+0.021	16 575 16.461
	VI VII VIII	+13 688 +13.753 +13.876	-0.009	+0.016 $+0.001$	13.760 13.877	Maggio 15	III IV V	+16.858 $+16.926$ $+16.999$	-0.009	+0.002	16.919 16.990
Maggio 9	III IV VII	+14.088 + +14.210 - +14.219 -	-0.021	+0006	14.195 14.258	18 50	VII	+16.913 $+16.897$	0.000	+0.001	16.904 16.898
Maggio 10	VIII	+14.562	-0.016 -0.009	+0.003 $+0.010$	+14.563	Maggio 16	III IV V	+17302 $+17.264$ $+17325$	+0.009 -0.009	+0.002 -0.018	17.275 17.298
	V V VII	+14.675 - +14.705 - +14.668	+0.063	-0.014	14.754		VIII	+17.404 +17.363		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

La correzione per la differenza E-O contenuta nella colonna quarta del quadro appena scritto, dipende da ciò, che le correzioni dell'orologio date dai passaggi, osservati col circolo dello strumento ad est superano in media di 0°. 127 le date da passaggi osservati col circolo dello strumento ad ovest. La correzione stessa è evidentemente uguale a zero, quando il numero delle stelle osservate nell'una posizione del circolo è uguale a quello delle altre osservate nell'altra posizione, diventa uguale in valore assoluto a 0.063 quando tutte le stelle sono osservate in una sola posizione dello strumento; prende valori diversi e compresi fra zero e 0.063 a seconda dell'eccesso del numero delle stelle osservate in una posizione su quello delle stelle osservate nell'altra posizione dello strumento.

Le correzioni D. A a contenute nella colonna quinta dipendono dalle differenze fra le correzioni definitive appena riportate delle ascensioni rette delle stelle osservate e le correzioni

date dalle sole osservazioni di Milano; i numeri scritti nella colonna intitolata ∑ sono la somma dei numeri contenuti rispettivamente sulla medesima riga nelle tre colonne a sinistra.

Di questi numeri scritti nella colonna Σ fu presa la media, e questa fu considerata come la vera correzione dell'orologio di Milano da adottarsi nella deduzione delle longitudini. Le correzioni così ottenute hanno dato per ogni sera il ritardo orario dell'orologio. Questo ritardo per le sere del 4 e del 16 maggio fu dedotto rispettivamente dalle differenze delle due correzioni dell'orologio riferentisi alle sere del 4 e del 5, del 15 e del 16; per ogni sera, compresa fra le due estreme, fu dedotto dalla media delle due differenze fra la correzione dell'orologio proprio di essa sera e le due correzioni proprie della sera antecedente e seguente.

I risultati delle singole sere hanno peso diverso secondo che è maggiore o minore il numero delle stelle orarie e delle polari in esse osservate. Se si indica con z il numero delle orarie con p quello delle polari, il peso d'ogni singola sera può esprimersi colla formola

$$g = \frac{z p}{0.7 p + 0.3 z}$$

comunicata dal prof. Oppolzer, valevole per Vienna e da me tal quale applicata, poichè la differenza di essa da quella che varrebbe pel parallelo di Milano è affatto trascurabile. Con essa furono calcolate lè ultime colonne dei tre quadri che seguono, abbastanza chiari per sè. Il primo riguarda l'orologio di Milano, ed è come la sintesi delle osservazioni e dei calcoli ai quali il presente capitolo si riferisce; gli altri due riguardano gli orologi di Vienna e di Monaco, e furono cortesemente comunicati dal prof. Oppolzer e dal colonnello Orff; un quadro analogo, riferentesi al cronometro di Padova, troverà suo posto naturale alla fine della Parte Seconda.

OROLOGIO DI MILANO.

	Data		Correzione a 14 ^h . 5	Ritardo orario	2	p	g
1875	Maggio	4	+ 12.154	o. 01621	17	3	7
"	17	5	+ 12.545	0. 01746	21	3	8
,,,	n	6	+ 12.994	0.01579	23	4	9
0.0 ,	n	7	+ 13. 282	0. 01588	9	1	3
(I) (I)	77	8	+ 13.744	0.01862	32	5	12
n	n	9	+ 14.188	0.01946	25	4	10
"	n	10	+ 14.693	0. 02013	21	4	9
n	37	11	+ 15. 150	0. 01871	13	2	5
,,	Я	12	+ 15.586	0. 01729	28	5	12
oges" s	n	13	+ 15.978	0.01921	27	4	10
n	n n	14	+ 16.511	0.01958	31	5	12
1111	Ship D	15	+ 16.918	0.01708	32	5	12
a sa n i	N .	16	+ 17. 326	0. 01700	35	5	. 12

OROLOGIO DI VIENNA.

D	ata		Correzio	one e andamento	z	p	g
1875	Maggio	4	_ 3.918	-0.083 (t - 14.038)	37	6	15
. 77	,,	5	- 5. 796	-0.097(t-13.213)	30	5	12
"	n	6	- 7.884	-0.106(t-14.288)	28	4	10
n	"	7	— 9. 171	-0.120(t-10.647)	9	2	1*
n	n	8	_ 12,462	-0.134(t-14.497)	24	4	10
,,	n	9	— 16.809	-0.155(t-13.602)	39	6	15
n	n	10	— 19.676	-0.128(t-14.487)	23	3	8
n	n	11	— 23. 396	-0.289(t-13.895)	26	5	12
n	n	13	- 38.953	-0.311(t-14.443)	11	3	6
77	n	14	_ 2.335	+0.079(t-14.080)	26	5	12
n	n	15	_ 1.666	+0.000(t-14.165)	37	6	15
n	n	16	— 18. 280	-0.618(t-13.945)	30	4	10

OROLOGIO DI MONACO.

Data			Correzione e andamento		z	p	g
1875	Maggio	4	+ 3.547	_ 0. 1184 (t — 14. 733)	17	2	5
n	n	5	+ 1.447	-0.1320(t-14.767)	25	5	11
n	n	6	_ 0.792	-0.1117(t-14.650)	22	4.5	10
n	n	9	+12.337	-0.1216(t-15.133)	32	5	12
"	n	11	+ 8.795	-0.1512(t-15.183)	30	5	12
n	39	12	+ 9.681	-0.1578 (t-15.817)	21	2	6
39	n	13	+ 7.385	-0.1256 (t-15.333)	24	4	10
"	n	14	+ 5.382	- 0. 1071 (t - 15. 242)	30	4	10
"	n	15	+ 4.290	-0.0904(t-15.000)	35	5	12
37	n	16	+12.220	-0.0746 (t-15.233)	32	5	12

^{*} La formola darebbe il peso 4; fu però ritenuto uguale ad 1, perchè lo scambio dei segnali avvenne assai lontano dall'istante per cui si ha la correzione dell'orologio, e l'andamento dell'orologio è molto incerto.

PARTE SECONDA

Osservazioni fatte a Padova.

Resoconto del prof. G. LORENZONI.

I.

Le istruzioni di Oppolzer (Oppolzer's Instructionen für Längenbestimmung in den Oesterreichischen Staaten) servirono di norma nelle operazioni, le quali vennero eseguite per intero nella Sala del Quadrante Murale a 17 metri di altezza dal suolo. Gli apparati erano disposti nel modo indicato dalla figura, posta in fondo al volume, nella quale A indica il lu go dove, negli anni 1823 e 1825, furono eseguite le determinazioni di tempo, allorchè con segnali a polvere si determinarono le differenze di longitudine fra Padova, Milano ed altre città dell'Italia superiore. (Veggansi le Appendici alle Effemeridi di Milano, pel 1826, p. 67 e pel 1828 p 55). Per la circostanza di questa nuova determinazione di longitudine, fu fatto erigere in A un solidissimo basamento di pietra costituito di un sol pezzo pesante circa millecinquecento chilogr.i Esso non appoggia direttamente sul pavimento della sala, ma sopra un secondo masso che si interna per 25 centimetri nello spessore della vôlta sotto il pavimento da cui è lateralmente distaccato in tutta la sua altezza. Sul basamento era disposto quello stesso strumento di passaggi di Ertel, che nel 1870 servì a Milano nelle osservazioni per la determinazione della differenza di longitudine con Neuchâtel e col Sempione (vedi Resoconto dei professori Schiaparelli e Celoria. Milano, Hoepli, 1875, pag. 15), nel 1871 nella determinazione della latitudine dell'Osservatorio di Brera (vedi la nota del Celoria nelle Effemeridi astronom. di Milano pel 1872) e nel 1874 nella determinazione della latitudine sull'estremo nord-ovest della Base di Lecce (vedi la Memoria pubblicata dal Lorenzoni nel 1875 col titolo: Determinazione della latitudine e di un azimut esequita sull'estremo nord-ovest della Base di Lecce. Padova, 1875, pag. 3).

In B era situata una tavoletta telegrafica (Schaltbrett) di Oppolzer, costruita per la Commissione Geodetica italiana dalla fabbrica Mayer e Wolf di Vienna. Per la descrizione di questo apparato veggansi i Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. Band LXIX, II Abtheilung, pag. 379.

Il Cronografo a cilindri costruito dal meccanico Palma di Napoli ad imitazione di quelli di Hipp era situato in C. Il suo andamento nel corso delle operazioni non fu sempre il più regolare, e così la lunghezza del secondo (in media di un centimetro) non fu sempre la stessa. Ma siffatta irregolarità non potè avere influenza nei risultati, essendo stata impiegata per il rilevamento dei segnali una scala incisa sul cristallo (fornitami dal signor Salmoiraghi di Milano) le cui divisioni, distanti fra loro in media di un millimetro, erano leggermente concorrenti, così che era sempre facile trovare il luogo nel quale la lunghezza di un secondo abbracciava esattamente dieci particelle. È da notare qui che sul cronografo vennero registrati tutti i passaggi così delle stelle orarie come delle polari.

Presso D erano montate le quattro pile. La pila locale componevasi di 4 elementi Meidinger (della fabbrica Mayer e Wolf) e la pila di linea era composta di circa 240 piccoli elementi di Daniell. Il Commutatore a braccio girevole dello Schaltbrett serviva ad inserire i varî
apparati ausiliarî (galvanometro, reostato, commutatore a piuoli, e relais situati sullo Schaltbrett stesso) alternativamente in tre circuiti: nel circuito locale quando il suo braccio mobile
era nella posizione indicata « Local »; nel circuito della pila di linea locale quando era nella

posizione dell'« Aussandt» e nel circuito della pila di linea dell'altra stazione quando era posto sull'« Empfang. » I due primi circuiti venivano chiusi col mezzo del tasto locale e il terzo col tasto dell'altra stazione. Nell'atto della chiusura di uno o dell'altro di tali circuiti, l'ago del galvanometro deviava di un certo angolo da una parte e dall'altra dello zero, secondo la forza e la direzione della corrente: in ogni caso, colla esclusione dal reostato di un certo numero di unità di resistenza, si riduceva la deviazione all'angolo normale di 10°, e col mezzo del commutatore a piuoli si riduceva l'ago a deviare sempre dalla parte voluta. Così il relais funzionava sempre per mezzo di una corrente di direzione e di intensità costanti. L'elica del relais veniva preliminarmente ridotta a una tensione vincibile da una corrente di 3° o 4° e capace di vincere a sua volta il magnetismo eventualmente rimasto nella calamita temporaria dopo il passaggio di una forte corrente di 16° o 17°.

Due pile, composte ciascuna di cinque elementi Meidinger a pallone (della fabbrica Gerosa di Milano), erano destinate ad animare gli elettro-magneti del cronografo e quindi a far agire le penne di questo. Il circuito di una di tali pile conteneva, oltre ad uno dei magneti del cronografo, il cronometro siderale ad interruttore di Frodsham, n. 3546, situato in B accanto alla tavoletta telegrafica. L'interruttore teneva aperto il circuito elettrico per un decimo di secondo su ogni minuto secondo, così che il circuito stesso rimaneva chiuso per nove decimi del tempo impiegato nella totalità delle operazioni. Il circuito dell'altra pila conteneva il secondo magnete temporario del cronografo, e si chiudeva all'abbassarsi dell'ancora del relais, cioè ad ogni segnale dato col tasto locale quando il braccio del commutatore era sul Local, sul-l'Aussandt e ad ogni segnale proveniente dall'altra stazione quando il braccio del commutatore era sull'Empfang. La chiusura e l'apertura dei due circuiti venivano registrate sul-l'istante dalle penne corrispondenti. I circuiti delle due pile, potevano venire chiusi a volontà dell'operatore contemporaneamente senza bisogno del relais e del cronometro, col mezzo del Parallaxentaxt e ciò all'oggetto di determinare la così detta parallasse delle penne.

Mentre il braccio mobile del commutatore era sul *Local*, poteva venire inserito nella linea un completo apparato telegrafico di Morse, il quale era collocato in E; col mezzo di esso venivano scambiate le necessarie intelligenze fra le due stazioni, indipendentemente dalla tavoletta telegrafica. In F era il parafulmini.

Il personale dell'Osservatorio fu così occupato. Le osservazioni dei passaggi, le segnalazioni e i calcoli furono fatti dal Lorenzoni. L'assistente dott. Abetti scriveva nel giornale le annotazioni relative alle circostanze delle operazioni tutte. Il meccanico invigilava sul buon andamento del cronografo e, a tempo debito, determinava la parallasse delle penne; degli altri piccoli servigi indispensabili era incaricato il custode. Il signor Orsi direttore dell'Ufficio Telegrafico locale, gentilmente prestò l'opera sua nella corrispondenza telegrafica, che per desiderio del prof. Oppolzer fu fatta con Vienna in lingua tedesca.

Determinazione del tempo. — Distanze dei fili del reticolo.

Sebbene le distanze dei fili (che sono veramente incisioni fatte al diamante sopra un cristallo) determinate colle osservazioni di passaggi al primo verticale eseguite sull'estremo nord-ovest della Base di Lecce, potessero ritenersi abbastanza esatte, si credette tuttavia conveniente di determinarle una seconda volta col mezzo di osservazioni meridiane, e, precisamente, col mezzo di quelle osservazioni meridiane stesse che doveansi ridurre. — Le distanze così ottenute (ciascuna in media con 223 osservazioni) sono quelle della seconda colonna nella tabella 1°. Nella terza colonna della tabella stessa, sono date le distanze che furono ottenute con dieci passaggi della polare osservati nei giorni stessi delle altre osservazioni.

Tabella I.^a

Distanze dei fili.

Fili	Dalle Stelle orarie	Dalla polare	Distanze combinate	Fili	Dalle Stelle orarie	Dalla polare	Distanze combinate
VIII - I	34.703	34.720	34.707	IX-VIII	4. 332	4.359	4. 337
VIII - II	30.375	30.401	30.380	X-VIII	8.679	8.699	8.683
VIII - III	26.075	26.038	26.068	10,000,000	685-13	Discourse of	tion out
VIII-IV	21.684	21.668	21.681	XI-VIII	17.361	17.320	17.353
VIII - V	17.316	17.309	17.315	XII-VIII	21.656	21.621	21.649
Caircle and		Property 15 o		XIII - VIII	25.981	25.974	25.979
VIII - VI	8. 611	8.661	8. 621	XIV-VIII	30.285	30.294	30.287
VIII - VII	4.300	4.340	4.308	XV - VIII	34.558	34.581	34.563

Il medio aritmetico delle differenze $\left(\frac{\varepsilon}{n}\right)$ con riguardo ai segni, fra i numeri della seconda e quelli della terza colonna, che si riferiscono ai medesimi fili è + 0°,005: la differenza media $\sqrt{\frac{\varepsilon}{n}} = \pm$ 0°,03 —. Siccome l'error medio di una distanza dedotta dalle stelle orarie è circa \pm 0°,01, e quello di una distanza dedotta dalla polare si è trovato \pm 0°,02, nel combinare le distanze della seconda con quelle della terza colonna, si è dato alle prime il peso quattro e alle seconde il peso uno. Le distanze in tal modo combinate sono riferite nella quarta colonna e sono quelle che furono impiegate nelle riduzioni al filo medio. — L'error medio di una di tali distanze è \pm 0°,009.

Parallasse delle penne.

Il Parallamentame dello Schaltbrett non poteva servire nel caso nostro, perchè l'interruzione della corrente nel cronometro, non durando che un sol decimo di secondo ad ogni secondo intero, non era possibile nel suo mezzo di sostituire il Parallamentame per far agire con esso ambedue le penne ad un tempo. Mancando dapprincipio il tempo per rimediare, come si fece più tardi, all'inconveniente si determinava la parallasse nel seguente modo. Si allentava la vite che limita il distacco della leva a gomito, portante la penna del tasto, dalla elettro-calamita rispettiva fino a tanto che la leva venisse con un suo braccio a leggero contatto colla leva della penna cronometrica, della quale così era costretta a seguire i movimenti. Per tutto il tempo nel quale durava il contatto delle braccia portanti le penne, la corrente dell'orologio e moveva ambedue e così ambedue le penne segnavano i secondi sulle rispettive linee alquanto ravvicinate. L'intervallo fra ogni segno di una penna e il corrispondente segno dell'altra, dava la parallasse. In fine delle operazioni si aggiunse allo Schaltbrett un piccolo interruttore a cavicchio, col quale si escludeva dal circuito il cronometro durante tutto il tempo nel quale veniva fatta le determinazione della parallasse col tasto apposito. I due metodi sperimentati insieme diedero risultati identici.

Riduzione dei tempi dei passaggi

delle stelle orarie al tempo del passaggio della polare corrispondente.

Per avere in ciascun gruppo di stelle costituenti una così detta Zeitbestimmung, i tempi cronometrici dei passaggi delle stelle orarie e della polare indipendentemente dalla variazione nella equazione del cronometro, si applicò a ciascun passaggio di stella oraria una correzione eguale alla variazione dell'equazione del cronometro, avvenuta nell'intervallo fra esso passaggio e il passaggio della polare corrispondente. Per questa riduzione s'impiegarono variazioni orarie approssimative quali risultarono dal paragone dei tempi cronometrici dei passaggi di una medesima stella nelle sere successive.

Aberrazione diurna.

Per tener conto di questa, ai tempi dei passaggi superiori fu applicata la correzione: $-0^{\circ},0206\cos\varphi\sec\delta = -0.01446\sec\delta$

essendo $\varphi = 45^{\circ}.24'$, e ai passaggi inferiori la correzione stessa con segno opposto (v. Nautical Almanac. Introduzionė).

Inclinazione.

Per esprimere le inclinazioni in secondi di tempo occorreva avere il valore di una parte del livello pure espressa in secondi. Non furono fatte in questa occasione ricerche speciali di tale valore, ritenendosi che quello adoperato per la riduzione delle osservazioni eseguite sull'estremo nord-ovest della Base di Lecce fosse sufficientemente esatto. Infatti, considerando il valore di una parte dato dal prof. Celoria per una lunghezza della bolla di 28 a 30 parti (lunghezza osservata nelle operazioni di longitudine, che ora si discutono) e il valore da me dato nella Memoria citata più sopra uguale a 2".214 pari a 0.148, si può ritenere che l'errore di questo elemento non sia maggiore di due millesimi di secondo in tempo. Siccome nelle operazioni attuali l'inclinazione dell'asse è stata sempre minore di particelle 2, 6, ne viene, che l'errore di una inclinazione, dipendente da un errore nel valore di una particella, non può essere mai stato superiore a cinque millesimi di secondo.

In ogni determinazione completa di tempo si fecero sempre le quattro livellazioni prescritte nelle Istruzioni. Nella prima e nella quarta livellazione si tenne il cannocchiale inclinato di circa 45° all'orizzonte sud e nelle livellazioni seconda e terza lo si tenne inclinato di 45° circa all'orizzonte nord.

Nel fare i medì delle inclinazioni si tenne conto separato dei risultati ottenuti nelle differenti posizioni dell'obbiettivo e dell'oculare e si ebbe:

Medio delle inclinazioni osservate

```
coll'obbiettivo al sud e l'oculare all'ovest SW=+0^{\text{p}}.5012 » al nord » all'ovest NW=+0.4881 » al nord » all'est NE=-0.4464 » al sud » all'est SE=-0.3090
```

Da queste medie si hanno le correzioni:

$$SW - NW = +0^{\circ}.0131$$

 $SW - NE = +0.9476$
 $SW - SE = +0.8102$

da applicarsi col proprio segno alle singole inclinazioni ottenute nelle tre ultime [posizioni dello strumento per ridurle a quelle che si sarebbero presumibilmente ottenute nella prima posizione a tutte le altre circostanze pari. Applicando siffatte correzioni, si ottiene la seguente la tabella 2º contenente tutte le inclinazioni osservate e ridotte alla posizione sud dell'obbiettivo e ovest dell'oculare.

TABELLA II.ª

y, i tem variazion	dalla	Inclination of the state of the		una cost olare inc	other a	Inclin riferite a		in grupp ees desle		Inclina	
Data	Tempo	ov		Data	Tempo		est	Data	Tempo	ove	
1875	siderale	e all'obbie		1875	siderale		ettivo sud	1875	siderale	e all'obbie	ttivo suo
1075	siderato	singole	medie	20.0	Brackaro	singole	medie	196, 1910		singole	medie
AFORD VI	Bardont	a. Banni	UDIT 6	590b 39A	stass		ATA!	della po	582,510	BIT LES	ULAR
dei pa	h m	toto igi	dei ten	erogera	h m	sulfare	in ilsu;	BYIJAMI	h m	p	
Maggio 6	11. 4	-0.543		Magg. 10	15.35	+0.850	es eller	Magg. 14	11. 4	+1.075	
	11.16	-0.566 -0.137			15.53 16. 9	+ 0.863			11 16 11.40	$+1.088 \\ +1.060$	
	11.40 11.56	-0.250		, bs('t)	16.24	+0.760 $+0.822$	+0.826		11.56	+1.197	
:enois	12.27	-0.725	to a mi	Series of the				ricenn	12.27	+0.775 +0.863	
·onto	12.42	-0.387 -0.366		Magg. 11	11. 4	+1.072 $+1.360$	11400 14	'meanth.	12.42 13. 0	+0.785	
	13. 0 13.14	_ 0.378	0.000	6,-01445	11 40	+1.380 + 1.288	50000	0 -	13.14	+ 1.147	
	14.36	-0.828	0.00	spoto otto	11 56	+1.350	201 1	connect la	13 22	+ 0.822	
	14.52	-0.290 -0.037			12.27	+0.750	2110-13	These is	13.37 13.52	$+0.460 \\ +0.888$	
	15.12 15.23	-0.051			12 42 13. 0	+0.588 $+1.810$.48	14. 9	+0.975	
	15.35	-0.150			14.36	+1.250			14.36	+0.975	
	15 53	-0.112 -0.253	-0.345	TOTTEOD	14.52 15 12	+1.138 $+1.135$	nea at i	clinazim	14.52 15.12	+0.763 +0.760	
ite sook	16.24	- 0.255	-0.540	espo ni s	15.23	+1.135 +1.147	F thus	nos mi os	15.23	+0.747	
Maggio 7	12.27	-0.728			15.35	+1.522		TOO ILL ME	15.35	+0.747	
HE SHADE	12.42	- 1.140	-81/6D	BOLYBLEE	15.53	+1.260		10 820 H	15 53 16. 9	+0.385 +0.938	av bh
	13. 0 13.14	-1.012 -0.750	BEALU	memen	16. 9 16.24	+ 1.488	+ 1.249	ella Bas	16.24	+ 0.675	+0.85
	14.36	- 0.975	od sile	ngbezza	of sau	2.0.0	137 10	g lab of	5 sive	i can if	emie
	14.52	-0.637	-0.874	Magg. 12	11. 4	+1.772		Magg. 15	12.27	+0.972 +0.885	
Maggio 8	11. 4	1.175		ON THAT	11.16	+1.710 $+1.588$			12.42 13. 0	+1.152	
maggios	11.16	-0.987		CELVIA	11.56	+1.72	15190	BYCOE LIK	13 14	+1.200	
rago sli	12.27	-1.350	met di	phacona	12.27	+ 1.67	10 50	ingam s	13 22	+ 1.175	
	12 42	- 0.912		minore	12.42 13. 0	+1.76 $+1.53$	-	hat amoi:	13 37 13 52	+1.088 +0.885	te las
	13. 0 13.14	-1.265 -1.428		olem for	13.14	+ 1.64		the manifest	14. 9	+0.872	
	14.36	-0.853			13.22	+1.64	7		14.36	+0.872	
	14.52	- 1.215		,000 D	13.37 13.52	+1.58			14.52 15.12	$+0.935 \\ +1.088$	
tirasarq.	15.12	- 1.187	- 1.152	arquies i	14. 9	+136 + 1.17	5	6560, 9060	15 23	+0.800	
Maggio 9	11. 4	-2.075	Lien	et is en	14.36	+1.39	7 offer	s swing	15 35	+0.975	el elle
erio "dik i	11.16 11.40	-1.862 -2.240	at is o	ETTEL A	14.52 15.12	+ 1.11		Hu a him	15.53 16. 9	+0.488 +0.760	
	11.40	-2.240 -2.386			15.12				16.24	+ 0.547	+0.91
	12 27	-1.903			15.35	+1.65	0	75 10	.12.71	0.100	
itth siler	12.42	-2.340		Charge	15.53	+ 1.56		Magg. 16	1227	$\begin{bmatrix} -0.100 \\ -0.187 \end{bmatrix}$	
	13. 0 13.14	-2.312 -2.050		1.0	16. 9 16.24	+1.76 +1.82	$\frac{0}{2} + 1.58$	8	13. 0	-0.240	
	14.36	-2.350	0.3	Tastan F	la inani	d			13.14	+ 0.347	
	14.52	-2.062	111	Magg. 13	12 27	+ 1.47			13.22 13.37	-0.203 +0.085	
	15.12 15.23	-2.565 -2.078	- 2.185	25-42-10	12.42 13. 0	+1.31 + 2.13	8	D S F. SWIE	13.52	-0.212	
		COT. U	(*)	The Seaso	13.14	+1.62	5	1	14. 9	- 0.275	The Fig.
	15.35	+ 2547		AT 150	13.22	+1.62	5	1	15.35 15.53	-0.203 -0.034	
	15.53 16. 9	+2.385 $+2.563$		8 185	13.37 13.52	+1.48 +1.58	5		16. 9	-0.034 -0.112	
	16.24	+ 2.725			14. 9	+1.57	2	onned i	16.24	+0.125	473
Mos. 10	10.07	TOTAL BE		1610 0	14.36	+1.57	2		16.33	+ 0.275	
Magg. 10	12.27 12.42	+0.825 $+0.813$		2010.0	14.52 15.12	+1.18 + 1.53			16.49 17. 6	+0.188 +0.060	
	13. 0	+0.910		OTPU, U	15.23	+ 1.35	j j		17.19	-0.028	
	13.14	+0.697		anis, o	15.35	+1.35	0				
	14.36 14.52	+0.822 +0.810	"elune	To inois!	15.53 16. 9	+1.73 $ +1.83 $	S ske s	tos de	one le	d issest	TOR
other bile	15.12	+0.988	militim	uscan cho	16.24	+1.54		3			1
	15.23	+0.750								120111761	
	04911	D. 18 SE	1387.00	I SHARES	The state of the	13 64 , 575	1 5	11	1 1 5 5	7 75 7 00 0	1

Tutte le inclinazioni di questa tabella sono espresse in parti del livello. Facendo ora le differenze delle inclinazioni singole dai rispettivi medì e calcolando con queste differenze l'error probabile di una livellazione, che risulta dal complesso degli errori di lettura, delle variazioni provenienti da cambiamenti irregolari di temperatura lungo tutta una sera di osservazione ecc., si ottiene:

 $\pm 0^{\circ},1329$ e in tempo $\pm 0^{\circ},020$.

Per vedere se nelle singole sere sieno avvenute variazioni della inclinazione proporzionali al tempo, si spartirono le inclinazioni di ciascuna sera in due gruppi: si fecero i medì dei singoli gruppi e i medì dei tempi corrispondenti a ciascun gruppo formando la seguente

TABELLA III.a

Data	Tempo siderale	Medie inclinazioni	Intervallo di tempo	Variazione totale	Variazione oraria	Variazione oraria in tempo
Maggio 6	12. 1 15. 25	-0.426 -0.260	h m 3.24	+ 0. 166	+ 0.049	+ 0.007
n 7	12. 43 14. 14	- 0.960 - 0.787	1.31	+ 0.173	+ 0.115	+ 0.017
, 8	11.52 14.28	- 1.106 - 1.171	2.36	— 0.065	— 0. 025	— 0.004
n 9	11.51 14.23	- 2.134 - 2.236	2. 32	- 0.102	- 0.041	— 0.006
n 10	13. 28 15. 46	+ 0.813 + 0.839	2. 18	+ 0.026	+ 0.011	+ 0.002
n 11	12. 1 15. 38	+ 1.174 + 1.324	3. 37	+ 0.150	+ 0.042	+ 0.006
n 12	12. 26 15. 13	$+1.665 \\ +1.510$	2.47	— 0. 155	— 0.055	— 0.008
n 13	13. 18 15. 31	$+ 1.602 \\ + 1.514$	2. 13	- 0.088	- 0.040	- 0.006
» 14	12. 26 15. 13	+ 0.927 $+ 0.785$	2.47	- 0.142	— 0.051	- 0.008
» 15	13. 18 15. 31	+ 1.029 + 0.808	2.13	- 0. 221	— 0. 100	— 0. 015
n 16	13, 18 16, 2 9	- 0.098 + 0.034	3.11	+ 0.132	+ 0.041	+ 0.006
average ever	o lleute Polem li	Somma degli intervalli Somma delle variazioni Somma delle variazioni Somma degli intervalli	29. 9		- 0.00432	— 0.°0006

Da questa Tabella apparisce che, se anche esiste una variazione della inclinazione proporzionale al tempo, essa è così piccola da non meritare che se ne tenga conto. Convertendo le inclinazioni medie della tabella 2^a, che sono espresse in parti di livello, nelle corrispondenti inclinazioni espresse in secondi, abbiamo le seguenti medie inclinazioni ridotte alla posizione obbiettiva sud, oculare ovest.

TABELLA IV.a

Data	Medie inclinazioni osservate riferite a oculare W. obbiett. S.
Maggio 6 7 8 9 11	
" 12 " 13 " 14 " 15 " 16	$\begin{array}{c} + 0.235 \\ + 0.235 \\ + 0.230 \\ + 0.127 \\ + 0.155 \\ - 0.005 \end{array}$

Per avere da queste inclinazioni, le inclinazioni dell'asse geometrico da usarsi nelle riduzioni quando si voglia, come è dovere, tener conto della differente grossezza dei perni, si applicarono alle inclinazioni delle tabella 4º le correzioni:

```
-\frac{1}{4}(S W-NE)\dots per il caso di obbiettivo sud e ocul. ovest = -0^{\circ}, 035 
 -(S W-NW)-\frac{1}{4}(NW-SE)\dots per obbiettivo nord e ocul. ovest = -0, 031 
 -(S W-SE)+\frac{1}{4}(NW-SE)\dots per obbiettivo sud e ocul. est = -0, 090 
 -\frac{3}{4}(S W-NE)\dots per obbiettivo nord e ocul. est = -0, 105
```

Così si ottiene la seguente

TABELLA V.a

810,0%	Medi	ie inclinazioni	dell'asse di f	igura
Data	Ocular	e Ovest	Ocula	re Est
	obbiett. sud	obbiett.nord	obbiett. sud	obbiett. nord
	8	8	8	S
Maggio 6	- 0.086	- 0. 082	-0.141	— 0. 156
7	- 0.164	— 0. 160	— 0. 219	- 0.234
n 8	-0.205	-0.201	-0.260	-0.275
7 9	— 0. 358	-0.354	-0.413	- 0.428
27 . 27	+0.343	+0.347	+ 0.288	+0.273
n 10	+0.087	+ 0.091	+0.032	+0.017
n 11	+0.150	+ 0.154	+0.095	 0.080
n 12	+ 0.200	+0.204	+0.145	+0.130
n 13	+0.195	+ 0.199	+ 0.140	+0.125
n 14	+0.092	+ 0.096	+0.037	+0.022
n 15	+ 0.100	+ 0.104	+0.045	+0.030
n 16	_ 0.040	- 0.036	-0.095	-0.110

che fu adoperata in tutte le riduzioni per la inclinazione.

Errore di collimazione.

Dopo di aver ridotto al filo medio i passaggi delle polari pei fili laterali e di avere, così al medio passaggio pel filo medio, essendo l'oculare all'ovest, come al medio passaggio pel filo medio corrispondente all'oculare est, applicate le correzioni per la parallasse delle penne, per l'aberrazione diurna e per l'inclinazione, si fece per ogni polare la mezza differenza fra i passaggi così corretti ovest ed est, le si divise per sec de si ebbero in tal modo i corrispondenti valori dell'errore di collimazione registrati nella tabella seguente:

TABELLA VI.ª

Data	Nome della polare	Passagg ess all' Est	n.º dei fili osservati	il filo medio 'oculare all' Ovest	n.º dei fili osservati	Mezza differenza $^{4}/_{2}$ (O-E)	Errore di collima- zione	Peso attribuito	Medî delle singole sere
Maggio 6	M(u.C) $A(u.C)$ $B(u.C)$	h m s 11.51.24,712 13.15.38,127 15.26.44,766	5 7 4	11.51.21,605 13.15.36,235 15.26.41,681	6 7 3	- 1.553 0.946 1.543	$ \begin{array}{r} $	5 7 3	+ 0.081
" 7 " 8	$ \begin{array}{c c} A(u,C) \\ A(u,C) \\ B(u,C) \end{array} $	13.15.41,773 13.15.45,772 15.26.52,448	7 5 5	13.15.38,107 13.15.44,260 15.26.50,964	7 5 4	- 1.833 - 0.756 - 0.742	+0.141 $+0.058$ $+0.057$	1 5 4	+ 0.141 * + 0.058
n 9 n n n n	M(u.C) $A(u.C)$ $B(u.C)$ $C(u.C)$	11.51.37,324 13.15.48,625 15.26.56,722 16.23.21,202	3 5 7 1	11.51.36,430 13.15.46,904 15.26 55,281 16.23.21,065	2 4 7 7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} + 0.026 \\ + 0.066 \\ + 0.070 \\ + 0.008 \end{array} $	2 4 7 1	+ 0.058
n 10 n n n n	$ \begin{array}{c c} A(u,C) \\ B(u,C) \\ C(u,C) \end{array} $	13.15.53,455 15.27. 0,708 16.23.25,431	7 7 6	13.15.50,910 15.26.58,696 16.23.24,594	7 7 6	$ \begin{array}{c c} -1.273 \\ -1.006 \\ -0.419 \end{array} $	+ 0.098 + 0.097 + 0.048	7 7 6	+ 0.082
" 11 " " " "	A(u.C) $B(u.C)$ $C(u.C)$ $M(u.C)$	13.15.55,559 15.27. 3,779 16.23.28,802 11.51.48,368	7 7 6 6	13.15.57,757 15.27. 4,868 16.23.28,815 11.51.50,053	7 7 7 7	$\begin{array}{c} + 1.099 \\ + 0.544 \\ + 0.006 \\ + 0.843 \end{array}$	$\begin{array}{c} -0.085 \\ -0.053 \\ -0.001 \\ -0.050 \end{array}$	7 7 6 6	- 0.049
n 12 n n n n	A(u,C) $G(o,C)$ $B(u,C)$ $C(u,C)$	13.16. 0,813 14.10.24,750 15.27. 6,867 16.23.32,164	8 7 7 6	13.16. 1,251 14.10.24,440 15.27. 8,026 16.23,34,137	7 7 7 6	$\begin{array}{c} + 0.219 \\ - 0.155 \\ + 0.579 \\ + 0.986 \end{array}$	- 0.017 - 0.018 - 0.056 - 0.112	7 7 7 6	_ 0.049
" 13 " " "	A(u.C) G(o.C) B(u.C) C(u.C)	13.16. 3,936 14.10.27,822 15.27.11,450 16.23.36.022	5 7 7	13.16, 5,273 14.10.27,735 15.27.11,279 16.23.36,635	7 7 7 6	+ 0.668 - 0.043 - 0.086 - 0.006	$\begin{array}{c} -0.051 \\ -0.005 \\ +0.008 \\ +0.001 \end{array}$	5 7 7 6	- 0.009
n 14 n n n n n n	M(u.C) $A(u.C)$ $G(o.C)$ $B(u.C)$ $C(u.C)$	11.51.56,998 13.16. 8,793 14.10 31,448 15.27.15,634 16.23,40,963	6 7 7 7 6	11.51.56,986 13.16. 7,860 14.10.32,851 15.27.14,573 16.23,39,876	7 7 7 7 6	$\begin{array}{c} -0.006 \\ -0.466 \\ +0.702 \\ -0.531 \\ -0.544 \end{array}$	$ \begin{array}{r} 0.000 \\ + 0.036 \\ + 0.081 \\ + 0.051 \\ + 0.062 \end{array} $	6 7 7 7 6	0.047
n 15 n n n n n n	$A(u.C) \ G(o.C) \ B(u.C) \ C(u.C)$	13.16.14,101 14,10.34,704 15.27.20,071 16.23.45,399	7 7 7 7	13.16.12,966 14.10.36,896 15.27.19,050 16.23.43,335	7 7 7 6	$\begin{array}{c} -0.567 \\ +1.096 \\ -0.511 \\ -1.032 \end{array}$	+ 0.044 + 0.126 + 0.049 + 0.117	7 7 7 6	0.068
n 16 n n n n	$A(u.C) \\ G(o.C) \\ C(u.C) \\ H(o.C)$	13.16.16,843 14.10.40,631 16.23.47,957 17.23.26,979	8 6 6 7	13.16.16,009 14.10.40,809 16.23.48,080 17.23.27,229	7 7 7	$\begin{array}{c c} -0.417 \\ +0.089 \\ +0.062 \\ +0.125 \end{array}$	$\begin{array}{c} + \ 0.032 \\ + \ 0.010 \\ - \ 0.007 \\ + \ 0.017 \end{array}$	7 6 6 7	+ 0.014
	18,01	1 000		057 0 - 0 686	18.0 18.0		M	edio	+ 0.030

^{*} Durante l'osservazione si riconobbe che il tubetto portante il reticolo non era bene fissato. Forse era stato smosso inavvertitamente la sera innanzi: perciò non si tien conto dei valori dell'error di collimazione ottenuti colla 3.ª polare del 6 e coll'unica polare del 7.

Dall'ispezione dei valori dell'errore di collimazione ottenuti nelle singole sere, si riconosce non essere il caso di ricercare, e ricercandolo di poter ottenere, un indizio certo di variazione proporzionale al tempo e così si adottò per ciascuna sera l'errore di collimazione medio fra tutti quelli ottenuti nella sera stessa, attribuendo ad ognuno di questi un peso eguale al più piccolo numero dei fili ai quali fu osservata la polare in una delle due posizioni dello strumento.

Azimut.

I tempi cronometrici (cioè i tempi letti sul cronografo e corretti per la parallasse delle penne) dei passaggi delle stelle orarie e della polare di ogni gruppo corrispondentemente ad

una particolare posizione dell'oculare, ridotti al filo medio e al tempo cronometrico del passaggio della polare e corretti per l'aberrazione, per la inclinazione e per la collimazione, furono adoperati a determinare un valore dell'azimut istrumentale z nel seguente modo. Ogni stella dando luogo ad un'equazione della forma

$$k = k' - a z$$

in cui k indica la correzione vera del cronometro, k' la correzione del cronometro risultante prescindendo dall'azimut istrumentale ed a il coefficiente dell'azimut, si è combinato la media aritmetica delle equazioni relative alle stelle orarie, colla equazione analoga della polare, escludendo quelle stelle orarie che, nel catalogo provvisorio, sono rinchiuse fra parentesi. Così si ottennero in ogni determinazione completa di tempo due valori di z, uno coi passaggi osservati essendo l'oculare all'est, l'altro coi passaggi corrispondenti all'oculare ovest. I risultati dei calcoli sono registrati nella seguente tabella.

TABELLA VII.ª

					-				-		-		
	ne	M(u. C)	A (u. C))	G (0. C)	B (u. C)	C (u. C)		H (o. C)	
Data	Posizione dell'oculare	Z	n.º dei fili	Z	n.º dei fili	Z	n.º dei fili	Z	n.º dei fili	Z	n.º dei fili	Z	n.º dei fili
Maggio 6	O E	$ \begin{array}{c c} & s \\ & 0.212 \\ & 0.273 \end{array} $	6 5	-0.405 -0.380	7 7	=	=	-0.035 -0.180	3 5		=	=	_
, 7	O E		=	$-\frac{-}{0.322}$	7		_		=	=	_	=	_
, 8	$_{E}^{O}$		_	<u> </u>	5	=	=		=	=	=	=	_
n 9	O E	-0.605 -0.419	2 3	-0.366 -0.379	4 5	Ī	=	-0.484 -0.462	77	-0.596 -0.461	7		_
n 10	O E	-	_	-0.426 -0.458	7	_	-	-0.441 -0.466	7	-0.612 -0.487	6 6	=	=
n 11	O E	<u> </u>	2	— 0.533 —	7	_	-	-0.551 -0.545	7	-0.477 -0.615	7 6	=	_
» 12	O E	-0.501 -0.492	7 6	- 0.508 - 0.596	7 8	<u> </u>	7	-0.492 -0.466	77	-0.750 -0.574	6	_	=
" 13	O E		-	-0.559 -0.435	7 5	-0.644 -0.661	7	-0.452 -0.502	777	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 7	=	-
» 14	O E	-0.515 -0.471	7 6	$-0.480 \\ -0.436$	7	-0.522 -0.623	7	-0.449 -0.439	77	-0.539 -0.606	6 6	_	-
n 15	O E	=	_	-0.575 -0.504	7	-0.529 -0.626	77	-0.519 -0.449	7	-0.503 -0.587	6 7	_	=
" 16	O E	Ξ	_	-0.369 -0.413	7 8	$-0.430 \\ -0.465$	7 6		-	-0.512 -0.447	7 6	- 0.520 - 0.538	777

dove è da osservare che la differenza fra l'azimut ottenuto coll'oculare all'est e quello ottenuto coll'oculare all'ovest è dovuto agli errori di osservazione dei passaggi, agli errori delle ascensioni rette delle stelle orarie, alle variazioni della inclinazione, molto più all'avere assunto come costante l'errore di collimazione. La differenza fra il medio degli azimut ottenuti con una polare e quello degli azimut ottenuti con un'altra dipende nella massima parte dagli errori nelle ascensioni rette delle polari.

Siccome non si poterono osservare ogni sera tutte le polari, il medio degli azimut di una sera non è paragonabile con quello degli azimut di un'altra. Per poter avere azimut presumibilmente eguali a quelli, che in ogni sera si sarebbero ottenuti osservando tutte le polari,

si determinò prima la differenza media fra l'azimut desunto da una polare e l'azimut medio risultante da tutte le polari col mezzo delle differenze medie.

$$M - A = +0$$
°.026
 $A - G = +0.082$
 $A - C = +0.062$
 $B - C = +0.082$
 $A - B = -0.027$

Nel calcolo di queste differenze si considerarono nella tabella settima soltanto i valori dell'azimut aventi i loro corrispondenti nella stessa orizzontale, dando a ciascun azimut peso eguale al numero dei fili osservati nel passaggio della polare da cui fu dedotto.

Attribuendo a ciascuna delle differenze superiori il medesimo peso, e indicando con μ il medio azimut che si sarebbe ottenuto osservando ogni sera tutte le polari, abbiamo

$$\mu - M = -0^{\circ}.044$$

$$\mu - A = -0.018$$

$$\mu - G = +0.064$$

$$\mu - B = -0.045$$

$$\mu - C = +0.044$$

Con tali differenze si formò la seguente tabella degli azimut, e per ogni sera di osservazione si adottò il medio delle linee orizzontali registrato nell'ultima colonna.

TABELLA VIII.ª

	Posizione dell'oculare		A	zimut	parzial	i		Azimut
Data	Posiz dell' o	M (u. C)	A(u,C)	G (0. C)	B(u.C)	C(u, C)	H (o. C)	medio
Maggio 6	O E	-0.256 -0.317	- 0. 423 - 0. 398	<u>s</u>		<u>s</u>	<u>s</u>	— 0.310
n 7	O E	_			= 1	=	_	— 0. 340
, 8 , n	O E		<u> </u>		1408_6 - 15 14 <u></u> 1	= = = = = = = = = = = = = = = = = = = =		— 0.468
n 9	O E	- 0.649 - 0.463	-0.384 -0.397	-	$ \begin{array}{cccc} & -0.529 \\ & -0.507 \end{array} $	-0.552 -0.417	_	0.493
n 10	O E	=	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	-0.486 -0.511	- 0.568 - 0.443	=	0. 487
, 11 , ,	O E	<u> </u>	<u> </u>	三	- 0.596 - 0.590	-0.433 -0.571	_	0.554
n 12	O E	- 0.545 - 0.536	- 0.526 - 0.614		$\begin{array}{c c} -0.537 \\ -0.511 \end{array}$	- 0.706 - 0.530	=	0. 559
n 13	O E	140-100 	- 0.577 - 0.453	- 0.580 - 0.597	$ \begin{array}{r} -0.497 \\ -0.547 \end{array} $	$\begin{array}{c c} - 0.451 \\ - 0.452 \end{array}$	= .	- 0.522
n 14	O E	- 0.559 - 0.515	- 0.498 - 0.454	- 0.458 - 0.559	$ \begin{array}{r} -0.494 \\ -0.484 \end{array} $	- 0.495 - 0.562	Ξ	-0.507
" 15 " "	O E	=	- 0.593 - 0.522	$\begin{array}{c c} - 0.465 \\ - 0.562 \end{array}$	- 0.564 - 0.494	- 0.459 - 0.543	Ξ	-0.526
" 16 " "	O E		$\begin{bmatrix} -0.387 \\ -0.431 \end{bmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	=	- 0.468 - 0.403	$\begin{bmatrix} -0.476 \\ -0.494 \end{bmatrix}$	0. 429
							Medio	_ 0.472

Facendo il medio aritmetico degli *azimut* ottenuti coll'oculare ovest e quello degli *azimut* corrispondenti all'oculare est, si ottengono due valori coincidenti entro il centesimo, il che vuol dire che tutti gli errori sopraindicati si elidono totalmente nel complesso delle osservazioni.

Correzioni delle ascensioni rette.

Dai valori di k' corrispondenti alle singole stelle orarie, ricondotti ai tempi dei passaggi di queste, e corretti per l'azimut istrumentale, si ebbero i valori di k pei tempi dei passaggi delle ${f stelle}$ orarie. Il confronto di questi valori diede modo di determinare la variazione oraria di k, col mezzo della quale essi furono tutti ridotti a 15 ore di tempo siderale. Il medio dei k cosi ridotti venne a fornire un valore molto esatto della equazione del cronometro a 15 ore. — Con siffatta equazione media e colla variazione oraria si ricalcolarono in seguito le correzioni del cronometro per tutte le stelle orarie indistintamente e, applicando siffatte correzioni ai tempi dei passaggi si dedussero le ascensioni rette delle varie stelle. Le differenze fra le ascensioni rette così osservate e le ascensioni rette del catalogo furono assunte come correzioni delle ascensioni rette del catalogo. Esse sono registrate nella seguente tabella, dove l'ultima colonna contiene i medî delle correzioni registrate sulle rispettive orizzontali. Nel combinare in una media le correzioni delle ascensioni rette ottenute nelle singole sere, fu attribuito alle correzioni di ciascuna sera peso eguale al numero delle stelle polari osservate, quale apparisce dalla tabella settima. Ho attribuito cioè alle correzioni delle sere successive dal 6 al 16 rispettivamente i pesi 3, 1/2, 4/2, 4, 3, 4 1/2, 4, 4 1/2 5, 4, 4. Questi medî sono stati riguardati come le correzioni delle ascensioni rette e furono applicati con segno opposto ai tempi dei passaggi.

TABELLA IX.ª

Nome delle Stelle	778		Asc	ension	i rette 18'	osserva 75 Mag		o calco	late			Medî	Peso
	6	7	8	9	10	11	12	13	14	15	16		
δ Leonis	- 0.080 + 0.044 - 0.096 + 0.003 - 0.086 - 0.035 + 0.001 - 0.094			- 0.072 - 0.101 - 0.031 + 0.007	- 0.005 - 0.061 + 0.142 - 0.030	- 0.061 + 0.020 - 0.089 + 0.090 + 0.043	+ 0.124 + 0.119 + 0.012 + 0.002 + 0.021 + 0.012	+ 0.119	\$ - 0.041 + 0.017 - 0.029 - 0.014 - 0.077 - 0.050 + 0.045 - 0.083 - 0.091	+ 0.125	+0.028	\$ -0.055 +0.015 +0.011 -0.022 -0.058 -0.014 +0.054 +0.017 -0.027	15. 5 19. 5 15. 5 19. 5 15. 5 21. 5 15. 31. 5 32.
d^2 Virginis. 0 Virginis. β Comæ 61 Virginis. α Virginis	-0.078 +0.110	- 0.312	+0.003	+ 0.049 - 0.037	-0.134 +0.079 -0.033 +0.101	- 0.038 - 0.081	- 0.025 + 0.088 - 0.187 - 0.036	- 0.042 + 0.109 - 0.144 - 0.006	- 0.135 - 0.005 - 0.140 + 0.061	+0.124 -0.080 +0.128	+0.024 $+0.026$ -0.103 $+0.040$	- 0.064 + 0.059 - 0.110 + 0.051 + 0.141	23. 5 35. 35. 5 28. 25.
l ² Virginis G Virginis m Virginis T Virginis 95 Virginis h Virginis							+ 0.023 - 0.005	+ 0.022 - 0.029 - 0.061 - 0.016	+ 0.051 + 0.049 - 0.021 - 0.020	- 0.104 - 0.049 - 0.151 + 0.086	+0013 +0.038 -0.079 +0.172	$\begin{array}{c} -0.076 \\ +0.004 \\ +0.003 \\ -0.074 \\ +0.051 \\ +0.020 \end{array}$	17.
σ Serpentis ε Libræ	- 0.040 - 0.063 - 0.042 			- 0.083 - 0.041 - 0.164 - 0.245 + 0.059	+0.087 +0.138 -0.031 -0.042 -0.014	- 0.021 + 0 056 - 0.030 - 0.031 + 0.068	+0.166 -0.058 -0.109 -0.089 -0.012	+ 0 070 + 0.137 - 0.044 - 0.059 - 0.048	- 0.096 - 0.114 0.000 - 0.025 + 0.011 + 0.162 - 0.006	+0.062 +0.044 -0.050		- 0 067 + 0.005 + 0.027 - 0.053 - 0.069 + 0.023 - 0.052	

Nome delle Stelle		Ascensioni rette osservate meno calcolate 1875 Maggio							Medî	Peso			
	6	7	8	9	10	11	12	13	14	15	16		
	- 0.064 - 0.058 + 0.147 + 0.019			+ 0.095 - 0.063 + 0.218 - 0.029 + 0.142 + 0.188	+0 017 -0.182 +0.101 -0.057 +0.201 +0.205	+ 0.067 - 0.062 - 0.010 + 0.022 + 0.076	- 0.044 + 0.016 - 0.115 + 0.072 + 0.088	- 0.039 - 0.013 + 0.132 - 0.080 + 0.090 3 + 0.205	- 0.011 - 0.114 + 0.087 + 0.021 + 0.153 + 0.165	- 0.032 - 0.107 + 0.118 + 0.094 + 0.030 + 0.236	- 0.010 - 0.003 + 0.054 - 0.023 + 0.088 + 0.096 - 0.098 + 0.075 - 0.010 + 0.051 - 0.003	0.000 +0.008 5 - 0.070 1 + 0.097 5 + 0.113 5 + 0.113 5 + 0.165 5 + 0.026 6 - 0.010 1 + 0.051 3 - 0.003 5 + 0.025	34. 8 34. 8 34. 8 31. 8 28. 4. 4. 4. 4. 4.

Correzione definitiva del cronometro a 15^h e sua variazione oraria.

Applicate ai tempi dei passaggi tutte le correzioni finora indicate e le ascensioni rette del catalogo di Oppolzer, si dedussero le correzioni del cronometro ai tempi siderali indicati dalle ascensioni rette delle stelle corrispondenti. Denominando k_{15}^h la correzione a 15^h , $k\alpha$ la correzione ad α^h = ascensione retta delle stelle e b la variazione oraria della correzione, ogni correzione $k\alpha$ fornì l'equazione $k_{15} = k\alpha + (15^h - \alpha^h) b$.

Si determinarono per ogni sera le quantità k_{15} e b dal gruppo delle equazioni corrispondenti e si ebbero i valori della seguente

TABELLA X.a

$\begin{array}{ c c c c c c } \hline Data \\ 1875 & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$. 0.		
7 23.55,592 + 3.337 8 23.59,226 3.075 9 24.2,301 3.747 10 24.6,048 3.826 11 24.9,874 3.826 12 24.13,416 3.899 13 24.17,315 3.918 14 24.21,233 4.085 15 24.25,318 + 4.128		k_{15}	Differenza	д <u>Б</u>
	7 7 8 9 10 11 12 13 14 15	23. 55,592 23. 59,226 24. 2,301 24. 6,048 24. 9,874 24. 13,416 24. 17,315 24. 21,233 24. 25,318	3. 634 3. 075 3. 747 3. 826 3. 542 3. 899 3. 918 4. 085	0. 1292 0, 1949 0. 1402 0. 1787 0. 2014 0. 2091 0, 1937

Nella sera del 7 e dell'8 il numero delle osservazioni fu insufficiente per la determinazione

di b. Vi si suppli nel seguente modo. Col mezzo delle differenze della 3ª colonna si calcolarono le seguenti variazioni orarie:

Data	đ della variaz. diurne
Maggio 9	0, ³ 1421
n 10	0, 1577
" 11	0, 1535
" 12	0,1550
" 13	0, 1629
" 14	0,1667
» 15	0, 1711
Medie	0, 1584

Facendo il medio dei valori di b dati dalla tabella X corrispondenti nella data a questi ultimi, abbiamo + 0°,1775

e quindi fra i due medî il rapporto 1 a 1,1206. Si assunsero come variazioni orarie per le sere del 7 e dell'8 le variazioni desunte dall'andamento diurno moltiplicate per 1,1206, cioè:

per il
$$7 + 0^{\circ}.1627$$

per l' $8 + 0^{\circ}.1564$

Finalmente coi valori di *b* si calcolarono per tutte le stelle le corrispondenti variazioni dell'equazione del cronometro per ridurle a 15^h di tempo siderale e ottenendo così i numeri della penultima colonna nella tabella XI.

Tabella XI.

Tempi cronometrici dei passaggi, loro riduzioni ed equazioni del cronometro ridotte a 15.

Serie		ulare	osservati	Tempo		Cor	REZIO	NI		Ascensione	Ridu-	Equazione
Numero della S	Nome delle Stelle	Posizione dell'oculare	Num. dei fili osse	cronometrico del passaggio al filo medio	per l'aberrazione diurna	per la inclinazione	per la collimazione	per l'azimut	per l'errore di ascensione retta	retta del Catalogo provvisorio	zione a 15 ^h	del cronometro a 15 ^h
				CHE CHAN		6 M	AGGIO.					
III	δ Leonis φ Leonis σ Leonis β Leonis Α² Virginis π Virginis	0	12 13	38.34.755 12. 6.34.782 12.32.092	-0.014 -0.015 -0.015 -0.015	-0.104	+0.081 $+0.082$ -0.084 -0.082	-0.232 -0.195 -0.161 -0.186	-0.015 -0.011	10.19.734 14.42.858 42.42.638 48.40.00	$ \begin{array}{c} s \\ +0.556 \\ +0.549 \\ 3 \\ +0.543 \\ +0.472 \\ 7 \\ +0.458 \\ 3 \\ +0.443 \end{array} $	309 178 301 248
IV	f Virginis ρ Virginis d² Virginis θ Virginis β Comæ 61 Virginis	5 . 5 E	. 15	13. 3.12.267 27.22.885 29.56.623	$ \begin{array}{r} -0.015 \\ -0.015 \\ -0.014 \\ -0.016 \end{array} $	$ \begin{array}{r rrrr} -0.072 \\ -0.069 \\ -0.100 \\ -0.170 \end{array} $	-0.082 -0.082 $+0.081$ $+0.092$	-0.179 -0.244 -0.239 -0.108	+0.025 $+0.064$ -0.059 $+0.110$	39.20.009 13. 3.30.510 6. 4.574	$\begin{array}{c} +0.346 \\ +0.336 \end{array}$	208 255 316 235
VI	ε² Bootis α² Libræ ξ² Libræ α Coronæ	1	15 15 15 15	13.53.724	-0.015 -0.015	-0.079 -0.088	$ \begin{vmatrix} +0.089 \\ +0.084 \\ +0.083 \\ -0.089 \end{vmatrix} $	-0.281 -0.263	$\begin{bmatrix} -0.008 \\ -0.02 \end{bmatrix}$		+0.039 +0.024	186 183
VII	α Serpent ε Serpent γ Serpent ε Ophiuch γ Erculis	is . i E	. 15	14.35.552 35.37.307	$ \begin{array}{c c} -0.014 \\ -0.015 \\ -0.014 \end{array} $	$ \begin{array}{r} -0.066 \\ -0.078 \\ -0.101 \end{array} $	-0.081 -0.084 $+0.081$	$ \begin{array}{c c} -0.202 \\ -0.158 \\ -0.237 \end{array} $	$ \begin{array}{c} -0.008 \\ +0.070 \\ -0.097 \end{array} $	50.42.909 16. 11.44.476	$ \begin{array}{c c} -0.107 \\ -0.121 \\ -0.172 \end{array} $	255 178 257 291 278
10 0 0 10 0 0 10 1 0 0		*				7 M	AGGIO.					3 0
IV	$egin{array}{c} ho & ext{Virginis} \ d^2 & ext{Virginis} \ eta & ext{Com} arphi \end{array}$		14 11 14	12. 59.31.035 13. 3.15.850 30. 0.251	-0.015	-0.189	+0.143	-0.207	+0.064	12. 35.35.299 39.19.999 13. 6. 4.571	+0.384	55.894 56.031 55.638
VI	ε ² Bootis α ² Libræ		15	15. 3.29.936 7.56.354	-0.016 -0.015	-0.176 -0.083	-0.159 -0.146	-0.117 -0.308	+0.067 -0.005	14. 39.33.980 43.59.918	$\begin{array}{c c} +0.056 \\ +0.044 \end{array}$	611 928
						8 M	AGGIO.		- 842 - 812			0 0
Ш	8 Leonis	10	11	11. 31.27.969	-0.016	-0.201	-0.062	-0.206	-0.05	11. 7.29.11	8 + 0.612	59.038
IV	ρ Virginis θ Virginis β Come 61 Virginis α Virginis	E	14 15 15	35.53.293	-0.014 -0.016 -0.015	-0.176 -0.299 -0.131	+0.060 $+0.068$ $+0.089$	$\begin{array}{c c} -0.361 \\ -0.158 \\ -0.438 \end{array}$	$ \begin{array}{c c} & -0.05 \\ & +0.11 \\ & -0.05 \end{array} $	1 11.53.86	$ \begin{array}{c} +0.381 \\ +0.306 \\ 7 +0.306 \\ +0.284 \\ +0.267 \end{array} $	154 169
						9 M	laggio.					
Ш	δ Leonis φ Leonis β Leonis π Virginis η Virginis	E	13 15 9	12. 6.45.035 18.32.143	-0.014 -0.015 -0.015	-0.237 -0.383 -0.340	-0.060 $+0.062$ $+0.060$	-0.369 -0.250 -0.30	-0.01 -0.02 -0.01 -0.02	10.19.70	$ \begin{array}{r} +0.494 \\ 4 +0.424 \\ 9 +0.399 \end{array} $	273 276 335

Tempo Cornometrico delle Stelle Stell	Equazione del cronometro a h 15 228 329 413 452 212 233 252 205 139 351 217
IV f Virginis E 10 12.54.25.398 -0.014 -0.273 +0.060 -0.382 -0.017 12.30.22.795 +0.321 -0.015 0.360 +0.061 -0.286 +0.027 35.35.291 +0.321 -0.015 0.360 +0.061 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 -0.088 -0.088 -0.089 -0.088 -0.089 -0.088 -0.089 -0.088 -0.016 -0.280 -0.060 -0.381 -0.059 13. 3.30.514 +0.250 -0.286 +0.027 -0.061 -0.286 +0.010 -0.286 +0.010 -0.089 -0.088 -0.016 -0.089 -0.068 -0.163 +0.110 -0.486 +0.232 -0.015 -0.171 -0.063 -0.461 -0.051 -0.051 -0.232 -0.023 -0.067	a 15 24. 2.298 228 329 413 452 212 233 252 205 139 351 217 349
IV f Virginis E 10 12.54.25.398 -0.014 -0.273 +0.060 -0.382 -0.017 12.30.22.795 +0.321 -0.015 0.360 +0.061 -0.286 +0.027 35.35.291 +0.321 -0.015 0.360 +0.061 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 -0.088 -0.088 -0.089 -0.088 -0.089 -0.088 -0.089 -0.088 -0.016 -0.280 -0.060 -0.381 -0.059 13. 3.30.514 +0.250 -0.286 +0.027 -0.061 -0.286 +0.010 -0.286 +0.010 -0.089 -0.088 -0.016 -0.089 -0.068 -0.163 +0.110 -0.486 +0.232 -0.015 -0.171 -0.063 -0.461 -0.051 -0.051 -0.232 -0.023 -0.067	m s 228 228 329 413 452 212 233 252 205 139 351 217 349
IV f Virginis E 10 12.54.25.398 -0.014 -0.273 +0.060 -0.382 -0.017 12.30.22.795 +0.321 -0.015 0.360 +0.061 -0.286 +0.027 35.35.291 +0.321 -0.015 0.360 +0.061 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 -0.088 -0.088 -0.089 -0.088 -0.089 -0.088 -0.089 -0.088 -0.016 -0.280 -0.060 -0.381 -0.059 13. 3.30.514 +0.250 -0.286 +0.027 -0.061 -0.286 +0.010 -0.286 +0.010 -0.089 -0.088 -0.016 -0.089 -0.068 -0.163 +0.110 -0.486 +0.232 -0.015 -0.171 -0.063 -0.461 -0.051 -0.051 -0.232 -0.023 -0.067	15 m s 228 228 228 329 413 452 212 233 252 205 139 351 217 349
IV f Virginis E 10 12.54.25.398 -0.014 -0.273 +0.060 -0.382 -0.017 12.30.22.795 +0.321 -0.015 0.360 +0.061 -0.286 +0.027 35.35.291 +0.321 -0.015 0.360 +0.061 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 35.35.291 +0.311 -0.286 +0.027 -0.088 -0.088 -0.089 -0.088 -0.089 -0.088 -0.089 -0.088 -0.016 -0.280 -0.060 -0.381 -0.059 13. 3.30.514 +0.250 -0.286 +0.027 -0.061 -0.286 +0.010 -0.286 +0.010 -0.089 -0.088 -0.016 -0.089 -0.068 -0.163 +0.110 -0.486 +0.232 -0.015 -0.171 -0.063 -0.461 -0.051 -0.051 -0.232 -0.023 -0.067	-24. 2.298 228 329 413 452 212 233 252 205 139 351 217
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-24. 2.298 228 329 413 452 212 233 252 205 139 351 217
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	228 329 413 452 212 233 252 205 139 351 217
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	329 413 452 212 233 252 205 139 351 217
VI ϵ^2 Bootis α^2 Libræ . 15 15. 3 36.730 -0.016 -0.085 -0.068 -0.0170 $+0.067$ -0.067 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.068 -0.018 -0.069 -0.061 -0.082 -0.088	452 212 233 252 205 139 351 217
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	233 252 205 139 351 217
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	233 252 205 139 351 217
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205 139 351 217
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	351 217 349
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	217 349
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	398
a Herculis 15 43 43.424 -0.015 +0.303 -0.062 -0.262 -0.113 19.40.770 -0.171	427 295
21.46.904 = 0.175	334
	327
10 Maggio.	
III δ Leonis E 6 11.31.34.388 -0.016 +0.017 +0.088 -0.214 -0.055 11.7.29.092 +0.756 -	-24. 5.982
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.995 6.000
7 Virginis . 15 37.38.241 -0.014 +0.061 -0.082 -0.347 -0.054 12.12.32.255 +0.540	6.090
IV f Virginis 0 15 12.54.28.753 -0.014 +0.056 -0.082 -0.377 -0.017 12.30.22.791 +0.486	6.014
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.024 5.990
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.075
61 Virginis 15 36, $0.043 - 0.015 + 0.008 + 0.086 - 0.455 - 0.051 11.53.860 + 0.351 15.3.860 + 0.3.860 + 0.351 15.3.860 + 0.351 15.3.860 + 0.351 15.3.860 + 0.351 15.3.860 + 0.351 15.3.860 + 0.351 15.3.860 + 0.351 $	6.135 6.107
α Virginis 15 42.44.502 -0.015 $+0.010$ $+0.083$ -0.410 -0.141 18.38.355 $+0.330$	6.004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.082
$\zeta^2 \text{ Libræ} 11 14. 7.779 -0.015 +0.010 +0.084 -0.413 -0.027 50. 1.291 +0.032 $	6.131 6.159
$[\varepsilon \text{ Libræ}] \dots [15] 41.34,095 - 0.015 + 0.050 - 0.083 - 0.407 + 0.069 17.27580 - 0.051$	6.067 6.072
Corona . 15 45.21.259 -0.015 +0.043 -0.085 -0.447 -0.023 21.14.655 -0.069	6.008
	5.945
ε Serpentis 15 8.43.800 -0.014 +0.066 -0.082 -0.318 -0.008 44.37.247 -0.145	6.013 6.052
γ Serpents 15 14.49.256 -0.015 +0.079 -0.085 -0.248 +0.070 50.42.962 -0.165 ε Ophiuchi E 15 35.51.209 -0.014 +0.011 +0.082 -0.373 -0.097 16.11.44.541 -0.234	5.930
γ Herculis 15 40.32.841 -0.015 +0.016 +0.087 -0.225 +0.018 16.26.473 -0.248	6.043
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.127 6.078
11 Maggio.	
Teonis 15 38.52.535 -0.015 +0.063 -0.049 -0.349 -0.011 1.10.13.630 +0.356	-24. 9.801 9.886
A^2 Virginis O 15 12. 12.49.487 -0.015 $+0.122$ $+0.050$ -0.332 $+0.058$ 48 39.971 $+0.447$ $+0.049$	9.846
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

	A constant											
Serie		Posizione dell'oculare	osservati	Tempo		Con	RREZI	ONI		Ascensione	Ridu-	Equazione
della	Nome	911,00	i oss	cronometrico del	ne	0	0		0 0	retta	zione	del
ro d	delle	ne de	dei fili	passaggio	per aberrazione diurna	per la inclinazione	per la collimazione	per l'azimut	per l'errore di ascensione retta	del	a	cronometro
Numero	Stelle	sizio	n. d	al	papern diu	per	per	pe l'azi	per l'er di ascens rett	Catalogo	15 ^h	a h
-		Po	Num.	filo medio	1.	i.	90		ğ g	provvisorio		15
				h m s								
IV	θ Virginis β Comæ	0	15	13. 27.40 375	-0.014	+0.096	+0.049	-0.428	-0.059	$^{h}_{13.}$ $^{m}_{3.30.511}$	+0.272	-24.9.780
YZZ			7	30.14.064					1-1-37	T. T	A seminar	A PRINCIPAL OF THE PRIN
VI	ε ² Bootis α ² Libræ	0	15 15	15. 3.43.789 8.10.162	-0.016 -0.015	+0.161 +0.076	+0.055	-0.191 -0.503	+0.067	14. 39.33.999 43.59.953	+0.048	9.914 850
	ζ² Libræ σ Serpentis		15	14.11.559	-0.015	+0.085	+0.050	-0.470	-0.027	50. 1 300	10 023	905
	ε Libræ		5 15	41.37.959	-0.015	+0.046	-0.050	-0.463	+0.069	15. 14.42.397 17.27.591	-0.034 -0.041	899 914
	ζ' Libræ α Coronæ		15 15	45.25.194	-0.015	+0.040	-0.0511-	-0.508	-0.023	21.14.667 29.26 054	-0.050	920
VII	∝ Sernentis			16. 2.19.093		- 210			- 803	15.38. 8.809	S 3 3	1 2 2
	ε Serpentis		14	8.47.669	-0.014	+0.061	-0.049	-0.361	-0.003	44 37.259	-0.104	845 935
-	γ Serpentis ε Ophiuchi	0	7	14.53.182 - 35.54.882 -	-0.014 -	-0.097	+0.049 -	-0.424	+0.070 -0.097	50.42.975 16. 11.44.557	-0.118	884 768
- 4	γ Herculis ω Herculis		15	40.36.641	-0.015	-0.043	+0.0521	-0.257	+0.0181	16.26.488	-0.178	916
	w Hereuns		٥١	43.31.003	-0.015	+0.199		-0.295	-0.115	19.40.801	-0.185	840
							AGGIO.					
III	φ Leonis σ Leonis	E	15	11. 34.32.887	-0.014 -	+0.087	-0.049	-0.419	-0.015	11. 10.19.681	+0.685	
	β Leonis	o	15 15	38.55.939 12. 6.55.467	-0.015 -	-0.179	+0.051 -	-0.291 -	1-0.022	14.42.805 42.42.589	+0.672 $+0.588$	481 412
				12.52.912 - 18.42.602 -	-0.015 -0.015	+0.163 $+0.159$	+0.050 $-$	-0.335 -0.348 -	+0.058	48 39.964 54.29.598	+0.571	440
IV	A STATE OF			The Harry	400	TEN	A TOTAL OF	- 11000	THE	12. 30.22.783		416
1	P Virginis		15	59.48.378 -	-0.015 -	-0.168	+0.050	-0.323	± 0.027	35.35.277	+0.431	383 439
182	9 Virginis	E	9	13. 3.33.069 - 27.44.056 -	-0.014 -	-0.083	-0.049	-0.432	-0.059	39.19.979 13. 3.30.509	+0.419 $+0.347$	428 423
	β Comæ 61 Virginis		15 15	30.17,532 - 35. 7.499 -	-0.016 -	-0.142	-0.056	-0.185	+0.110	6. 4.549	+0.340	318
			14	42.52.076	-0.015 -0.015	-0.074	-0.050	-0.527 -0.471		11.53.858 18.38.354	+0.322 $+0.302$	381 421
V	ζ Virginis	E	14	13. 52.34.881 -	-0.014	+0.091	-0.049	-0.398	-0.004	13. 28.21.362	+0.274	419
121	m Virginis		14	59.18.621	-0.015	+0.078	-0.049	-0.453	-0.003	35. 5.039	+0.253	393
VI	ε ² Bootis d ² Libræ	E	15 15	15. 3.47.492 8.14.001	-0.016	+0.140	-0.055	-0.193	+0.067	14. 39.34.003	+0.061	493
	ξ² Libræ		15	14.15.101	-0.015	+0.074	-0.050	-0.474	-0.027	43.59.961 50. 1.308		576 331
	σ Serpentis ε Libræ		15 15	41.41.304	-0.015	+0.115	+0.050	-0.467	± 0.0691	15. 14.42.407 17.27.602	-0.044 -0.052	365 402
	ζ' Libræ α Coronæ		15	45.28,531 53.39.472	-0.015	+0.099	+0.051	-0.513	-0.023	21.14.679	-0.063	388
TATA	S.O.A.			La Selevania	-		The same of	1 376.	-0.067	29.26.063	dinis	443
VII	ε Serpentis		15	16. 2.22.567 8.51.055	-0.014	+0.153	+0.049	-0.352 -0.365	-0.008	15. 38. 8.821 44.37.271	-0.114 -0.133	471 466
GAR.	γ Serpentis ε Ophiuchi			14.56.589 35.58.641	-0.015	+0.181	+0.051	-0.284	± 0.070		-0.151	454
A G	y Herculis		15	40.40.250	-0.015	+0.124	-0.052	-0.259	+0.018	16.26.502	-0.228	350 336
200	ω Herculis α Scorpii	: :	15	43.54.815 46. 1.344	-0.015 -0.016	十0.108 十0.046	-0.051 -0.055	-0.297 -0.591	-0.113 -0.166	19.40.816 21.46.962		393 356
5.6	I I				- 134,5			1 510.0	05	1 19 1 15 18	- 8:60	EL A LE
	2 2			10 54 10 047	0.074		IAGGIO.	0.404	0.045	10 00 00 FF0	1070	0'J %
IV	o Virginis		15	12. 54.40.045 59.52.403	-0.015	+0.105	-0.014	-0.301	+0.027	35.35.272	+0.484	-24.17.400 417
	d² Virginis θ Virginis	. 5.	15	13. 3.37.006	-0.015	+0.101	-0.013	-0.318	0.064	39.19.975 13. 3.30 507	+0.471	321
	β Comæ		15	30.21.231	-0016	+0.212	+0.015	-0.173	+0.110	6. 4.544	+0.381	351 266
	61 Virginis a Virginis									11.53.856 18.38.354	+0.362	245 297

Serie	Aug II	ulare	rvati	Tempo		Cor	REZIO	NI		Ascensione	Ridu-	Equazione
Numero della S	Nome delle Stelle	Posizione dell'oculare	Num. dei fili osservati	cronometrico del passaggio al filo medio	per l'aberrazione diurna	per la inclinazione	per la collimazione	per l'azimut	per l'errore di ascensione retta	retta del Catalogo provvisorio	zione a h 15	del cronometro a 15 ^h
V	l² Virgini ζ Virgini m Virgini τ Virgini 95 Virgini	s s E	15	52.38.617 59.22.338 14 19.36.459	-0.014 -0.014 -0.015	+0.137 $+0.117$ $+0.091$	+0.013 $+0.013$ -0.013	-0.372 -0.423 -0.358 $-$	-0.004 -0.003 $+0.074$	35. 5.040	+0.307 $+0.285$ $+0.217$	$m \atop -24.17.328 \atop 322 \atop 273 \atop 319 \atop 240$
VI	a ² Bootis α ² Libræ ξ ² Libræ σ Serpen ε Libræ ζ' Libræ α Corons	tis O	15	8.17.735	-0.015 -0.015 -0.014 -0.015 -0.015	$ \begin{array}{r} +0.063 \\ +0.071 \\ +0.140 \\ +0.112 \\ +0.096 \end{array} $	-0.014 -0.013 $+0.013$ $+0.013$ $+0.014$	$ \begin{array}{c} -0.473 \\ -0.443 \\ -0.364 \\ -0.436 \end{array} $	-0.005 -0.027 $+0.053$ $+0.069$ -0.023	50. 1.316 15. 14.42.417 17.27.613 21.14.69	$ \begin{array}{c} +0.054 \\ +0.033 \\ -0.049 \\ -0.058 \\ -0.071 \end{array} $	323 324 243
VII	α Serper ε Serper γ Serper ε Ophiu γ Hercu ω Hercu α Scorpi	tis. chi E lis.	. 10 . 15 . 14 . 15	15. 0.463 36. 2.624 40.44.163 43.58.703	$ \begin{array}{c} -0.014 \\ -0.015 \\ -0.014 \\ -0.014 \\ -0.015 \\ -0.015 \end{array} $	$ \begin{array}{c} +0.149 \\ +0.177 \\ +0.081 \\ -0.119 \\ -0.110 \end{array} $	+0.013 $+0.014$ -0.014 -0.014 -0.013	-0.340 -0.266	$ \begin{array}{r} -0.008 \\ +0.070 \\ -0.09 \\ +0.018 \\ -0.118 \end{array} $	50.42.99 7 16. 11.44.58 16.26.51 19.40.83	$\begin{array}{c c} 3 & -0.150 \\ 9 & -0.170 \end{array}$	269 274 1 358 257 296
481				110 H 120		14 1	MAGGIO	0 2 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8				
III	δ Leonis φ Leonis σ Leonis β Leonis Α² Virgin π Virgin η Virgin	is .	. 15	34.40.477 39. 3,508 12. 7. 3,377 13. 0.756 18.50.451	$ \begin{array}{c} -0.014 \\ -0.015 \\ -0.015 \\ -0.015 \\ -0.015 \\ -0.015 \end{array} $	$ \begin{array}{c} +0.015 \\ +0.017 \\ +0.082 \\ +0.075 \\ +0.073 \end{array} $	$ \begin{array}{r} +0.047 \\ +0.047 \\ -0.049 \\ -0.048 \\ -0.047 \end{array} $	$ \begin{array}{r} -0.380 \\ -0.319 \\ -0.264 \\ -0.304 \\ -0.315 \end{array} $	$ \begin{array}{r} -0.015 \\ -0.011 \\ +0.025 \\ +0.058 \\ +0.014 \end{array} $	14 42.787 2 42.42.572 48.39.948	$\begin{array}{c} +0.800 \\ +0.785 \\ +0.687 \\ +0.667 \\ +0.646 \end{array}$	267 225 268 241
IV	f Virgin ρ Virgin d² Virgin θ Virgin β Comæ 61 Virgin α Virgin	is . is E	. 15	13. 3.40.895 27.51.687 30.25.345 36.15.215	$ \begin{array}{r} -0.015 \\ -0.015 \\ -0.014 \\ -0.016 \\ -0.015 \end{array} $	+0.074 $+0.014$ $+0.024$ $+0.011$	-0.048 -0.048 $+0.047$ $+0.065$ $+0.049$	$ \begin{array}{r} -0.293 \\ -0.309 \\ -0.391 \\ -0.168 \\ -0.474 \end{array} $	+0.027 $+0.064$ -0.059 $+0.110$ -0.051	39.19.970 13. 3.30.505 6. 4.539 11 53.854	+0.503 $+0.489$ $+0.405$ $+0.397$ $+0.376$	152 189 180 184 218 257 239
V	l² Virgin ζ Virgin m Virgin τ Virgin 95 Virgin k Virgin	is . is . is .	. 15 . 15	59.26.403 14. 19.40.467 24.29.652	$ \begin{array}{r} -0.014 \\ -0.015 \\ -0.014 \\ -0.015 \end{array} $	+0.015 $+0.013$ $+0.067$ $+0.055$	+0.047 $+0.047$ -0.047 -0.048	$ \begin{array}{r rrrr} -0.361 \\ -0.411 \\ -0.348 \end{array} $	-0.004 -0.003 $+0.074$ -0.051	35. 5.040 55.19.131 14. 0. 8.218	+0.319 $+0.296$ $+0.225$	213 292 290 293 168 254
VI	ε² Bootis α² Libræ ξ² Libræ σ Serper ε Libræ ζ' Libræ α Corons		. 15	8.21 517 14.22.963 39. 3.985 41.49.300 45.36.585	$ \begin{array}{r} -0.015 \\ -0.015 \\ -0.014 \\ -0.015 \\ -0.015 \end{array} $	+0.047 $+0.052$ $+0.016$ $+0.013$ $+0.011$	-0.049 -0.048 $+0.047$ $+0.048$ $+0.049$	-0.423 -0.465	-0.005 -0.027 $+0.053$ $+0.069$ -0.023	43.59.976 50. 1.321 15.14.42.426 17.27.628 21.14.701	+0.056 $+0.035$ -0.051 -0.061 -0.074	115 206 257 308 367
VII. 166 166 168 168 1702	α Serper ε Serper γ Serper ε Ophiu γ Hercu ω Hercu α Scorpi	ntis. chi lis	. 15 . 15 . 15 . 15 . 15	15. 4.501 36. 6.548 40.48.249 44. 2.747	$ \begin{array}{r} -0.014 \\ -0.015 \\ -0.014 \\ -0.015 \\ -0.015 \end{array} $	+0.017 $+0.020$ $+0.060$ $+0.088$ $+0.081$	$ \begin{array}{r} +0.047 \\ +0.049 \\ -0.047 \\ -0.050 \\ -0.048 \end{array} $	-0.331 -0.258	-0.008 $+0.070$ -0.097 $+0.018$ -0.118	50.43.01 16.11 44.60 16.26.53 19.40.84	$ \begin{array}{c c} -0.155 \\ -0.177 \\ -0.250 \end{array} $	206 179 210 259 259

Serie	nlare	rvati	Tempo	versa.	Cor	REZIO	NI	enoresi consti	Ascensione	Ridu-	Equazione
Numero della	Nome delle Stelle	Num. dei fili osservati	del passaggio al filo medio	per l' aberrazione diurna	per la inclinazione	per la collimazione	per l'azimut	per l'errore di ascensione retta		zione a h 15	del cronometro a
	6	Z Z		ı				Ъ	provvisorio		15
			h ms	8	8	MAGGIO.	8	8	h m s	8	m 8
IV	P Virginis	E 6 12 O 15 15 15 15	12.54.48.045 13. 0. 0.405	$ \begin{array}{r} -0.015 \\ -0.014 \\ -0.016 \\ -0.015 \end{array} $	+0.025 $+0.064$ $+0.109$ $+0.048$	+0.068 -0.068 -0.077 -0.071	-0.304 -0.406 -0.174 -0.492	+0.027 -0.059 $+0.110$ -0.051	12. 30.22.768 35.35.262 13. 3 30.503	+0.466 $+0.376$ $+0.368$ $+0.349$	—24. 25.409 410 363 332 379 364
V	l ² Virginis ρ Virginis m Virginis τ Virginis 95 Virginis h Virginis	15	13. 49.55.324 52.46.656 59.30.471 14. 19.44.361 24.33.777 30.41.199	$ \begin{array}{c c} & -0.014 \\ & -0.015 \\ & -0.014 \\ & -0.015 \end{array} $	+0.070 $+0.060$ $+0.022$ $+0.018$	-0.068 -0.069 $+0.068$ $+0.069$	-0.375 -0.427 -0.361 -0.431	$ \begin{array}{r} -0.004 \\ -0.003 \\ +0.074 \\ -0.051 \end{array} $	13, 25,29,961 28,21,360 35, 5,041 55,19,133 14, 0, 8,221 6,15,762	+0.296 $+0.274$ $+0.208$ $+0.193$	-24. 25.315 201 250 225 339 222
VI	ζ² Libræ σ Serpentis ε Libræ ζ' Libræ α Coronæ		39. 8.208 41.53.409 45.40.52	$\begin{array}{c} 1 \\ -0.015 \\ -0.014 \\ -0.015 \\ 1 \\ -0.016 \end{array}$	+0.072 $+0.058$ $+0.049$	-0.068 -0.069 -0.071	-0.367 -0.439 -0.482	+0.053	14. 50. 1.332 15. 14.42.435 17 27.633 21.14.712 29.26.089	-0.048 -0.056 -0.069	198
VII	α Serpentis ε Serpentis γ Serpentis ε Ophiuchi γ Herculis ω Herculis α Scorpii	E 15 15	36.10.603 40.52.343 44. 6.713	$\begin{array}{c c} 3 & -0.014 \\ 7 & -0.015 \end{array}$	+0.076 $+0.091$ $+0.019$ $+0.029$ $+0.026$	+0.072 +0.070	$ \begin{array}{r} -0.343 \\ -0.268 \\ -0.403 \\ -0.244 \\ -0.280 \end{array} $	$ \begin{array}{r} -0.008 \\ +0.070 \\ -0.097 \\ +0.018 \\ -0.113 \end{array} $	19.40.859	-0.144 -0.164 -0.231 -0.246 -0.258	265 268 327 419 282
					16	Maggi	0.				
IV	f Virginis ρ Virginis d² Virginis θ Virginis β Comæ 61 Virginis α Virginis	E 15 15 15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.015	$ \begin{array}{r} -0.034 \\ -0.032 \\ -0.071 \\ -0.120 \\ -0.053 \end{array} $	$ \begin{array}{r} -0.017 \\ -0.017 \\ +0.017 \\ +0.019 \\ +0.018 \end{array} $	$ \begin{array}{r} -0.247 \\ -0.262 \\ -0.331 \\ -0.141 \\ -0.401 \end{array} $	$\begin{array}{c} +0.027 \\ +0.064 \\ -0.059 \\ +0.110 \\ -0.051 \end{array}$	39.19.960 13. 3.30.500 6. 4.528	+0.417 $+0.405$ $+0.336$ $+0.329$ $+0.311$	498 381 422 404
V	l ² Virginis ζ Virginis m Virginis τ Virginis 95 Virginis λ Virginis	15 0 10 15	52.50.90 59.34.66 14. 19.48.64 24.38.05	$ \begin{array}{c cccc} 4 & -0.014 \\ 5 & -0.015 \\ 6 & -0.015 \\ 2 & -0.015 \end{array} $	$ \begin{array}{c} -0.075 \\ -0.066 \\ -0.025 \\ -0.025 \end{array} $	+0.017 $+0.017$ -0.017	$\begin{bmatrix} -0.305 \\ -0.345 \\ -0.294 \\ -0.355 \end{bmatrix}$	$ \begin{array}{c} -0.004 \\ -0.008 \\ 4 \\ -0.051 \\ -0.051 \end{array} $	35. 5.041 55.19.135 14. 0. 8.223	+0.264 $+0.245$ $+0.187$	454 417 544
VI	I α Serpenti ε Serpenti γ Serpenti ε Ophiuchi γ Herculis ω Herculis α Scorpii	s 15 s 15 i O 15 15	15 12.98 36.14.72 40.56.46 44.10.92	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & -0.08 \\ & -0.10 \\ & -0.02 \\ & -0.03 \\ & -0.03 \end{array} $	$ \begin{array}{c} $	$ \begin{array}{c c} 7 & -0.28 \\ 8 & -0.21 \\ 7 & -0.32 \\ 8 & -0.19 \\ 8 & -0.22 \end{array} $	0 - 0.008 $8 + 0.076$ $9 - 0.097$ $9 + 0.018$ $8 - 0.118$	50.43.038 7 16.11.44.632 16.26.557 19.40.878	$ \begin{array}{r} -0.129 \\ -0.146 \\ -0.208 \\ -0.220 \\ -0.230 \end{array} $	419 506 398 438 417
VII	Z Herculis 20 Ophiuch 49 Herculis α Herculis ν Serpentis ω Herculis α Ophiuch	E 15 15 15 15	10.55.59 33.29.08 37.20.29 40.31.22	$ \begin{array}{c c} $	$ \begin{array}{r} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 - 0.36 $8 - 0.22$ $8 - 0.22$ $7 - 0.37$ $0 - 0.11$	$ \begin{vmatrix} 2 & -0.07 \\ 3 & -0.02 \\ 7 & +0.01 \\ 2 & -0.05 \\ 3 & -0.00 \end{vmatrix} $	46.25.52 0 17. 8.58.950 1 13.49.979 16. 1.13	$ \begin{array}{c} -0.297 \\ -0.306 \\ -0.372 \\ -0.386 \\ -0.393 \\ \end{array} $	446 447 450 450 450

Colle correzioni delle ascensioni rette ottenute separatamente a Milano, Vienna, Monaco e Padova, furono calcolate a Milano le correzioni medie della pagina 32, che si adottarono in comune dalle quattro stazioni. In causa delle nuove correzioni, le equazioni del cronometro date alla pagina 47 assumono i valori della seguente tabella, che furono definitivamente impiegati nella deduzione delle differenze di longitudine.

Maggio 1875	Equazione del cronometro a 15 ore siderali	Variazione oraria	Stelle orarie	d Stelle polari	Peso g
6	-23.52.248	+ 0.1435	21	3	8
7	— 23. 55. 564	+ 0.1627	5	1/2	1 1/2)
8	— 2 3. 59. 233	+ 0.1564	6	1/2	1 1/2
9	— 24. 2. 295	+ 0.1292	24	4	10
10	— 24. 6.041	+ 0.1949	25	3	8
11	— 24. 9.867	+ 0.1402	20	3	7
12	— 24. 13. 405	+ 0.1787	28	4 1/2	11
13	— 24. 17. 305	+ 0.2014	26	4	10
14	— 24. 21. 228	+ 0 2091	34	5	12
15	— 24 . 25. 304	+ 0.1937	24	4	10
16	— 24. 29. 434	+0.1733	27	4	10
* Questi due pesi i	furono ritenuti eguali a	uno nella loro combin	azione co	i due pes	i corri-

Le variazioni orarie della terza colonna sono quelle stesse date alla pagina 47, e i pesi registrati nell'ultima colonna furono dedotti dai numeri delle due colonne precedenti, usando la formola

spondenti di Milano, ed eguali ciascuno a due nella loro combinazione con quelli di Vienna.

$$g = \frac{z p}{0.3 z + 0.7 p}$$
.

Questa formola comunicataci dal prof. Oppolzer, vale propriamente per la latitudine di Vienna, ma la sua differenza colla formola che varrebbe pel parallelo di Padova è, in questo caso, affatto inconcludente.

PARTE TERZA.

Calcolo delle differenze di longitudine e risultati ottenuti.

Il calcolo delle differenze di longitudine riposa e sulle determinazioni del tempo, alle quali si riferiscono i capitoli precedenti, e sui segnali scambiati ogni sera fra le diverse stazioni.

Era stato deciso che ogni sera e Vienna e Milano avrebbero successivamente scambiati i segnali con ciascuna delle altre tre stazioni, che Monaco e Padova li avrebbero scambiati colle due stazioni di Vienna e di Milano soltanto. Le stazioni a due a due scambiavano ogni sera quattro serie di segnali; cominciava la più orientale delle due a mandare circa venti segnali; l'occidentale, ricevutili, rinviava due serie di venti segnali circa cadauna separate da un intervallo di due minuti; queste ricevute, la stazione orientale mandava un'ultima serie, che chiudeva lo scambio. Mentre Vienna scambiava i segnali con Monaco, Milano li scambiava con Padova; Vienna mettevasi quindi in comunicazione con Padova, e contemporaneamente Milano con Monaco; in fine comunicavano fra loro Vienna e Milano.

I quadri che seguono, abbastanza chiari per sè, contengono le serie dei segnali scambiati per tutte le sere per le quali le osservazioni astronomiche permisero poi di determinare il valore della differenza delle longitudini.

I. Segnali scambiati fra Vienna e Milano.

				SEG	NAL	IDA	ΤΙ	-			12
da	Vienna		da	Milano		da	Milano.		da	Vienna	77
Crono		enze	Cronog	rafo	Differenze	Cronos		Differenze	Cronog		Differenze
Vienna	Milano	Differenze	Vienna	Milano	Differ	Vienna	Milano	Differ	Vienna	Milano	Differ
							-				
				1	875 MA	ggio 4.					
h m 15. 28	14. 59 m	28	5.29	15.0 m	28	15. 32	15.4 m	28	15. 34	15.5 m	28
s 1.89	10.48	51.41	23.79	32.30	51.49	53,79	2.28	51.51	1.93	10.51	51.4
4.12	12.72	40	25.82	34.34	48	55.78	4.27	51	3 85	12.44	4
5.93 7.93	14.51 16.52	42 41	27.83 29.81	36.34 38.30	49 51	57.73 59.77	6.24 8.26	49 51	5.81 7.74	14.38 16.32	4
9.76	18.34	42	31.83	40.35	48	1.80	10.28	52	9.69	18.28	4
11.41	20.01	40	33.82	42.34	48	3.83	12.33	50	11.81	20.39	4
13.13	21.73	40	35 77	44.28	49	5.89	14.41 16.41	48 50	13.77	22.34 24.46	4
14.71	23.30	41	37.87 39.84	46.38 48.36	49 48	7.91 9.82	18.32	50	15.87 17.81	26.39	4
16.41	25.00 28.32	41 43	41.91	50.43	48	11.75	20.26	49	19.81	28.38	4
21.65	30.22	43	43.86	52.38	48	13.80	22.31	49	22.19	30.74	4
23.55	32.13	42	45.81	54.29	52	15.82	24 31	51	23.76	32.34	4
25.34	33.94	40	47.80	56.31	49	17.85 19.90	26.35 28.39	50 51	25.44 26.92	34.01 35.52	4 4
27.23	35.82	41	49.82 51.83	58.34 0.34	48 49	21.87	30.36	51	28.35	36.93	4
29.01 32.34	37.59 40.94	42 40	53.82	2.32	50	23.83	32.32	51	29.77	38.37	4

SEGNALI DATI da Vienna da Milano da Milano da Vienna Cronografo g Cronografo g Cronografo g Cronografo g											
da	Vienna		da	Milano		da	Milano		d	a Vienna	
Cronog		enze	Crono		ezue	Cronog	rafo	ezuse	Crono		Differenze
Vienna	Milano	Differenze	Vienna	Milano	Differenze	Vienna	Milano	Differenze	Vienna	Milano	Diffe
				18	375 MAG	agro 5					
h m 15. 24	h m 14.55	m 28	h m 15.25	h m 14.57	28	h m 15. 29	h m	m	h m 15.31	15. 2 m	28
15. 24 1.97 3.76 5.68 7.78 9.78 11.60 13.67 15.55 17.66 19.72 21.74 24.16 25.56	\$ 8.28 10.08 12.00 14.07 16.13 17.92 20 00 21.89 24.00 26.04 28.04 30.47 31.90	53.69 68 68 71 65 68 67 66 66 68 70 69 66	\$ 56.12 58.08 0.15 2.08 4.15 6.06 8.09 10.17 12.14 14.11 16.15 18.12 20.20	2.38 4.34 6.40 8.34 10.41 12.32 14.33 16.44 18.40 20.38 22.42 24.36 26.44	5 53.74 74 75 74 74 76 73 74 73 76 76	\$ 26.12 28.06 30.04 32.03 34.10 36.07 38.12 40.07 42.06 44.08 46.10 48.13 50.11	15. 0 \$2.35 34.31 36.28 38.29 40.36 42.33 44.39 46.33 48.32 50.32 50.440 56.43	28 53.77 75 76 74 74 74 74 76 77 77 78 79 70 71 71 72	10.51 1.79 3.52 5.50 7.29 8.90 10.33 11.70 13.17 14.60 16.00 17.44 18.85 20.24	8.11 9.87 11.84 15.24 16.66 18.01 19.52 20.93 22.33 23.78 25.18 26.56	53.68 66 65 66 67 67 67 67 67 68
27.13 28.74 30.43	33.45 35.08 36.78	68 66 65	22.10 24.13 26.13	28.36 30.37 32.40	74 76 73 875 MAG	52.14 54.09 56.10	58.41 0,35 2.36	73 74 74 74	21.52 22.78 24.00	27.86 29.11 30.32	68
h m 15. 28	14.59 h	28 m	h m 15.29	h m 15. 1	28	h m 15. 32	h m 15. 4	28	15.34 m	15. 5 m	28
\$ 14.02 15.99 17.82 19.73 21.78 23.77 25.83 27.81 29.85 31.76 33.79 35.83 87.77 39.86 41.78 43.81	\$ 17.91 19.84 21.70 23.60 25.66 27.64 29.70 31.65 33.70 35.64 37.66 39.70 41.62 43.70 45.64 47.67	56.11 15 12 13 13 14 15 15 12 13 13 14 14	58.61 0.60 2.64 4.62 6.60 8.64 10.56 12.52 14.59 16.58 18.49 20.49 22.51 24.54 26.60 28.64	\$ 2.42 4.38 6.44 8.40 10.39 12.41 14.35 16.30 18.38 20.37 22.29 24.28 26.30 28.34 30.39 32.41	56.19 22 20 22 21 23 21 22 21 22 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21	\$ 58.53 0.58 2.65 4.55 6.56 8.53 10.58 12.59 14.60 16.61 18.53 20.55 24.62 26.65 28.61 30.54	\$ 2,30 4,38 6,42 8,35 10,36 12,35 14,40 16,36 18,43 20,40 22,33 24,34 28,43 30,43 32,37 34,32	56.23 20 20 20 20 18 18 23 17 21 20 21 19 22 24 22	33.72	37.57	
h m	h		h m	18 h m	75 MAG	GIO 7.	h m	m	To an	h m	
15. 16 \$ 51.53 53.23 54.96 56.76 58.64 0.32 2.09 3.71 5.47 7.27 9.15 10.88 12.50 14.38 16.25 18.05	h m 14.47 s 53.46 55.17 56.88 58.69 0.55 2.23 401 5.63 7.37 9.18 11.08 12.78 14.42 16.29 18.18 19.98	28 s 58.07 06 08 07 09 09 08 10 09 07 10 08 09 07 07 07	15. 18 30.53 32.56 34.51 36.51 38.49 40.51 42.57 44.58 46.51 52.59 54.50 56.55 58.55 0.49	14. 49" 32.37 34.39 36.38 38.34 40.31 42.35 44.39 46.41 48.35 50.32 52.34 54.42 56.34 58.37 0.37 2.35	28 \$ 58.16 17 13 17 18 16 18 17 16 16 17 17 16 18 18 18 18	15. 21 30.56 32.60 34.58 36.54 38.51 40.56 42.63 44.61 46.65 48.47 50.59 52.59 54.59 56.52 58.66 0.58	14. 52 \$2.40 34.42 36.40 38.36 40.33 42.38 44.47 46.45 48.46 50.31 52.42 54.40 56.40 58.36 0.51 2.41	28 58.16 18 18 18 18 16 16 17 19 16 17 19	15. 22 41.30 42.80 44.38 45.92 47.36 48.95 50.59 52.20 53.80 55.42 57.03 58.69 0.31 1.90 3.48 5.17	14. 53 \$ 43.22 44.72 46.29 47.84 49.28 50.88 52.51 54.11 55.72 57.31 58.92 0.61 2.23 3.82 5.38 7.09	28 08 08 08 08 08 08 08 08 08 08 08 08 08

da	Vienna		da	Milano		da	Milano		da	Vienna			
Crono d		Differenze	Crono		Differenza	Cronos		Differenze	Crono		Differenze		
Vienna	Milano	Differ	Vienna	Milano	Diffe	Vienna	Milano	Differ	Vienna	Milano	Diffe		
				1	875 MA	ggio 8.							
h m 15. 2	h m 14. 33	m 29	h m 15. 4	h m 14.35	29	15. 7	14.38 m	29	15. 8 m	14. 33	29		
\$ 29.96 31.82 33.62 35.19 36.71 38.20 39.72 41.29 42.95 44.37 46.23 48.18 49.69 51.32 52.99 54.44	\$28.62 30.47 32.27 33.84 35.35 36.84 38.38 39.92 41.60 43.02 44.87 46.85 48.34 50.00 51.61 53.09	1.34 35 35 36 36 36 34 37 35 36 36 36 37 35 35 35 35 35 35 35 35 35 35 35 35 35	\$ 3.78 5.83 7.84 9.81 11.81 13.80 15.80 17.91 19.86 21.88 23.87 25.82 27.80 29.76 31.78 33.67	\$ 2,30 4,39 6,39 8,35 10,36 12,36 14,36 16,45 18,40 20,41 22,41 24,35 26,34 28,30 30,34 32,20	\$ 1.48 44 45 46 45 44 44 46 47 46 47 46 46 47	\$ 3.82 5.79 7.79 9.74 11.75 13.84 15.83 17.83 19.74 21.73 23.88 25.83 27.84 29.86 31.85 33.83	\$2.37 4.31 6.35 8.28 10.34 12.38 14.37 16.35 18.27 20.28 22.44 24.37 26.39 28.40 30.37 32.37	\$ 1.45 48 44 46 41 46 46 47 45 44 46 45 46 48 46	\$21.89 23.76 25.56 27.37 28.95 30.31 31.70 33.09 34.43 35.92 37.21 38.93 39.97 41.17 42.61 43.91	\$ 20.53 22.39 24.18 26.01 27.57 28.93 30.33 31.73 33.06 34.57 35.84 37.25 38.60 39.79 41.24 42.56	1,31 33 33 33 33 33 33 33 33 33 33 33 33 3		
04.44	95.09	00	33.67				92.31	40	40.31	42,00	1 06		
1875 Maggio 9. 15. 44 15. 15 29 15. 45 15. 16 29 15. 53 15. 24 29 15. 54 15. 25 2													
\$ 11.93 14.04 16.08 18.15 19.90 21.75 23.70 25.67 27.60 29.61 31.61 33.41 35.10 36.73 38.44 39.91	5.53 7.60 9.67 11.75 13.53 15.36 17.32 19.27 21.20 23.21 25.20 27.04 28.70 30.32 32.06 33.52	\$ 6.40 444 41 40 37 39 38 40 40 40 41 37 40 41 38 39	\$6.84 38.91 40.88 42.78 44.73 46.68 48.77 50.63 52.61 55.53 6.69 8.65 10.78 12.75 14.76 16.78	\$ 30.36 32.40 34.38 36.30 38.22 40.18 42.26 44.14 46.12 48.13 0.37 2.14 4.28 6.25 8.26 10.28	6.48 51 50 48 51 50 51 49 49 40* 32* 51 50 50 50	\$.79 10.75 12.73 14.79 16.72 18.83 20.82 22.86 24.87 26.81 28.75 30.81 32.92 34.88 36.84 38.89	\$ 2.25 4.25 6.21 8.26 10.21 12.31 14.30 16.35 18.35 20.31 22.25 24.27 26.39 28.37 30.34 32.37	6.54 50 52 53 51 52 52 52 51 52 50 54 53 51 50	\$ 21 66 23.37 24.97 26.51 28.08 29.77 31.52 33.47 35.06 36.62 38.30 39.92 41.55 43.20 44.73 46.30	\$ 15.23 16.96 18.55 20.08 21.66 23.37 25.11 27.05 28.63 30.19 31.86 33.50 35.12 36.78 88.31 39.86	6.4 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4:		
h m	h m	m	h m	h m	875 MA	GGIO 11.	h m	m	h m	h m	m		
15. 53	15. 24	29	15.55	15.26	29	15.57	15.28	29	16. 1	15.31	29		
32.12 34.05 36.07 38.14 40.14 42.06 44.05 46.05 48.02 49.96 51.84 53.84 55.71 57.60 59.38 1.23	17.84 19.78 21.77 23.84 25.84 27.77 29.73 31.78 33.72 35.71 37.57 39.55 41.44 43.31 45.09 46.95	14.28 29 30 30 30 29 32 27 30 25 27 29 27 29 29 29	16.79 18.76 20.79 22.76 24.79 26.85 28.82 30.81 32.75 34.79 36.77 38.80 40.73 42.75 44.80 46.75	2.40 4.39 6.37 8.36 10.38 12.44 14.43 16.41 18.33 20.41 22.40 24.41 26.34 28.35 30.40 32.34	14.39 37 42 40 41 41 41 39 40 42 38 37 39 40 40 41	46.87 48.84 50.80 52.79 54.85 56.82 58.84 0.80 2.87 4.84 6.83 8.75 10.80 12.83 14.84 16,73	32.43 34.45 36.39 38.37 40.41 42.38 44.41 46.40 48.45 50.42 52.42 54.34 56.38 58.41 0.41 2.30	14.44 39 41 42 44 43 40 42 41 41 42 42 43	12.09 14.10 15.98 17.92 19.62 21.39 23.34 25.09 26.94 30.96 34.98 40.90 42.96 44.98 46.94 49.23	57.75 59.75 1.65 3 60 5.31 7.07 9.03 10.76 12.62 16.65 20.65 26.61 28.63 30.64 32.62 34.93	14.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		

				SEG	NAL	IDA	1 T				
da	a Vienna		d	a Milano		da	Milano			a Vienna	
Crono		Differenze	Crono		Differenze	Crond	ografo i	Differenze		ografo li	Differenze
Vienna	Milano	Diffe	Vienna	Milano	Diffe	Vienna	Milano	Diffe	Vienna	Milano	Diff
,				18	75 MAG	GIO 14.					
16. 15	15.46 m	28 ^m	16. 5	15.36 ^m	28	16. 7	h m 15.38	28	16. 8 p	h m 15.39	28
\$ 46.05 48.27 50.63 53.28 55.90 58.66 1.06 3.49 5.96 8.56 23.25 25.34 29.08 31.37	52.21 54.42 56.84 59.43 2.04 4.82 7.21 9.62 12.10 14.72 29.39 31.43 35.22 37.52	\$53.84 855 79 85 86 84 85 87 86 84 86 91 86 85 —	\$26.28 28.28 30.21 32.20 34.24 36.28 38.30 40.25 42.30 44.24 46.20 48.21 50.16 52.18 54.26 56.20	32.33 34.33 36.26 38.24 40.30 42.34 44.34 46.27 48.35 50.29 52.25 54.26 56.21 58.23 0.30 2.23	58.95 95 95 96 94 94 96 98 95 95 95 95 95 96 97	\$26.27 28.22 30.23 32.24 34.20 36.25 38.32 40.37 42.33 44.23 46.15 48.14 50.28 52.25 54.22 56.32	32.34 34.26 36.29 38.30 40.28 42.30 44.36 46.42 48.38 50.29 52.20 54.17 56.32 58.29 0.30 2.38	\$ 53.93 96 94 94 92 95 96 95 95 94 95 97 96 96 92 94	\$45.37 47.70 49.90 52.14 54.46 56.95 59.05 1.10 3.17 5 49 7.65 9.88 12.08 14.08 16.06 18.24	\$ 51.60 53.91 56.13 58.37 0.67 3.19 5.26 7.29 9.43 11.72 13.89 16.09 18.28 20.30 22.25 24.44	\$ 53.777 79 777 79 76 79 81 74 77 76 79 80 78 81 80
			1875 M			agio 15.					
15.55 ^m	15. 26 m	28 1	15. 56 h	15. 27	28	15.58 m	15. 30 ^m	28	16. 0 m	h m 15.31	28
\$ 2.18 4 48 6.78 9.07 11.31 13.47 15.54 17.55 19.67 21.93 24.05 26.61 29.02 31.69 34.33	\$ 8.31 10.61 12.89 15.21 17.44 19.60 21.68 23.67 25.81 28.03 30.18 32.73 35.16 37.81 40.47	53.87 87 89 86 87 87 86 88 88 86 89 87 88 86 88 86	\$26.32 28.30 30.40 32.43 34.31 36.38 38.22 40.22 42.26 44.30 46.22 48.21 50.26 52.31 54.25 56.32	\$2.40 34.39 36.46 38.54 40.40 42.47 44.30 46.30 48.34 50.39 52.35 54.32 56.36 58.40 0.36 2.41	53.92 91 94 89 91 91 92 92 92 92 91 87 89 90	56.25 58.35 0.81 2.20 4.15 6.09 8.11 10.18 12.12 14.21 16.15 18.19 20.26 22.32 24.29 26.27	2.34 4.40 6.36 8.29 10.26 12.21 14.19 16.27 18.19 20.31 22.26 24.27 26.36 28.40 30.38 32.35	91	38.95	45.06	89
					.875 MA	ggio 16.					
h m 15. 51 s 22.07 23.79 27.44 29.21 30.96 32.73 34.49 36.83 38.95 40.98 42.97 44.92 46.97 48.91 50.98 52.97	15. 22 \$ 9.99 11.72 15.37 17.15 18.86 20.65 22.39 24.75 26.88 28.89 30.90 32.84 34.88 36.84 38.88 40.88	29 12.08 07 07 06 10 08 10 08 07 09 07 10 09	15.52 \$44.50 46.41 48.59 50.50 52.48 54.42 56.40 58.45 0.33 2.40 4.36 6.44 8.37 8.93 10.33 12.36	15. 28 32.30 34 21 36.40 38 29 40 29 42.22 44.19 46.24 48.12 50 20 52,16 54,25 56,16 56,74 58,13 0.14	29 12.20 20 19 21 19 20 21 21 21 21 21 20 20 19 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20	15. 55 14.60 16.59 18.47 20.53 22.57 24.60 26.50 28.52 30.52 32.41 34.41 36.47 38.47 40.49 42.45 44.41	15. 26 2.38 4.37 6.24 8.31 10.36 12.38 14.30 16.29 18.31 20.17 22.19 24.22 26.25 28.24 30.23 32.17	29 \$ 12,22 22 23 22 21 22 20 23 21 24 22 25 22 25 22	15. 56 22.20 24.37 26.42 28.47 30.36 32.36 34.40 36.39 38.54 40.93 42.99 44.99 47.04 49.02 50.98 52.88	15. 27 10.06 12.21 14.28 16.33 18.20 20.22 22.26 24.25 26.40 28.79 30.85 32.86 34.90 36.88 38.85 40.72	29 12.14 16 14 14 16 14 14 14 14 14 14 14 13 14 13 16

II.
Segnali scambiati fra Monaco e Milano.

		38		SE	GNA	LIDA	ATI		-		
da	Monaco		da	a Milano		da	Milano		d	a Monaco	
Cronog di		Differenze	Crono d		Differenze	Cronog di		Differenze	Cronog di		Differenze
Monaco	Milano	Differ	Monaco	Milano	Differ	Monaco	Milano	Diffe	Monaco	Milano	Diff
				18	875 MAG	GIO 4.					
h m 14. 31	h m 14.21	9	h m 14.40	14.31	9	h m 14.47	14.37	9	h m 14.51	14.41 m	9
9.42	20.66	48.76	49.19	0.34	48.85	21.20	32.23	48.97	23.28	34.40	48.
11.20 13.33	22.38 24.53	82 80	51.17 53.11	2.28 4.28	89 83	23.23 25.18	34.24 56.19	99	25.29 27.40	36.41 38.53	
15.34 17.17	26.56	78	55.09 57.12	6.21 8.25	88 87	27.29 29.29	38.33 40.31	96 98	29.25 31.37	40.41 42.49	23
19.14	28.36 30.33	81 81	59.07	10.19	88	31 26	42.29	97	33.34	44.48	
21.09 22.96	32 25 34.13	84 83	1 09 3.10	12.22 14.23	87 87	33.27 35.29	44.31 46.33	96 96	35.37 39.37	46.48 50 51	
24.40	35.61	79	5.10	16.25	85	37.26	48.31	95	41.59	52.74	
25.90 27.43	37.10 38.61	80 82	7.10 9.06	18.25 20.20	85 86	39.31 41.23	50.37 52.29	94 94	43.77 46.10	54.93 57.30	
28.80	40.01	79	11.09	22.22	87	43.30 45.30	54.37	93 99	48.60 50.74	59.76 1.92	
30.43 31.93	41.64 43.14	79 79	13.07 15.08	24.21 26.22	86 86	47 27	56.31 58.32	8.95	52.80	3 94	
33.85 35.52	45.06 46.74	79 78	17.17 19.18	28.29 30,32	88 86	49.37 51.30	0.37 2.35	9.00 8.95	55.15 57.29	6.30 8.42	
37.01	48.22	79	21.17	32.32	85	53.33	4.38	95	59.30	10.45	
38.54 40.09	49.76 51.30	78 79	23.14 25.11	34.30 36.27	84 84	55.29 57.29	6.33 8.33	96 96	_	_	
41.81	53.02	79	27.12	38.25	87		_	-			
43.52 45.50	54.74 56.71	78 79	= -	_	' =	= =		=	=	=	
				1	875 MA	ggio 5.					
h m 14.32	14.23	9	h m 14.44	14.34	9	h m 14.48	h m 14.39	9	14.51	14. 41 m	9
59.37	8.12	51.25	21.60	30.37	51.23	51.69	0 43	51.26	4.21	13.02	51.1
1.44 3.40	10.21 12.14	23 26	23.62 25.62	32.37 34.39	25 23	53.60 55.69	2.33 4.42	27 27	6.30 8.33	15.12 17.12	7
5.38	14.10	28	27.57	36.33	24	57.60	6.33	27	10.40 12.87	19.22	
7.30 9.29	16.03 18.01	27 28	29.63 31.69	38.40 40.46	23 23	59.61 1.59	8.36 10.31	25 28	15.10	21.65 23.89	
11.27 13.27	20.02 22.02	25 25	33.71 35.66	42.49 44.42	22 24	3.60 5.60	12 37 14.37	23 23	17.80 20.34	26 59 29.12	- 2
15.25	24.01	24	37.60	46.35	25	7.63	16.38	25	22.65	31.44	
17.28 19.27	26.00 28.01	28 26	39.54 41.69	48.29 50.43	25 26	9.63 11.63	18.39 20.36	24 27	24.61 26.50	33.42 35.30	
21.40	30.15	25	43.64	52.40	24	13.67	22.44	23	28.53	.37.31	2
23.37 25,36	32.11 34.07	26 29	45.61 47.63	54.40 56.39	21 24	15.67 17.61	24.41 26.37	26 24	30.48 32.43	39 26 41.22	
27.33	36.07	26	49.63	58.38	25	19.62	28.38	24	34.14	42.90	2
29.20 31.39	37 98 40.10	22 29	51.60 53.63	0.37 2.41	23 22	21.69 23.69	30.45 32.44	24 25	35.61 37.11	44.40 45.92	2
33.30	42.05	25	55.70	4.47	23 22	25.67	34.42 36.41	25 22	38.63 40.00	47.44	1
35 28 37.29	44.02 46.03	26 26	57.63 59.65	6.41 8.41	22 24	27.63 29.67	38.39	28	41.50	48.82 50.29	1 2
39.20 41.24	47.96 50.00	24 24	=	_		_	=	_	43 06 44.51	51.86 53.31	2
43.24	52.01	23		-		A 2 5 - A		- 10-	46.03	54.83	2

-	TOTAL ON POSITION AND PARTY.				SEG	NAL	I D A	TI				
-	da	Monaco		d	a Milano	-	d	a Milano			la Monac	0
	Crono		1ze		ografo li	nze		ografo li	nze	Cron	ografo di	Differenze
The state of the s	Monaco	Milano	Differenze	Monaco	Milano	Differenze	Monaco	Milano	Differenze	Monaco	Milano	Differ
	-						L.A. T. S.					
					1	875 MA	GG10 6.					
	h m	h m	m	h m	h m	m	h m	h m	m	h m	h m 14.33	9
	14. 35 13.89 15.88 18.19 20.28 22.40 24.43 26.62 28.66 30.59 32.20 33.70 35.13 36.50 38.04 39.77 41.39 43.14 44.80 46.54 48.59	14. 25 20.06 22.06 22.06 24.37 26.47 28.60 30.62 32.80 34.84 36.76 38.40 39.89 41.32 42.70 44.24 45.95 47.58 49.32 50.99 52.73 54.76	9 53.83 82 81 80 81 82 83 80 81 81 80 82 81 81 82 81 81	14.36 54.30 56.22 58.29 0.19 2.20 4.21 6.25 8.28 10.23 12.17 14.21 16.20 18.21 20.20 22.18 24.19 26.20 28.30 30.27 32.25	14. 27 . 4.46 6.38 8.38 10.37 12.41 14.43 16.40 18.34 20.39 22.37 24.38 26.36 28.34 30.33 32.35 34.44 36.43 38.40 —	9 53.83 81 82 84 85 83 82 83 83 84 86 86 86 86 84 85	14. 40 \$ 54.26 56.15 58.20 0.20 2.18 4.17 6.20 8.14 10.27 12.20 14.27 16.20 18.23 20.27 22.23 24.24 26.28 28.29 30.19 32.20 —	14. 31 \$\frac{s}{0.42}\$ 2.30 4.38 6.36 8.32 16.30 12.34 14.30 16.41 18.39 20.42 22.34 24.38 26.42 28.39 30.38 32.42 34.44 36.34 38.38	9 53.84 85 82 84 86 87 86 84 85 85 85 84 86 85 85 82 —	14. 42 \$ 59.32 1.67 3.50 5.30 7.16 9.00 11.03 13.13 15.00 16.92 18.59 20.11 21.72 23.28 24.90 26.60 28.19 29.79 31.46 33.20 35.03 37.00	5.50 7.82 9.67 11.46 13.31 15.15 17.21 19.29 21.19 23.08 24.76 26.29 27.90 29.42 31.06 32.78 34.35 35.94 37.61 39.37 41.20 43.19	53.82 855 84 85 85 82 84 81 84 83 82 82 86 84 85 85 86 84 85 86 84 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86
					187	5 Magg	10 9. *					
	14. 46 54.71 56.36 58.07 59.79 1.38 2.90 4.34 5.81 7.20 8.50 10.00 11.45 12.89 14.44 15.73 17.17 18.56 19.84 21.30	14. 37 12.82 14.43 16.14 17.88 19.45 20.98 22.43 23.91 25.28 26.60 28.11 29.51 30.98 32.52 33.84 35.25 36.65 37.93 39.40	9 9 41.89 93 93 91 92 91 90 92 90 89 94 91 92 89 92 91 91	15. 7 46.26 50.36 52.32 54.30 56.30 58.30 0.40 2.30 4.35 6.37 8.41 10.48 12.43 14.34 16.36 18.30 20.28	14. 58 4.23 8.35 10.31 12.37 14.31 16.28 18.41 20.35 22.37 24.37 26.41 28.49 30.35 32.35 34.39 36.32 38.28 — — —	9 8 42.03 01 2.01 1.93 1.99 2.02 1.99 1.95 1.98 2.00 2.00 1.99 2.08 1.99 2.08 1.99 2.08 1.99 2.08 1.99 2.08 1.99 2.08 1.99 2.08 1.99 2.08 1.99 2.08 1.99 2.08 1.99 2.08 2.09 2	$ \begin{array}{c} h \\ m \\ 15. \\ 8 \end{array} $ $ \begin{array}{c} s \\ 42.27 \\ 44.30 \\ 46.30 \\ 48.30 \\ 50.33 \\ 52.28 \\ 54.30 \\ 56.31 \\ 58.33 \\ 0.29 \\ 2.30 \\ 4.33 \\ 6.27 \\ 8.27 \\ 10.23 \\ 12.24 \\ 14.29 \\ 16.29 \\ 18.33 \\ 20.17 \\ 22.24 $	14. 59 0.30 2.33 4.30 6.31 8.35 10.29 12.34 14.32 16.35 18.31 20.30 22.35 24.27 26.26 28.30 30.23 32.29 34.29 36.35 38.20 40.26	$egin{array}{c} m \\ 9 \\ 41.97 \\ 1.97 \\ 2.00 \\ 1.99 \\ 1.98 \\ 99 \\ 98 \\ 1.98 \\ 2.00 \\ 1.98 \\ 2.00 \\ 2.01 \\ 1.93 \\ 2.01 \\ 2.00 \\ 2.00 \\ 1.98 \\ $	15.11 35.25 38.90 42.27 43.62 44.98 46.49 48.30 49.40 50.99 52,48 53.97 55.49 56.90 58.45 0.00 1.58 3.30 4.87	15. 1 53.20 56.93 0.26 1.67 3.00 4.52 6.01 7.43 8.99 10.45 12.00 13.51 14.94 16.49 18.07 19.62 21.36 22.94	9 9 42.05 1.97 2.01 1.95 1.98 1.97 1.99 1.97 2.00 2.03 1.97 1.98 1.96 1.96 1.93 1.96 1.94 1.93

^{*} Lo scambio dei segnali fu in questa sera alquanto contrastato; molte delle serie date da Milano non furono ricevute a Monaco, e viceversa; solo a forza d'insistenza riescimmo a scambiare il numero delle serie di segnali stabilito dal programma.

-					SEG	NA	LIDA	TI				
-	da	Monaco		d	a Milano		d	a Milano		da	Monaco	
-	Crono d		Differenze		ografo di	enze		ografo li	enze	Crono		ezue
-	Monaco	Milano	Diffe	Monaco	Milano	Differenze	Monaco	Milano	Differenze	Monaco	Milano	Differenze
					1	875 MA	GGIO 11.					
Total Statement of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which	h m	h m	m	h m	h m	m	h m	h m	m	h m	h m	m
-	15. 7 49.48	14. 58 3.10	9 46.38	15. 9 16.87	14.59 30.45	9 46,42	15. 12 s 46.86	15. 3 0.36	9 8 46.50	15. 14 29.50	15. 4	9
DOWNERS ADMINISTRA	51.39 53.37	4.98	41 37	18.80 20.78	32.37 34.36	43 42	48.83 50.80	2.41 4.39	42 41	31.20 33.15	43.10 44.81 46.78	46.40 39 37
	55.29 57.10	8.93 10.70	36 40	22.73 24.77	36.32 38.36	41 41	52.80 54.73	6.33 8.29	47 44	34.77 36.40	48.40 50.01	37 39
Description supplies	58.79 0.43 1.80	12.44 14.06 15.42	35 37 38	26.77 28.81 30.77	40.34 42.41	43 40 44	56.83 58.80	10.40 12.41 14.40	43 39 44	37.78 38.91	51.35 52.51	43 40
State and State	4.53 6.03	18.20 19.66	33	32.76 34.76	44.33 46.38 48.35	38 41	$ \begin{array}{c} 0.84 \\ 2.70 \\ 4.70 \end{array} $	16.31 18.32	39 38	40.32 41.65 42.99	53.96 55.27 56.61	36 38 38
CA Administra	7.60 8.99	21.22 22.64	38 35	36.75 38.80	50.32 52.38	43 42	6.79 8.82	20.38 22.40	41 42	44.38 45.80	58.00 59.39	38 41
Contraction of the last	10.70 12.40 13.95	24.33 26.01 27.58	37 39 37	40.80 42.67 44.77	54.38 56.25 58.33	42 42	$10.71 \\ 12.70 \\ 14.70$	24.30 26.31 28.30	41 39	47.19 48.30	0.77 1.96	42 34
And Verbound	15.40 16.80	29.00 30.44	40 36	46.83 48.72	0.40 2.33	44 43 39	16.77 18.72	30.32 32 32	40 45 40	49.67 50.89 52.29	3.28 4.50 5.90	39 39 39
The Dark Apple	18.60 20.30	32.35 33.95	35 35	50.70 52.73	4.27 6.33	43 40	20.87 22.74	34.42 36.30	45 44	53.60 55.02	7.21 8.60	39 42
	21.99 23.94 25.77	35.61 37.54 39.36	38 40 41	54.77	8.32	45	24.78	38.33	45	56.40 57.70 59.03	10.01 11.31 12.65	39 39 38
	27.53	41.16	37		_	==				0.38 1.79	13.98 15.38	40
					18	75 MAG	agio 12.		•			
a contraction	h m	h m	m	h m	h m		h m h m m			h m	h m	m
Dissolution	15.46	15. 36	9	15.47	15.38	9	15.50	15.41	9	15. 52	15.42	9
Manager Co.	19.50 21.30 23.09	33 57 35.38 37.10	45.93 92 99	46.40 48.27 50.29	0.43 2.26 4.26	45.97 6.01 03	46.39 48.40 50.39	0.33 2.34 4.34	46.06 06 05	29.42 31.26 33.15	43.48 45.29 47.17	45.94 97 98
COMMERCIAL	25.00 27.06	39.08 41.12	92 94	52.38 54.33	6.38 8.30	00 03	52.39 54.40	6.31 8.35	08 05	35.15 36.97	49.18 50.98	97 99
ACTION CONTRACTOR	29.06 30.98	43.10 45.04	96 94	56,40 58.37	10.37 12.33	03	56.30 58.40	10.29 12.39	01	38.80	52.83 54.64	97 97
Avenue and a second	32.99 34.57 36.09	47.04 48.66 50.16	95 91 93	0.40 2.29 4.31	14.38 16.30 18.31	6.02 5.99 6.00	0.38 2.40 4.44	14.36 16.35 18.39	02 05 05	42.35 43.70 45.13	56.40 57.74 59.20	95 96 93
Sea switcher	37.60 38.92	51.61 53.00	99	6.35 8.30	20.35	00 01	6.43 8.50	20.39 22.44	04 06	46.50 47.92	0.56 1.96	94 96
THE SECONDARY AND	40.39 41.94	54.47 55.99	92 95	10.30 12.40	24.30 26.40	00	10.41 12.40	24.40 26.39	01	49.50 51.10	3.55 5.15	95 95
AND MANAGEMENT	43.39	57.44 58 89	95 95	14.39 16.38	28.39 30.36	00 02	14.40	28.37 30.34 32.34	03 03 05	52.69 54.34 55.83	6.72 8.37 9.87	97 97 96
-	46.27 47.75 49.02	0.33 1.79 3.10	94 96 92	18 40 20.37 22.34	32.38 34.35 36.34	02 02 00	18.39 20 43 22.39	34,41 36.35	02 04	57.43 59.20	11.45 13.25	98 95
W. The Manhatter	50.34 51.86	4.41 5.88	93 98	24.26	38.24	02	24.39	38.37	02	1.00 2.90	15.06 16.97	94 93
NOO DECIDED	53.32	7.38	94	81 - 18	= 1		= N		28 — 2 —	4.71 6.70 8.60	18.74 20.73 22.64	97 97 96
Disperson		isia in the								0.00	22.01	

				SEG	NAI	LIDA	ТІ				
da	Monaco		d	a Milano		d	la Milano			a Monaco	
Cronog		ezue		ografo di	Differenze		ografo di	Differenze		ografo di	Differenze
Monaco	Milano	Differenze	Monaco	Milano	Differ	Monaco	Milano	Diffe	Monaco	Milano	Diffe
h m	h m	m	h m	h m	m	ggio 13.	h m	m	h m 15. 23	h m 15.13	m 1 9
15. 16 \$ 29.29 31.40 33.36 35.20 37.04 38.91 40.67 42.38 44.18 46.20 48.44 50.60 52.80 55.12 57.30 59.48 1.68 3.90 6.26 8.55 10.90 13.35 —	15. 6 40.56 42.69 44.66 46.51 48.33 50.21 51.97 53.66 55.45 57.52 59.74 1.90 4.08 6.40 8.58 10.74 12.94 15.20 17.54 19.85 22.23 24.62	9 48.73 71 70 69 71 70 72 73 68 70 70 72 72 72 72 74 74 70 67 73 —————————————————————————————————	15. 18 19.21 21.15 23.20 25.16 27.10 29.05 31.07 33.07 35.12 37.15 39.12 41.10 49.18 51.09 53.10 55.07 57.10	15. 8 30.48 32.42 34.47 36.43 38.35 40.32 42.33 44.31 46.38 48.41 50.40 52.37 54.38 56.34 2.35 4.35 6.34 8.33	9 \$.73 73 73 73 74 76 74 74 72 73 75 76 77 75 76 77 75 76 77 77 78 79 79 70 70 70 70 70 70 70 70 70 70	15. 21 \$ 19.19 23.11 25.13 27.10 29.11 31.12 33.16 35.14 37.18 39.24 41.16 43.11 45.09 47.13 49.12 51.09 53.15 55.10 57.09	15. 11 \$\sigma 30.45 34.39 36.40 38.38 40.38 42.39 44.39 46.37 48.42 50.46 52.41 54.36 56.32 58.38 0.35 2.35 4.40 6.35 8.33	9 8 48 74 72 73 72 73 73 76 76 76 78 75 77 75 77 74 75 76 — — —	9.42 11.49 13.70 15.72 17.47 19.32 21.24 23.16 25.10 27.10 29.09 31.08 33.09 35.18 37.27 39.30 41.24 43.16 45.31 47.39 49.40 51.50 53.69 55.91	20 73 22.77 24.99 27.02 28.76 30.62 32.53 34.44 36.38 38.38 40.36 42.36 44.34 46.44 48.54 50.57 52.51 54.43 56.60 58.65 0.68 2.76 4.97 7.23	\$ 48.69 72 71 70 71 70 71 72 72 72 73 73 73 73 73 73 71 74 72 78
				18	1875 Maggio 14.						
\$\frac{h}{49.40}\$ \$\frac{49.40}{51.37}\$ \$\frac{54.93}{56.69}\$ \$58.47\$ \$0.17\$ \$1.90\$ \$3.69\$ \$5.30\$ \$6.95\$ \$8.51\$ \$9.82\$ \$11.30\$ \$12.50\$ \$13.93\$ \$15.38\$ \$16.72\$ \$18.16\$ \$19.70\$ \$21.10\$ \$22.67\$ \$\frac{-}{-}\$ \$\frac{-}{-}\$ \$\frac{-}{-}\$ \$\frac{-}{-}\$	15. 0 58.25 0.19 3.78 5.52 7.28 9.00 10.76 12.50 14.13 15.79 17.37 18.69 20.14 21.37 22.78 24.21 25.59 27.02 28.51 29.92 31.51	\$ 51.15 18 15 17 19 17 16 13 16 13 16 17 18 16 17 18 16 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 18 16 18 16 18 16 18 16 18 16 18 18	15. 12 53 56 55.61 57.60 59.59 1.60 3.67 5.69 7.59 9.57 11.59 13.50 17.48 19.53 21.54 23.60 25.59 27.49 29.40	15. 3 \$ 2.37 4.42 6.43 8.41 10.43 12.48 14.48 16.42 18.40 20.41 22.33 24.34 26.30 28.38 30.39 32.40 34.40 36.31 38.24 —	9 51.19 17 18 17 19 21 17 17 18 15 16 18 15 16 19	15. 15 s 51.59 53.56 55.50 57.64 59 64 1.61 3.50 5.51 7.40 9.53 11.58 17.56 19.53 21.50 23.48 27.49 29.56	0.40 2.36 4.29 6.44 8.45 10.43 12.28 14.33 16.23 18.35 20.37 22.36 24.38 26.37 28.32 30.31 32.29 34.30 36.29 38.38	51.19 20 21 20 19 18 22 18 17 18 21 20 19 18 21 20 19 18	15. 17 49.40 51.28 53.20 55.09 57.11 58.93 0.81 2.30 3.60 4.89 6.18 7.30 8.41 9.66 10.80 12.19 13.40 14.81 16.20 17.62 18.92 20.46 21.85 23.33	15. 7 58 25 0.09 2 01 3.92 5.94 7.76 9.64 11.14 12.42 13.71 14.98 16.12 17.25 18.47 19.64 20.99 22.23 23.66 25.04 26.45 27.76 29.30 30.67 32.15	9 51.15 19 19 17 17 17 16 18 18 20 18 16 19 16 20 17 15 16 17 16 18 18 19 10 10 10 10 10 10 10 10 10 10

SEGNALI DATI da Monaco da Milano da Milano											
				Milano		da	Milano		da	Monaco	
Cronogr	rafo	Differenze	Cronog		Differenze	Cronog di	grafo	Differenze	Cronog	grafo	Differenze
Monaco	Milano	Diff	Monaco	Milano	Diff	Monaco	Milano	Diffe	Monaco	Milano	Diff
			1875 N			≆G10 15.					
14. 57 \$ 49.50 51.10 52.62 54.16 55.59 57.04 58.56 59.99 1 39 2.93 4.38 5.85 7.30 8.70 10.20 11.72 13.26 14.70 16 14 17.61 19.11 20.76	14. 47 s 56. 68 58.26 59.79 1.31 2.79 4.21 5.70 7.14 8.53 10.09 11.56 13.02 14.46 15.88 17.39 18.92 20.44 21.89 23.32 24.79 26.27 27.96	\$\\\^{\pi}_{\pi}\\^{\pi}_{	14. 59 14. 59 53.21 55.28 57.27 59.27 1.18 3.24 5.19 7.09 9.11 11.23 15.16 17.10 19.14 23.26 25.16 27.25 31.30	14. 50 s 0.36 2.39 4.42 6.42 8.35 10.38 12.32 14.28 16.28 18.33 22.30 24.22 26.25 30.42 32.30 34.40 38.46 — — — — —	\$52.85 89 85 85 85 86 87 81 83 90 86 88 89 84 86 85 84 86 87	15. 2 s 53.30 55.05 57.22 59.20 1.27 3.19 9.30 11.11 13.07 15.13 17.23 19.23 21.19 25.20 27.22 29.22 31.13	14. 53 0.41 2.19 4.38 6.32 8.40 10.32 16.39 18.25 20.19 22.26 24.37 26.37 28.35 30.33 32.28 34.34 36.35 38.24	99 \$ \$52.89 86 84 88 87 87 91 86 88 88 87 86 84 86 92 88 87 89	15. 4 29.45 31.57 33.66 35.50 37.27 39.17 41.19 43.09 45.01 46.79 48.31 49.93 51.57 53.10 54.80 56.25 57.80 59.30 0.95 2.72 4.41 6.09 7.90 9.73	14.54 36.60 38.69 40.73 42.62 44.40 46.29 48.30 50.21 55.15 53.95 55.44 57.07 58.71 0.25 1.96 3.40 4.95 6.44 8.11 9.87 11.56 13.23 15.07 16.88	99 52.88 88 88 88 88 88 88 88 88 88 88 88 88
				18	75 MAG	igio 16.					
15. 10 39.45 41.04 42.67 44.25 45.70 47.20 48.60 50.03 51.49 52.78 54.10 55.40 56.70 58.07 59.43 0.70 2.09 3.38 4.66 5.83 7.10	15. 0 15. 0 54.23 55.81 57.43 59.03 0.50 1.98 3.38 4.82 6.28 7.58 8.87 10.19 11.50 12.85 14.22 15.49 16.87 18.14 19.43 20.62 21.90	9 45.22 23 24 20 22 22 21 20 23 21 20 22 21 20 22 21 20 22 21 20 21 20 21 20 21 20 21 20 21 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	15. 12 s 15.59 17.60 19.60 21.53 23.57 25.45 27.59 29.63 31.55 33.58 35.61 37.61 39.60 41.57 43.54 45.60 47.53 49.51 51.55 53.67	15. 2 30.33 32.34 34.37 36.29 38.30 40.17 42.31 44.38 46.29 48.32 50.35 52.35 54.33 56.28 58.29 0.33 2.26 4.27 6.29 8.39	9 45.26 26 23 24 27 28 25 26 26 27 29 25 27 24 26 28 —	15. 15 15.63 17.62 19.48 21.43 23.39 25.49 27.50 29.59 31.50 35.58 37.60 39.52 41.49 43.47 45.43 47.54 49.42 51.58 53.58	15. 5 30.38 32.36 34.19 36.15 38.11 40.22 42.22 44.32 46.23 48.20 50.29 52.37 54.24 56.22 58.22 0.17 2.27 4.16 6.32 8.31	9 45.25 26 29 28 27 28 27 27 27 27 29 23 28 27 25 26 29 27 27 27 27 27 27 27 27 27 27 27 27 27	15. 16 39.52 41.27 42.84 44.40 45.89 47.28 42.49 49.66 50.80 52.06 53.29 54.46 55.60 56.90 58.18 59.49 0.67 2.00 3.33 4.60 5.94 7.40	15.6 54.30 56.04 57.60 59.17 0.65 2.02 3.24 4.42 5.61 6.84 8.02 9.25 10.39 11.67 12.95 14.24 15.43 16.80 18.11 19.39 20.72 22.17	99 45.22 22 22 22 22 22 22 22 22 22 22 22 22

III. Segnali scambiati fra Vienna e Padova.

	ar ese			SEG	NAL	IDA	T I			La servica	
d	a Vienna	and the second	da	a Padova	AUT A	da	Padova		da	Vienna	
Crono	ografo li	Differenze	Crono	grafo li	enze	Crono	grafo	enze	Cronos		Differenze
Vienna	Padova	Diffe	Vienna	Padova	Differenze	Vienna	Padova	Differenze	Vienna	Padova	Differ
			- C		875 MA	GGIO 6.					DESCRIPTION OF THE PARTY OF THE
13. 42 22.08 23.68 25.44 27.07 28.90 30.88 32.70 34.54 36.33 38.41 40.25 42.13 43.48 45.14 46.67 48.24	13. 48 14.17 15.78 17.53 19.16 20.98 22.96 24.80 26.64 28.40 30.48 32.33 34.20 35.58 37,22 38.78 40 31	5 5 52.09 10 09 08 08 10 10 07 07 08 07 10 08 11 07	13.47 s 20.15 22.18 24.18 26.27 28 14 30.12 32.08 34.12 36.16 38.10 40.09 42.04 44.12 46.15	13.53 12.17 14.21 16.20 18.31 20.17 22.17 24.10 26.17 28.20 30.14 32.14 34.06 36.17 38.18	15 5 8 52 02 03 02 04 03 05 02 05 04 04 05 02 05 03 —		Serie di segnali non arrivata a Vienna		13. 48 24.05 25.83 27.79 29.77 31.63 33.62 35.62 37.53 39.55 41.56 43.75 47.59 49.54 51.48 53.39	13.54 16.11 17.91 19.88 21.83 23.72 25.70 27.70 29.62 31.64 33.67 35.80 37.81 39.67 41.63 43.56 45.48	5 52.06 08 09 06 09 08 08 09 09 11 05 06 08 09 08
h m	h m	m	h m	h m	1875 Maggio 7. m h m h m		h - m	m	h m	h m	m
14. 4 41.31 42.89 44.43 45.77 47.36 48.96 50.44 51.96 53.43 54.94 56.48 57.95 59.48 1.13 2.85 4.49	14. 10 35.28 36.87 38.38 39.75 41.35 42.93 44.43 45.92 47.40 48.91 50.45 51.91 53.47 55.11 56.81	5 53.97 98 95 98 99 97 99 96 97 97 97 96 99 98	14. 5 \$48.51 50.54 52.42 54.25 56.19 58.30 0.18 2.21 4.15 6.11 8.05 10.22 12.43 14.34 16.41	14.11 \$ 42.37 44.39 46.27 48.10 50.03 52.16 54.04 56,07 58.00 59.97 1.90 4.10 6.30 8.20 10.27 12.22	5 53.86 85 85 85 84 86 86 86 86 85 88 87 86 86 88 87	14. 9 28. 43 30.31 32.38 34.27 36.09 38.28 40.27 42.32 44.23 46.18 48.19 50.25 52.26 54.18 56.05 57.94	14. 15 \$ 22. 28 24.18 26.26 28.13 29.93 32.11 34.12 36.17 38.10 40.00 42.03 44.10 46.12 48.02 49.90	5 53.85 87 88 86 84 83 85 87 82 84 85 86 84 85 86	14. 10 \$ 41.37 42.80 44.28 45.91 47.59 49.24 50.99 52.68 54.28 55.99 57.65 59.39 1.21 3.04 4.77	14. 16 35.36 36.78 38.23 39.88 41.57 43.22 44.97 46.67 48.24 49.96 51.63 53.35 55.20 57.00 58.73	5 53.99 98 95 97 98 98 98 99 96 97 98
h m 13. 52	13.58 m	5 m	h m	h m	m	AGGIO 8.	h m	m	h m	h m	m
31 96 34 09 36.11 38.05 39.93 41.80 43.64 45.60 47.67 49.75 51.74 53.81 55.82 57.87 59.28 0 58	26.54 28.68 30.69 32.63 34.54 36.38 38.24 40.20 42.26 44.30 46.32 48.38 50.40 52.43 53.87 55.16	54.58 59 58 58 61 58 60 60 59 55 58 57 58 56 59	13. 53 41.85 43.78 45.54 47.60 49.63 51.63 57.50 59.43 1.47 3.53 5.50 7.50 9.51 11.47	13. 59 36.38 38.31 40.10 42.17 44.19 46.20 48.06 49.99 52.02 53.98 56.02 58.07 0.04 2.04 4.08 6.02	5 54.53 56 57 56 57 56 57 55 56 55 55 55 54 54 57 55	13.57 559 7.55 9.57 11.60 13.52 15.49 17.56 19.65 21.81 23.65 25.55 35.66 37.57 39.46 41.40 43.39	14. 3 0.13 2.10 4.12 6.14 8.04 10.03 12.11 14.20 16.35 18.20 20.10 30.23 32.12 34.03 35.97 37.95	8	13.58 31.69 33.83 35.78 37.72 39.68 41.55 43.49 45.34 47.33 49.42 51.45 53.46 55.38 57.26 58.72 0.13	14. 4 26.32 28.43 30.40 32.35 34.31 36.19 38.11 39.96 41.93 44.02 46.06 48.07 49.98 51.87 53.31 54.74	5 54.63 60 62 63 63 64 62 62 60 61 61 60 61 59

				SEG	NAI	IDA	T I	•			
da	Vienna		da	Padova		da	Padova		da	Vienna	
Crono:		Differenze	Cronog di	rafo	Differenze	Crono	grafo i	Differenze	Cronog	rafo	Differenze
Vienna	Padova	Diffe	Vienna	Padova	Diffe	Vienna	Padova	Diffe	Vienna	Padova	Diffe
				1	875 MA	GGIO 9.					
14. 12	14.18 m	5 m	h m 14.13	$14 \stackrel{h}{19}^{m}$	5	14. 17 m	14. 23 m	5	14.18 m	14. 24 m	5
59.49 1.42	52.83 54.77	53.34 35	53.89 55.83	47.20 49.13	53.31 30	29.02 30.82	22.32 24.13	53.30 31	41.79 43.84	35.16 37.20	53.37 36
3.22 5.10	56.57 58.44	35 34	57.73 59.73	51.03 53.03	30 30	32.90 34.86	26.20 28.18	30 32	45.95 47.72	39.30 41.10	35 38
6.96 8.99	0.30 2.33	34	1 68 3.69	54 99 56.99	31 30	36.85 38.85	30.17	32	49.67 51.60	43.04 44.96	37 36
10.91 12.96 15.07	4.24 6.30 8.42	33 34 35	5.67 7.78 9.74	58.99 1.10 3.07	32 32 33	40 84 42.98 44.92	34.16 36.29 38.24	32 31 32	53.34 55.06 56.76	46.70 48.40 50.11	36 34 35
17.27	10.60	35	11.79	5.10 7.20	31 33	46.84 48.85	40 14 42.18	30	58.48	51.80 53.64	32 35
1 To	Ξ	_	15.79 17.67	9.10	31	50.87 52.83	44.20	33	2.20	55 56 57.36	36 36
	=	-	19.79 21.73 23.79	13.10 15.00 17.10	31 27 31	54.77 56.79 58.71	48 09 50.10 52.00	32 31 29	5.77 7.61 9.30	59.12 0.96 2.67	35 35 37
ļ		-	- 23.79 17.10 31 1875 Ma			AGGIO 10.			0.00 1	2.07	, 0,
14. 3	14. 9	m 5	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$			h m 14.14	h m 14. 20	5	h m 14. 15	h m 14.21	5 ^m
52.19 54.23	46.30 48.34	54.11 11	3.15 5.11	57.22 59.19	54.07 08	18.07 20.05	12.13 14.11	54.06 06	22.03 23.82	16.14 17.96	54.11 14
56.06 57.87	50.18 52.00	12 13	7.05 8.97	1.11	06 08	22.10 24.12	16.20 18.20	10 08	25.73 27.58	19.87 21.70	14 12
59.75 1.62 3.59	53.87 55.73	12 11 12	11.05 13.12 15.17	5.12 7.20 9.27	07 08 10	26.07 28.15 30.12	20.16 22.22 24.19	09 07 07	29.40 31.05 32.60	23.53 25.17 26.73	13
5.44 7.38	57.71 59.54 1.51	10 13	17.09 19.09	11.15	06	31.89 34.00	26 00 28.10	11 10	34.17 35.60	28.29 29.72	13 12 12
9.35 11.34	3.49 5.49	14 15	21.02 23.06	15.10 17.13	08 07	35.97 37.97	30.09 32.10	12 13	37.06 38.63	31.20 32.74	14 11
13.18 14.91 16.92	7.29 9.02 11.02	11 11 10	24.99 27.09 28.99	19.07 21.15 23.07	08 06 08	39.87 42.04 44.07	33.98 36.12 38.12	08 05	40.18 41.53 42.88	34.30 35.68 36.00	12 15 12
18.93	13.04 15.03	11 10	30.97	25.03	(6	45.95 47.94	40.02 42.04	07	44.33	38.45	12
					875 MAG	igio 11.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					5 8	14. 22 m	14. 28 m	5 8	14. 23 m	14. 29 m	5 8
58.98 0.97	53.10 55.07	54.12 10	23.17 25.23	17.21 19.27	54.04	7.80 9.75	1.83	54.08 03	12.06 14.16	6.16 8.23	54.10
3.04 4.96 7.01	57.13 59.06 1.12	09 10 11	27.29 29.26 31.16	21.36 23.30 25.21	07 04 05	11.88 14.02 16.08	5.93 8.09 10.10	05 07 02	15.98 18.00 19.83	10.05 12.09 13.90	07 09 07
9.05 11.01	3.17 5.10	12 09	33.15 35.05	27.21 29.10	06 05	18.22 20.11	12 27 14.16	05 05	21.96 23.80	16.07 17.90	11 10
12.94	7.04 9.17	10	36.99 39.03 41.13	31.03 33.07 35.17	04 04 04	22.07 23.91	16.11	04 03	25.73 29.95 31.91	19.83	10 07
16.99 18.98 20.95	11.10 13.10 15.08	11 12 13	43.19 45.14	37.21 39.20	02 06	26.06 28.03 50.03	20.07 22.07 24.06	01 04 03	33.91 35.99	26 00 28.00 30.10	09 09 11
22.98 24.92	17.10 19.01	12	47.22 49.20	41.27 43.22	05 02	32.07 34.11	26.10 28.14	03 03	38.05 40.03	32.10 34.10	05 07
26.97 28.99	21.07 23.08	10 09	51.14 53.10	45.20 47.15	06 05	36.00 38.17	30.02 32.23	02 06	41.90 43.99	35.99 38.08	09 09 9

	-	•		SEG	NAL	IDA	TI	*			
da	a Vienna		da	Padova		da	a Padova			la Vienna	
Crono		anze	Cronog	grafo	enze	Crono	grafo	Differenze	Cron	ografo di	Differenze
Vienna	Padova	Differenze	Vienna	Padova	Differenze	Vienna	Padova	Differ	Vienna	Padova	Diff
				1	75 75	10					
h m	h m	GGIO 13.	h m	m	h m	14.37 m	, 5				
14. 26 \$ 37.32 39.41 41.47 43.51 45.46 47.41 49.16 50.72 52.25 53.87 55.40 56.98 58.38 59.80 1.28	14. 32 23.44 25.53 27.59 29.63 31.56 33.53 35.27 36.83 38.35 39.99 41.53 43.11 44.50 45.92 47.40	5 46.12 12 12 12 10 12 11 11 10 12 13 13 12 12	14. 27 36.12 37.89 39.98 41.93 43.38 45.94 47.89 50.03 52.06 54.02 55.97 57.95 59.95 1.84 3.75	14. 33 \$2.51 24.00 26.08 28.03 29.97 32.04 33.98 36.11 38.13 40.09 42.05 44.06 46.04 47.93 49.86	5 46.09 11 10 10 09 10 09 08 07 07 08 11 09 09	14. 30 30.72 32.96 35.17 37.15 39.19 41.14 43.16 44.99 47.02 48.97 50.97 53.04 54.93 56.88 58.85	14 36 16.81 19.05 21.25 23.23 25.25 27.23 29.25 31.07 33.11 35.06 37.07 39.13 41.03 42.96 44.93	5 46.09 09 08 08 06 09 09 08 09 09 10 09 10 08 08	14. 31 41.69 43.31 45.00 46.68 48.24 49.73 51.26 52.77 54.32 55.76 57.36 58.90 0.33 1.73 3.19	27.80 29.41 31.10 32.76 34.33 35.83 37.37 38.86 40.43 41.86 43.49 45.00 46.43 47.83 49.31	46.11 10 10 08 09 10 11 10 11 10 13 10 10 10 12
2,83	1.28 47.40 2.83 48.93		10 5.82 51.9		09 875 Ma	0.87 GGIO 14.	46.96	09	4.65	50.73	08
14.36	14.43 m	6	h m 14.32	h m 14.39	$\begin{bmatrix} m \\ 6 \end{bmatrix}$	h m 14. 35	14. 42 m	m	h m 14.38	h [m]	1 6 m
41.89 43.79 45.65 47.46 49.27 50.90 52.71 54.56 56.43 58.40 0.39 2.25 3.74 5.31 6.78 8.29	8.72 10.62 12.46 14.27 16.09 17.73 19.53 21.38 23.24 25.21 27.23 29.05 30.55 32.13 33.61 35,12	\$26.83 83 81 81 82 83 82 81 81 84 80 81 82 83	45.51 47.50 49.35 51.36 53.26 55.33 57.35 59.31 1.43 3.35 5.37 7.29 9.33 11.34 18.38 15.43	12.22 14 20 16.04 18.04 19.94 22.02 24.06 26.00 28.14 30.04 32.04 33.98 36.04 38.04 40.08 42.10	\$26.71 70 69 68 68 69 71 69 67 69 67 71 70	35.53 37.54 39.45 41.40 43.45 45.44 47.50 49.46 51.31 53.32 55.23 57.30 59.34 1,35 3.34 5.20	\$2.23 4.24 6.14 8.12 10.12 12.12 14.17 16.14 17.98 20.02 21.91 24.00 26.03 28.03 30.01 31.87	26.70 70 69 72 67 68 67 70 68 70 69 68 67	31.78 33.51 35.32 36.93 38.41 39.78 41.20 42.58 43.96 45.39 46.62 47.77 49.05 50.18 51.39 52.49	58.55 0.26 2 12 3 72 5.23 6.58 8.00 9.37 10.74 12.18 13.40 14.54 15.84 16.95 18.20 19.28	26.77 75 80 79 82 80 80 79 78 79 78 77 79 77 81 79
h m	h m	m	h m	n m	1875 MA	GGIO 15.	Ti am		7. 40	7	
14. 30 s 23.70 25.31 26.91 28.45 30.27 31.94 33.63 35.16 36.75 98.52 40.09 41.47 42.97 44.34 45.73 47.32	14. 36 55.13 56.74 58 33 59.85 1.66 3.35 5.07 6.61 8.17 9.94 11.53 12.91 14.36 15.77 17.15 18.75	6 s 31.43 43 42 440 39 41 44 44 44 44 44 44 43 43 43 42 43 43	14. 31 25.56 27.64 29.62 31.54 33.70 35.71 37.75 39.68 41.75 43.69 45.73 47.70 49.78 51.81 53.61 55.59	14. 37" 56.94 59.02 0.98 2.93 5.08 7.08 9.14 11.07 13.14 15.07 17.07 19.07 21.15 23.18 25.02 26.98	\$ 31.38 38 38 36 39 38 37 39 39 38 34 37 37 37 37 41 39	14. 34 s 10.80 12.83 14.70 16.55 18.53 20.52 22.54 24.55 26.63 28.56 30.65 32.64 34.63 36.59 38.73 40.70	h m 14.40 \$ 42.19 44.24 46.09 46.95 49.92 51.93 53.94 57.98 59.94 2.05 4.04 6.04 8.00 10.14 12.09	31.39 41 39 40 39 41 40 39 35 38 40 40 41 41 41 39	14.35 22.01 23.84 25.59 27.26 29.11 30.75 32.42 34.08 35.58 37.04 38.42 39.91 41.33 42.66 44.08 45.61	14. 41 53,45 53,45 55.31 57.05 58.67 0.55 2.15 3.85 5.52 7.05 8.48 9.85 11.35 12.76 14.11 15.52 17.05	6 8 31,44 47 46 41 44 40 40 43 42 47 44 43 45 44 44 44

				da Vienna da Padova da Padova da Vienna													
da	a Vienna		da	Padova		d	a Padova		d	a Vienna							
Crono		Differenze	Crono		Differenze		ografo li	Differenze		ografo di	Differenze						
Vienna	Padova	Diffe	Vienna	Padova	Diffe	Vienna	Padova	Diffe	Vienna	Padova	Diffe						
1875 MAGGIO 16.																	
14.38 j	h m 14.44	6	14.39 h	14.45 m	6 1	14. 43	14. 49 m	6	14.44 m	14.50 m	1 6 m						
22.12	40.61	18.49	8	S	8	8	S	8	S	8	S						
23.80	42.31	51	24.48 26.29	42.90 44.72	18.42	3.73	22.14	18.41	12.31	30.75	18.4						
25.50	43.01	51	28.11	46.54	43	5.66 7.61	24.11 26.02	45 41	14.23 16.15	32.69 34.61	4						
27.07	45.59	52	30.18	48.61	48	9.66	28.10	43	17.94	36.41	4						
28.44	46.92	48	32.23	50.66	43	11.56	29,97	41	19.72	38.18	4						
29.81	48.31	50	34.21	52.65	44	13 59	31.01	42	21.63	40.09	4						
31.33	49.83	50	36.14	54.57	43	15.62	34.02	40	23.56	42.01	4						
32.73	51.22	49	38.16	56.60	44	17.69	36.11	42	25.33	43.79	4						
34.00	52.51	51	40.17	58 61	44	19.58	38.01	43	27.11	45.58	4						
35.37	53.89	52	42.24	0.65	41	21.62	40.07	45	28.76	47.21	4						
36.69	55.18	49	44.20	2.61	41	23.66	42.10	44	30.52	48.96	4						
38.04 39.28	56.54 57.74	50	46.27	4.70	43	25.60	44.03	43	32.49	50.92	4						
40.48	58.98	51 50	48.16 50.27	6.60 8.69	44 42	27.63 29.66	46.07 48.08	44 42	34.42	52.89	4						
41.74	0.26	52	52.21	10.63	42	31.61	50.03	42	36.53 38.44	54.96 56.89	4						
43.18	1.69	51	54.24	12.68	44	33.64	52.04	40	40.75	59.18	4:						

IV. Segnali scambiati fra Padova e Milano.

				SEG	NA	LIDA	TI				
da	a Padova		d	a Milano		d	a Milano	a d	d	a Padova	-
	ografo li	Differenze	Crono		Differenze	Crono	grafo i	Differenze	Crond	grafo li	Differenze
Padova	Milano	Diffe	Padova	Milano	Differ	Padova	Milano	Differ	Padova	Milano	Differ
				1	875 MA	GGIO 6.					
14. 18 42.20 44.30 46.17 47.99 49.83 52.12 54.12 56.10 58.13	13. 43 54.08 56.20 58.05 59.89 1.73 4.00 6.00 7.99 10.02	34 48.12 10 12 10 10 12 11 11	14. 20 \$ 18.53 20.50 22.57 24.56 26.63 28.61 30.54 32.50 34.50	13. 45 \$ 30.39 \$2.37 \$34.44 \$36.41 \$8.48 \$40.48 \$42.41 \$44.35	$egin{array}{c} m \\ 34 \\ s \\ 48.14 \\ 13 \\ 13 \\ 15 \\ 15 \\ 13 \\ 15 \\ 15 \\ 15$	14. 23 \$ 48.57 50.49 52.52 54.50 56.45 58.47 0.50 2.47 4.54	13. 49 13. 49 0.43 2.35 4.38 6.35 8.32 10.32 12.38 14.32 16.41	34 8 48.14 14 15 13 15 12 15 13	h m 14.25 0.13 2.26 4.32 6.20 8.34 10.23 12.18 14.15 16.24	13.50 12.02 14.16 16.18 18.09 20.21 22.09 24.03 26.01 28.15	$\begin{bmatrix} & m \\ 34 & s \\ & s \\ 48.111 & 100 \\ & 14 & 111 \\ & 13 & 14 \\ & 15 & 14 \\ & 09 & 14 \\ & & 14 & 14 \\ & & & 14 & 14 \\ & & & & & & & & & & & & & & & & & & $
0.25 2.17 4.12 6.13 8.10 10.17 12.13 14.11 16.19 18.10 20.11	12.11 14.04 16.01 18.00 19.96 22.07 24.01 26.01 28.04 29.98 31.98	14 13 11 13 14 10 12 10 15 12 13	36.53 38.48 40.50 42.52 44.53 46.52 48.52 50.49 52.43 54.52 56.47	48.40 50.35 52.34 54.38 56.38 58.38 0.37 2.34 4.29 6.37 8.32	13 13 16 14 15 14 16 15 14 15 14	6.51 8.60 10.60 12.52 14.53 16.50 18.53 20.43 22.48 24.47 26.47	18.38 20.46 22.46 24.39 26.36 28.36 30.41 32.28 34.34 36.34 38.32	13 14 14 13 17 14 12 15 14 13 15	18.32 20.27 22.22 24.15 26.27 28.03 29.98 32.06 34.04 35.00 38.09	30.22 32.15 34.08 36.01 38.13 39.91 41.84 43.92 45.89 46.86 49.95	10 12 14 14 14 12 14 14 15 14

	W			SEG	NAI	IDA	ті				
d	la Padova		da	a Milano		d	a Milano		da	a Padova	
	ografo di	enze	Crono d		enze	Crono	grafo i	enze	Crono	grafo li	renze
Padova	Milano	Differ	Padova	Milano	Differ	Padova	Milano	Differ	Padova	Milano	Diffe
	Milano 14. 2 4.06 6.20 8.24 10.30 12.25 14.24 16.19 18.14 20.09 22.12 24.02 26.04	**************************************	Padova 14. 37 58.40 0.38 2.30 4.41 6.40 8.40 10.40 12.32 14.40 16.37 18.38 20.35 22.32 24.37 26.39 28.35 30.35 32.30 34.30 36.30 14. 40 14. 40 15. 22 2. 20 4. 18 6. 10 8. 17 10. 25 12. 27	Milano 14. 3 8 6.44 8.43 10.34 12.45 14.42 16.43 18.42 20.37 22.43 24.41 26.39 28.37 30.36 32.40 34.41 36.37 38.38 40.34 42.33 44.32	34 51.96 95 96 98 97 98 95 97 98 99 98 96 97 98 97 98 97 98 97 98 98 97 98 99 98 99 99 99 99 99 99 99	d	i	98 99 96 97 98 994 98 99 96 97 1.98 2.00 1.99 2.01 1.97 98 2.01 2.01 1.98 \$55.89 86 86 90 87 90 88 90 88 90 89 90 89		Milano 14. 7 13.24 15.46 17.27 19.32 29.10 31.14 33.20 35.18 37.12 39.08 41.18 45.26 47.16 49.12 51.16	98 97 98 97 98 96 99 96 1.99 2.01 1.99 95 98 97 97 98 97
48.00 50.01 51.95 53.98 56.03 58.00 59.97 2.02 4.20 6.15 8.11	46.10 50.25 85 48 00 52.15 85 50.01 54.13 88 51.95 56.08 87 53.98 58.11 87 56.03 0.19 84 58.00 2.13 87 59.97 4.10 87 2.02 6.15 87 4.20 8 31 89 6.15 10.28 87		14.23 16.24 18.18 20.22 22.20 24.11 26.17 28.20 30.24 32.20 34.15	16.39 18.34 20.33 22.28 24.35 26.30 28.23 30.26 32.33 34.34 36.30 38.24	88 89 91 90 87 90 88 91 87 90 90 91	12.29 14.24 16.20 18.24 20.22 22.27 24.20 26.20 28.12 30.16 32.20 34.08 36.17	16.36 18.35 20.29 22.36 24.35 26.38 28.31 30.32 32.24 34.27 36.30 38.20 40.28	89 91 88 87 89 89 88 88 89 90 88 89		Serie non arrivata	

da	Padova		da	Milano		da	Milano		da	Padova	
Cronog	rafo	enze	Cronog		nze	Crono		nze	Cronog		nze
Padova	Milano	Differenze	Padova	Milano	Differenze	Padova	Milano	Differenze	Padova	Milano	Differenze
					1875 N	IAGGIO 9.					
[h m 14.38	h m 14. 3	34	h m 14.39	h m 14. 5	34 m	h m 14. 44	h m 14. 9	34	14. 45	14. 10 m	34
\$\frac{s}{28}\$ 43.06 51.08 55.05 59.07 1.13 3.04 5.10 7.03 9.20 11.20	\$5.66 43.49 51.47 55.46 59.46 1.55 3.46 5.50 7.43 9.58 11.62 — — — — — — — — — — — — — — — — — — —	59.62 59.61 58.58 60.60 62.58 ————————————————————————————————————	59.90 1.98 4.13 5.99 7.93 9.97 12.03 13.97 16.00 17.92 19.95 21.93 23.94 25.99 27.98 29.96 31.87 33.90 36.02 37.92 39.93	\$ 0.30 0.30 2.36 4.51 6.37 8.32 10.35 12.41 14.35 16.35 18.31 20.33 22.33 24.33 26.37 28.35 30.36 32.27 34.27 36.40 38.30 40.31	59.60 62 62 61 62 62 65 61 62 63 60 63 62 62 62 62	\$29.97 31.90 33.96 35.93 37.99 40.02 42.07 46.00 48.02 49.96 51.92 53.97 55.99 57.98 59.90 1.90 3.97 5.96 7.95 9.88	\$0.36 32.28 34.33 36.33 38.36 40.40 42.44 44.45 46.37 48.40 50.35 52.31 54.35 56.36 58.36 0.23 2.29 4.36 6.35 8.34 10.27	59.61 62 63 62 63 62 63 62 63 62 61 61 61 61 61	40.27 42.25 44.20 46.00 47.97 49.90 51.97 54.04 55.95 58.09 0.13 2.12 4.10 6.09 8.08 9.90 12.02 14.14 16.06 18.10	40.67 42.67 44.59 46.43 48.38 50.33 52.37 54.45 56.35 58.49 0.54 2.53 4.49 6.48 8.46 10.30 12.44 14.51 16.45 18.46	59.55 59.55 55.55 66.55 66.66 66.66
				18	875 MA	agio 10.					
h m 14.39	14. 4 ^m	35	14.41 m	14. 6 m	35 s	14. 44 m	14. 9 m	35	14. 45 m	14.10	35
\$30.15 \$32.20 \$34.05 \$36.15 \$38.09 \$40.16 \$42.12 \$44.16 \$46.13 \$48.17 \$50.10 \$52.03 \$54.09 \$56.10 \$57.99 \$0.07 \$2.10 \$6.00 \$8.08	\$ 26.45 28.48 30.35 32.44 34.38 36.44 38.42 40.43 42.42 44.46 46.39 48.34 50.35 52.40 54.28 56.37 58.39 0.38 2.31 4.36	\$ 3.70 72 70 71 71 72 70 73 71 71 71 71 71 70 71 70 71 70 71 70 71	\$ 4.11 6.13 8.12 10.11 12.07 16.07 18.10 20.10 22.10 24.10 26.16 28.10 30.08 32.09 34.02 36.11 38.07 40.10 42.05	0.41 2.39 4.39 6.38 8.32 10.35 12.33 14.35 16.37 18.35 20.38 22.39 24.37 26.34 28.34 30.31 32.39 34.32 36.35 38.32	3.70 74 73 73 75 72 74 75 72 77 73 74 75 71 72 75 77 77 78 77 77 77 77 77 77 77	4.20 6.10 8.10 10.05 12.02 14.03 16.07 18.10 20.10 22.07 24.13 26.10 28.11 30.08 32.10 34.13 36.11 38.10 40.09 42.05	0.47 2.36 4.38 6.33 8.29 10.30 12.34 14.36 16.37 18.34 20.40 22.36 24.37 26.34 28.38 30.38 32.37 34.35 36.34 38.31	* 3.74 72 72 73 73 73 74 74 74 75 75 74	20.15 22.20 24.25 26.10 28.04 30.06 31.95 34.17 36.16 38.17 40.10 42.11 44.10 46.05 47.97 49.97 52.07 54.15 55.90 58.00	16.46 18.49 20.56 22.42 24.36 26.35 28.25 30.46 32.43 34.48 36.40 38.40 40.42 42.36 44.27 46.27 48.35 50.43 52.22 54.32	3.69 68 68 68 67 70 71 73 69 70 71 68 69 70 72 72 72 68 68

			SEG	NAI	LIDA	TI							
da Padova		da	a Milano	da Milano			de						
Cronografo di	enze	Cronografo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		sus	Cronografo di		enze	Crond	ografo li	erenze			
Padova Milano	Differ	Padova	Milano	Differ	Padova	Milano	Differ	Padova	Milano	Differ			

1875 Maggio 11.

7	h m		h m	h m	m	h m	h m	m	h m	h m	m
14. 43	14. 8	35	14.44	14. 9	35	14.47	14. 12	35 1	14.48	14.13	35
s	8	s	8	8	S	8	8	8	8	S	- 00
20.20	12.28	7.92	38.40	30.44	7.96	8.40	0.45	7.95	20.22	12.33	7.89
22.36	14.45	91	40.37	32.39	98	10.27	2.33	94	22.20	14.27	93
24.34	16.44	90	42.40	34.46	94	12.38	4.42	96	24.21	16.31	90
26.40	18.51	89	44.42	36.46	96	14.40	6.46	94	26.23	18.31	92
28.32	20.41	91	46.39	38.42	97	16.31	8.35	96	28.18	20.26	92
30.20	22.27	93	48.29	40.34	95	18.36	10.40	96	30,24	22.33	91
32.20	24.27	93	50.30	42.34	96	20.30	12.36	94	32.30	24.38	92
34.19	26.27	92	52.31	44.36	95	22.35	14.36	99	34.30	26.37	93
36.17	28.25	92	54.34	46.37	97	24,35	16.39	96	36.30	28.38	92
38.13	30.22	91	56.38	48.43	95	26.33	18.38	95	38.23	30.30	93
40.16	32.27	89	58.38	50.39	99	28.40	20.42	98	40.20	32.28	92
42.12	34.23	89	0.34	52.37	97	30.40	22.42	98	42.13	34.21	92
44.15	36.23	92	2.38	54.40	98	32.41	24.45	96	44.21	36.38	93
46.24	38.32	92	4.38	56.41	97	34.35	26.39	96	46.20	38.28	92
48.14	40.24	90	6.37	58.41	96	36.42	28.43	99	48.14	40.20	94
50.11	42.22	89	8.36	0.38	98	38.30	30.35	95	50.08	42.15	93
52.00	44.10	90	10.32	2.38	94	40.33	32.37	7.96	52.22	44.32	90
54.00	46.08	92	12.30	4.34	96	42.37	34.37	8.00	54.20	46.26	94
56.03	48.09	94	14.18	6.20	98	44.34	36.36	7.98	56.15	48.22	93
57.95	50.04	91	16.30	8.35	95	46.35	38.37	98	58.03	50.10	93
01.00	20.04	01	10.00	0.00	1 00	10.00	1 50.01	1 00	50.00	, 00.10	,

1875 Maggio 12.

h m	[h m	2772	h m	h m	m	h m	h m	m	h m	h m	m
14.44	14. 9	35	14.45	14.10	35	14.48	14. 13	35	14.50	14. 15	35
8	3 10 10	11 07	10.40	80.40	12.03	42.50	30.47	12.03	14.80	2.81	11.99
30.15	18.18	11.97	42.43	30.40	01	44.46	32.42	04	16.38	4.39	99
32.17	20.19	1.98	44.40	32.39	02	46.50	34.45	05	17.90	5.92	98
34.09	22.09	2.00	46.41	34.39	02	48.42	36 38	04	19.74	7.76	98
36.03	24.08	1.95	48.38	36.36		50.41	38.38	03	21.62	9.63	99
37.92	25.94	1.98	50.40	38.36	04	52.36	40.33	03	23.55	11.56	99
40.14	28.14	2.00	52.40	40.37	03		42.37	03	25.60	13.61	99
42.22	30.22	2.00	54.41	42.38	. 03	54.40		04	27.70	15.74	1.96
46.18	34.19	1.99	56.41	44.38	03	56.37	44.33	02	29.79	17.79	2.00
48.07	36.09	1.98	58.40	46.38	02	58.38	46.36	03	31.70	19.71	
50.00	38.00	2.00	0.36	48.33	03	$0.40 \\ 2.48$	48.37	03	33.75	21.77	1.99 98
51.91	40.00	1.91	2.45	50.41	04	4.50	50.45	06	35.80	23.83	
53.90	41.96	94	4.45	52.41	04	6.53	52.44	02		25.88	1.97
56.00	44.01	99	6.44	54.42	02	8.43	54.51	01	37.88 39.72	27.72	2.00
58.10	46.13	97	8.40	56.36	04	10.43	56.42	04			2.00
0.07	48.09	98	10.33	58.30	03		58.39	A T S S S S S S S S S S S S S S S S S S	41.72	29.74	1.98
2.05	50.07	98	12.36	0.32	04	12.43	0.41	02	43.80	31.81	99
4.03	52.06	1.97	14.28	2.27	01	14.39	2.35	04	45.84	33.88	96
6.10	54.10	2.00	16.28	4.27	01	16.40	4.38	02	47.72	35.74	98
8 02	56.07	1.95	18.34	6.29	05	18.33	6.30	03	49.68	37.71	1.97
	17 to -	1328	20.35	8.35	02	20.30	8.28	02	51.77	39.76	2.01

da	da Padova Cronografo		da	a Milano		da	Milano		da	Padova	
di		enz	Crono	grafo i	enze	Cronog	grafo	enze	Crono	grafo	enze
Padova	Milano	Differ	Padova	Milano	Diffe	Padova	Milano	Differ	Padova	Milano	Differ

1875 MAGGIO 13.

	h m	h m	m	h m	h m	2772	h m	h m	m	h m	h m	m
	14.49	14.14	35	14.51	14.16	35	14.54	14.19	35	14.55	14.20	35
	8 00	8	8	8	S	S	8	8	8	8	S	8
	35.28	18 97	16.31	16.81	0.46	16.35	16.74	0.41	16.33	30.22	13.90	16.32
1	37.30	21.00	30	18.75	2.40	35	18.74	2.39	35	32.24	15.92	32
	39.19	22.88	31	20.69	4.34	35	20.77	4.42	35	34.21	17.87	34
1	41.10	24.78	32	22.66	6.32	34	22.73	6.38	35	36.20	19.86	34
1	42.99	26.67	32	24.73	8.38	35	24.63	8.27	36	38.13	21.78	35
I	45.00	28.67	33	26.73	10.38	35	26.65	10.30	35	40.03	23.72	31
1	46.98	30.66	32	28.73	12.40	33	28.72	12.35	37	42.00	26.67	33
-	49.03	32.71	32	30.81	14.45	36	30.72	14.34	38	43.99	27.64	35
1	51.03	34.68	35	32.76	16.40	36	32 83	16.47	36	46.05	29.72	33
1	53.08	36,78	30	34.73	18.38	35	34.73	18.38	35	47.98	31.66	32
1	55.08	38.75	33	36.74	20.40	34	36.82	20.46	36	49.99	33.66	33
1	57.03	40.69	34	38.73	22,36	37	38.73	22.36	37	52.03	35.69	34
1	59.10	42.76	34	40.73	24.41	32	40.69	24.31	38	54.03	37.70	33
1	1.09	44.76	33	42.72	26.36	36	42.76	26.41	35	55.95	39.64	31
1	3.12	46.79	33	44.74	28.38	36	44.81	28.46	35	57.94	41.62	32
-	5.22	48.88	34	46.79	30.44	35	46 80	30.43	37	0.09	43.76	33
1	7.19	50.85	34	48.72	32.38	34	48.71	32.33	38	2.07	45.73	34
	9.08	52.75	33	50.80	34.44	36	50.72	34.36	36	4.04	47.72	32
1	11.03	54.69	34	52.80	36.44	36	52.73	36.39	34	6.04	49.72	32
1	13.12	56.78	34	54.69	38.33	36	54.60	38.23	37	8.12	51.76	36
i												

1875 MAGGIO 14.

	7	m	h m	h m	972	h m	h m	m	h m	h m	m
14.54	14.18	35	14. 55	14.20	35	14.58	14.23	35	14.59	14.24	35
8	8	S	S	8	8	8	8	5 70	8	8	8
0.15	39.48	20.67	21.14	0.46	20.68	21.04	0.32	20.72	30.16	9.49	20.67
2.21	41.53	68	23.16	2.46	70	22.96	2 26	70	32.24	11.56	68
4.13	43.45	68	25.22	4.50	72	24.90	4.17	73	34.23	13.53	70
6.05	45.38	67	27.13	6.44	69	27.09	6.36	73	36.16	15.49	67
8.03	47.34	69	29.14	8.44	70	28.97	8.25	72	38.12	17.42	70
10.14	49.46	68	31.11	10.38	73	31.05	10.34	71	40.07	19.37	70
12.10	51.41	69	33.14	12.42	72	33.06	12.34	72	42.11	21.41	70
14.22	53.52	70	35.14	14.46	68	35.10	14.37	73	44.14	23.44	70
16.12	55.42	70	37.16	16 46	70	37.15	16.45	70	46.11	25.42	69
18.02	57.33	69	39.10	18.39	71	39.13	18.38	75	48.07	27.38	69
19.96	59.29	67	41.12	20.40	72	41.07	20.35	72	50.04	29.33	71
22.02	1.34	68	43.07	22.38	69	43.04	22.32	72	51.92	31.22	70
23.97	3.30	67	45.04	24.33	71	45.01	24.30	71	54.00	33,32	68
25.92	5.26	66	47.14	26.42	72	47.00	26.28	72	55.96	35.28	68
28.14	7.46	68	49.16	28.46	70	49.06	28.34	72	58.03	37.32	71
30.21	9.55	66	51.12	30.40	72	51.14	30.43	71	0.07	39.37	70
32.16	11.49	67	53.04	32.35	69	53.06	32.34	72	1.96	41.28	68
34.12	13.42	70	55.05	34:35	70	55.01	34.28	73	4.04	43.34	70
36.12	15.42	70	56.98	36.29	69	57.02	36.30	72	5.97	45.27	70
	17.34	69	59.04	38.34	70	59.11	38.37	74	7.97	47.28	69
38.03	11.51	1	l Ov.OI	, 00.3	•		1				

	SEGNALI DATI													
da Padova	da Milano	da Milano	da Padova											
Cronografo e e e e e e e e e e e e e e e e e e e	Cronografo o N U U U U U U U U U U U U U U U U U	Cronografo S	Cronografo 02 02 03 04 04 04 04 04 04 04 04 04 04 04 04 04											
Padova Milano G	Padova Milano G	Padova Milano II	Padova Milano Ü											

1875 Maggio 15.

h m	h m	m	h m	h m	m	h m	h m	m	h m	h m	m
15. 2	14. 26	35	15. 3	14. 28	35	15. 6	14.31	35	15. 7	14.32	35
0.15	34.85	25,30	25.77	8	05.00	8	8	8	8 10	8	05.00
				0.45	25.32	25.62	0 28	25.34	35.18	986	25.32
2.20	36.87	33	27.75	2.44	31	27.65	2.30	35	37.25	11.91	34
4.17	38.84	33	29.66	4.36	30	29.74	4.41	33	39.20	13.87	33
6.02	40.69	33	31.68	6.37	31	31.71	6.35	36	41.05	15.71	34
8.11	42.79	32	33.65	8.32	33	33.68	8.31	37	42.95	17.62	33
10.08	44.74	34	35.58	10.24	34	35.72	10.37	35	44.85	19.52	33
11.96	46.65	31	37.60	12.27	33	37.71	12.37	34	46.91	21.58	33
14.13	48.78	35	39.70	14.37	33	39.68	14.35	33	48.74	23.42	32
16.15	50.82	33	41.71	16.37	34	41.75	16.40	35	51.05	25.70	35
18.20	52.86	34	43.75	18.42	33	43.68	18.33	35	53.05	27.70	35
20.15	54.85	30	45.70	20.34	36	45.76	20.41	35	55.05	29.70	35
22.07	56.76	31	47.75	22.40	35	47.69	22 34	35	56.95	31.64	31
24.00	58.68	32	49.74	24.38	36	49.78	24.44	34	58.93	33.59	34
25.95	0.63	32	51.65	26.30	35	51.73	26.35	38	0.90		34
27.98	2.67	31	53.62	28.28						35.56	
29.97	4.64	33	55.63		34	53.65	28.28	37	2.98	37.66	32
32.15				30.27	36	55.65	30.31	34	5.05	39.74	31
	6.80	35	57.68	32.36	32	57.65	32.30	35	6.95	41.63	32
34.22	8.89	33	59.73	34.38	35	59.73	34.39	34	9.05	43.70	35
36.05	10.73	32	1.71	36.35	36	1.65	36.31	34	10.88	45.55	33
38.03	12.69	34	3.64	38.31	33	3.55	38.20	35	12.97	47.66	31

1875 Maggio 16.

h m	h m	m	h m	h m	m	h m	h m	m	h m	h m	m
15. 3	14. 28	35	15. 5	14.29	35	15. 7	14.32	35	15. 8	14.33	35
30.11	0.21	29.90	8	8	8	8	8	8	8	S	8
			0.25	30.33	29.92	30.30	0.35	29.95	45.13	15.22	29.91
32.24	2.36	88	2.31	32.37	94	32.28	2.34	94	46.91	17.00	91
34 26	4.37	89	4.31	34.39	92	34.31	4.36	95	49.08	19.18	90
36.08	6.21	87	6.30	36.36	94	36.32	6.38	94	50.99	21.08	91
38.01	8.10	91	8.21	38.30	91	38.31	8.35	96	52.98	23.06	92
40.07	10.16	91	10.21	40.28	93	40.28	10.32	96	55.01	25.09	92
42.05	12.15	90	12.29	42.35	94	42.28	12.33	95	57.01	27.10	91
44.14	14.25	89	14.23	44.29	94	44.27	14.32	95	59.07	29.16	91
46.10	16.18	92	16.31	46.39	92	46.27	16.32	95	0.91	31.01	90
48.00	18.09	91	18.31	48.37	94	48.24	18.31	93	3.04	33.14	90
50.00	20.12	88	20.31	50.38	93	50.28	20.34	94	5.07	35.14	93
52.02	22.14	88	22.27	52.32	95	52.29	22.35	94	7.07	37.14	93
54.02	24.12	90	24.23	54.31	92	54.36	24.41	95	9.01	39.12	89
55.91	26.04	87	26.31	56.35	96	56.31	26.38	93	11.15	41.24	91
58.00	28.09	91	28.31	58.39	92	58.33	28.40	93	13.11	43.22	89
0.00	30.10	90	30.21	0.27	94	0.31	30.35	96	15.10	45.16	94
1.98	32.09	89	32.21	2.26	95	2.17	32.25	92	16.93	47.03	90
4.15	34.26	89	34.21	4.27	94	4.22	34.28	94	18 83	48.94	89
6.05	36.17	88	36.23	6.30	93	6.16	36.22	94	20.81	50.92	89
8.15	38.25	90	38.29	8.33	96	8.21	38,29	92	22.66	52.73	93
			11 18	MI HELL	. 81					02.10	00

Dai numeri contenuti nei quadri appena scritti furono tratti i risultati medi corrispondenti a ciascuna serie di segnali, e questi risultati medi, che sono quelli sui quali deve poi riposare il calcolo delle longitudini, hanno dato luogo ai quadri che seguono.

Questi quadri sono abbastanza chiari per sè: ciascuno di essi porta in una prima colonna la data, ed è poi suddiviso in due parti principali, riguardanti l'una i segnali dati dalla stazione orientale, l'altra quelli partiti dall'occidentale. Le due parti si corrispondono esattamente. In ciascuna di esse la prima colonna dà l'istante medio d'ogni serie di segnali espresso in tempo dell'orologio di Milano; la seconda dà per ogni serie la media delle differenze dei segnali contemporanei (più precisamente separati dalla breve durata di trasmissione della corrente attraverso la linea) registrati sui cronografi delle due stazioni, od in altre parole la media delle differenze registrate dei due orologi. Seguono due colonne doppie riguardanti l'una il cronografo della stazione orientale, l'altra quello dell'occidentale, le quali danno per ciascun cronografo la correzione dell'orologio corrispondente all'istante medio della serie, la parallasse delle penne, e con ciò gli elementi necessari per dedurre dalla differenza registrata dei due orologi la differenza l delle ore delle due stazioni nello stesso istante fisico diminuita ed aumentata rispettivamente della quantità t durata della trasmissione della corrente attraverso la linea, ossia le quantità l-t, l+t scritte nelle due ultime colonne delle due parti in cui è suddiviso ogni quadro. Una sola eccezione vuol esser fatta pel cronografo di Padova, pel quale in una sola colonna è data direttamente la correzione dell'orologio (corrispondente all'istante medio di ciascuna serie) già liberata dall'effetto della parallasse delle penne.

Comparazione degli orologi di Vienna e di Milano.

Mineral Company of the Company of th	1		OFIGNATA			7.4				270271==				
			SEGNALI	dati d	a VIENI	VA.	THE PROPERTY OF			SEGNALI	dati da	a MILAN	0	9 110 12
DATA	io erie empo di	no a a	Cronografo	di Vienna		o di Milano		io erie ampo	no a ogi	Cronografo	di Vienna	Cronografo	di Milano	
1875	Istante medio di ciascuna serie di segnali in tempo dell'orologio di Milano	Vienna-Milano Differenza registrata dei due orologi	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	l-t	Istante medio di ciascuna serie di segnali in tempo dell'orologio di Milano	Vienna-Milano Differenza registrata dei due orologi	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	Correzione dell'orologio corrispond, al- l'istante medio della serie	Parallasse delle penne	l+t
											五年月	11 图 图 1	ri Ami	
Maggio 4	$ \begin{array}{c cccc} h & m \\ 14 & 59.4 \\ 15 & 5.4 \end{array} $		$\begin{bmatrix} -4.037 \\ -4.045 \end{bmatrix}$	$+0.140 \\ +0.140$	$+12.162 \\ +12.163$	-0.046 -0.030	m = 100 $m = 100$ $m =$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & m \\ & +2851.489 \\ & 51.502 \end{array}$	- 4.039 - 4.043	$+0.140 \\ +0.140$	$+12.162 \\ +12.163$	$ \begin{array}{c c} & s \\ & -0.030 \\ & -0.030 \end{array} $	$+28 {}^{35.458}_{35.466}$
Maggio 5	14 55.4 15 2.4					-0.110 -0.108	+28 35.367 35.343	14 57.3 15 0.8	+28 53.743 53.742		+0.143 +0.143	$+12.553 \\ +12.554$	-0.110 -0.109	+28 35.431 35.422
Maggio 6	14 59.5 15 5.4	+28 56.136 56.129				-0.104 -0.104	+28 35.364 35.345	15 1.3 15 4.3	+28 56.211 56.207	- 8.013 - 8.018	+0.135 +0.135	+13.002 +13.003		+28 35.435 35.425
Maggio 7	14 48.1 14 53.9	+28 58, 0 81 58,086	- 9.727 - 9.739	$+0.123 \\ +0.123$	+13.286 +13.288	-0.097 -0.097	+28 35.288 35.279	14 49.8 14 52.8	+28 58.165 58.172	- 9.731 - 9.737	$+0.123 \\ +0.123$		-0.097 -0.097	+28 35.367 35.367
Maggio 8	14 33.7 14 39.5	+29 1.351 1.369	-12.535 -12.548	$+0.122 \\ +0.122$		-0.099 -0.106	+28 35.292 35.303	14 35.3 14 38.3	+29 1.457 1.457	—12.538 —12.545	$+0.122 \\ +0.122$	+13.745 +13.746		+28 35.397 35.391
Maggio 9	15 15.3 15 25.5	+29 6.397 6.423	-17.140 -17.167		+14.203 +14.206	-0.084 -0.099	+28 35.284 35.295	15 16.8 15 24.3	+29 6.497 6.517		$+0.146 \\ +0.146$			+28 35.396 35.395
Maggio 11 " 11	15 24.5 15 32.2	29 14.286 14.322	-23.975 -24.011	$+0.015 \\ +0.015$		-0.099 -0.101		15 26.2 15 28.3	+29 14.397 14.421	-23.983 -23.995	+0.015 +0.015	+15.167 +15.168		+28 35.359 35.372
Maggio 14	15 39.1 15 47.2		- 2.170 - 2.160	-0.014 -0.062	+16.533 +16.535	-0.150 -0.150	+28 35.214 35.245	15 36.8 15 38.8	+28 53.954 53.946					+28 35.382 35.377
Maggio 15	15 26.9 15 31.5	+28 53.874 53,866	- 1.666 - 1.666	-0.048 -0.048	+16.934 $+16.935$	-0.051 -0.053	+28 35.277 35.270	15 27.8 15 30.3	+28 53 907 53,907	- 1.666 - 1.666			$-0.055 \\ -0.055$	
	15 22.4 15 27.4	+29 12.081 12.142	—19.463 —19.515	+0.006	+17.341 +17.342	0.059		15 23.8 15 26.3	+29 12.202 12.225	$ \begin{array}{r} -19.478 \\ -19.504 \end{array} $	+0.006 +0.006	+17.341 +17.342	$ \begin{array}{c c} -0.062 \\ -0.060 \end{array} $	+28 35.451 35.445

Nelle sere del 10 e del 13 non riescimmo a farci sentire e a comunicare con Vienna. Nella sera del 12 pioveva a Vienna e non abbiamo scambiati i segnali.

Comparazione degli orologi di Monaco e di Milano.

The same of the same		5	SEGNALI	dati da	MONAC	90		1474			SEGNALI	dati da	MILAN	0	
DATA	io erie mpo di	no gi:	Cronografo d	li Monaco	Cronografo	di Milano		rie npo di	10	. io	Cronografo	di Monaco	Cronografo	di Milano	in heavens
1875	Istante medio di ciascuna serie di segnali in tempo dell'orologio di Milano	Monaco-Milano Differenza registrata dei due orologi	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	$l_3-\widetilde{t}_3$	Istante medio di ciascuna serie di segnali in tempo dell'orologio di Milano	Monaco-Milano	Differenza registrata dei due orologi	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	$l_3 + t_3$
							o de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela comp	Francis,		P terior	The state of	a F Toro		EAGIV!	bainte
Maggio 4	$\begin{array}{ c c c } & h & m \\ 14 & 21.6 \\ 14 & 41.9 \end{array}$	+948.796 48.852	$ \begin{array}{c} + 3.572 \\ + 3.533 \end{array} $		$+12.152 \\ +12.157$	-0.023 -0.030	$+\begin{array}{c} {m \atop 9} {s\atop 40.129} \\ {40.148} \end{array}$	$\begin{array}{c c} h & m \\ 14 & 31.3 \\ 14 & 37.8 \end{array}$	+	m s 9 48.861 48.963	$+3.552 \\ +3.540$	$ \begin{array}{c c} & s \\ & -0.120 \\ & -0.120 \end{array} $	$+12.154 \\ +12.156$	$-0.025 \ -0.027$	$+\begin{tabular}{c} m & s \\ 9 & 40.164 \\ 40.254 \end{tabular}$
Maggio 5	14 23.5 14 41.6	+ 9 51.256 51.204		-0.080 -0.080	$+12.543 \\ +12.548$	-0.098 -0.113	+ 9 40.205 40.124	14 34.8 14 39.3	+	9 51.235 51.251	+ 1.450 + 1.440	-0.060 -0.070	+12.546 $+12.547$	-0.103 -0.108	+ 9 40.182 40.182
Maggio 6	14 25.6 14 33.4	+ 9 53.814 53.834		$-0.065 \\ -0.050$	+12.993 $+12.995$	$ \begin{array}{c} -0.072 \\ -0.102 \end{array} $	+ 9 40.042 40.091	14 27.3 14 31.3	+	9 53.835 53.847		-0.065 -0.050			+ 9 40.074 40.109
Maggio 9	14 37.4 15 2.1	+ 9 41.912 41.975		-0.070 -0.080		-0.098 -0.087	+ 9 40.130 40.113	14 58.4 14 59.3	+	9 41.989 41.984		-0.090 -0.090	$+14.197 \\ +14.197$	-0.094 -0.095	+ 9 40.133 40.127
Maggio 11	14 58.4 15 5.0	+ 9 46.374 46.386		-0.110 -0.110	$+15.159 \\ +15.161$			14 59.8 15 3.3	+	9 46.419 46.124			+15.159 +15.160	$ \begin{array}{c c} -0.102 \\ -0.102 \end{array} $	+940.061 40.056
Maggio 12	15 36.8 15 43.0	+ 9 45.943 45.960		-0.100 -0.100	$+15.605 \\ +15.607$	-0.102 -0.102	+940.027 40.026	15 38.3 15 41.3	+	9 46.011 46.038		-0.100 -0.110	+15.605 +15.606		+ 9 40.091 40.100
Maggio 13	15 7.0 15 13.7	+ 9 48.710 48.720		0.090 0.070	$+15.990 \\ +15.992$			15 8.8 15 11.8	+	9 48.741 48.750	+7.388 +7.382	-0.080 -0.080	+15.990 $+15.991$	-0.108 -0.108	+ 9 40.167 40.169
Maggio 14	15 1.3 15 8.3	+ 9 51.160 51.173	+ 5.388 + 5.376	-0.090 -0.090			+ 9 40.025 40.023	15 3.3 15 6.3	+	9 51.177 51.194		-0.090 -0.090	$+16.522 \\ +16.523$	-0.088 -0.088	+ 9 40.037 40.048
Maggio 15 " 15	14 48.2 14 54.9	+ 9 52.828 52.858		-0.120 -0.140	$+16.923 \\ +16.925$		+940.131 40.129	14 50.3 14 53.3	+	9 52.856 52.878		_0.130 _0.130	$+16.924 \\ +16.925$	-0.053 -0.053	+ 9 40.145 40.161
Maggio 16	15 1.1 15 7.1	+ 9 45.217 45.229 empo a Monaco				$ \begin{array}{c c} -0.057 \\ -0.057 \end{array} $	+ 9 40.073 40.087	15 2.8 15 5.8	+	9 45.262 45.271	+12.221 $+12.218$	-0.050 -0.050	+17.335 $+17.336$	-0.057 -0.057	+ 9 40.155 40.160

Comparazione degli orologi di Vienna e di Padova.

MINERIA IN	12		EGNALI d	ati da	VIENNA	P nivers		SE	GNALI da	ati da P	ADOVA	17.0 19722
DATA 1875	Istante medio di ciascuna serie di segnali in tempo dell'orologio di Padova	Vienna-Padova Differenza registrata dei due orologi	Correzione dell'orologio corrispond, al- gi l'istante medio della serie	Parallasse delle penne	Correzione dell'orologio dell'stante medio della serie	l_z-t_2	Istante medio di ciascuna serie di segnali in tempo dell'orologio di Padova.	Vienna-Padova Differenza registrata dei due orologi	Correzione dell'orologio corrispond, al-l'istante medio della serie o	Parallasse delle penne	Correzione dell'orologio dell'istante medio della serie	$l_2 + t_2$
Maggio 6	$ \begin{array}{c c} h & m \\ 13 & 48.4 \\ 13 & 54.5 \end{array} $	$\begin{bmatrix} - & 552.086 \\ - & 552.080 \end{bmatrix}$	- 7.823 - 7.833	$+0.122 \\ +0.122$	$\begin{array}{c c} & m & s \\ & -23 & 52.020* \\ & -23 & 52.034 \end{array}$	-1752.233 52.243	h m 13 53.4	-552.035	— 7.832 — —	$+0.122 \\ -$	$-2352.032\ -$	$+17^{m}_{52.287}^{s}_{-}$
Maggio 7	14 10.8 14 16.8	- 5 53.972 - 5 53.972	- 9.583 - 9.595	$+0.125 \\ +0.125$	- 23 55.366 - 23 55.382	51.936 51.940	** 14 11.9 14 15.6	-553.858 -553.851	- 9.585 - 9.593	$+0.125 \\ +0.125$	- 23 55.369 - 23 55.379	52.051 52.060
Maggio 8	13 58.6 14 4.7	- 5 54.582 - 5 54.614	—12.379 —12.393	$+0.146 \\ +0.146$	- 23 59.011 - 23 59.026	52.196 52.165	13 59.8 14 3.2	- 5 54.549 - 5 54.550	—12.382 —12.389	$^{+0.146}_{+0.146}$	23 59.014 23 59.022	52.229 52.229
Maggio 9	14 19.0 14 24.8	5 53.343 5 53.356	-16.904 -16.920	$^{+0.146}_{+0.146}$	- 24 2.155 - 24 2.168	52.054 52.038	14 20.0 14 23.6	- 5 53.309 - 5 53.313	-16.907 -16.916	$+0.146 \\ +0.146$	$ \begin{array}{c cccc} -24 & 2.157 \\ -24 & 2.165 \end{array} $	52.087 52.082
Maggio 10	14 10.0 14 21.7	- 5 54.117 - 5 54.127	—19.622 —19.647	$+0.019 \\ +0.019$	- 24 5.800 - 24 5.838	52.080 52.083	14 11.2 14 20.4	- 5 54.073 - 5 54.087	-19.625 -19.645	+0.019 $+0.019$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	52.125 52.121
Maggio 11	14 23.1 14 29.3	- 5 54.106 - 5 54 086	-23.509 -23.539	$+0.026 \\ +0.026$	$\begin{array}{c cccc} -24 & 9.724 \\ -24 & 9.739 \end{array}$	52.135 52.140	14 24.5 14 28.3	- 5 54.046 - 5 54.037	-23.516 -23.534	+0.026 +0.026	- 24 9.727 - 24 9.736	52.191 52.191
Maggio 13	14 32.6 14 37.7	- 5 46.116 - 5 46.101	-38.954 -38.981	+0.021 +0.021	$\begin{array}{c} -24\ 17.132 \\ -24\ 17.149 \end{array}$	52.083 52.088	14 33.6 14 36.5	- 5 46 092 - 5 46.086	—38.959 —38.974	+0.021 +0.021	- 24 17.135 - 24 17.145	52.105 52.106
Maggio 14	14 43.3 14 45.1	- 6 26.820 - 6 26.787	- 2.293 - 2.290	+0.032 +0.032	- 24 21.085 - 24 21.091	52.004 52.046	14 39.4 14 42.2	- 6 26.693 - 6 26.686	- 2.298 - 2.294	$+0.032 \\ +0.032$	$\begin{array}{c c} -24 & 21.071 \\ -24 & 21.081 \end{array}$	52.112 52.133
Maggio 15	14 37.1 14 42.1	- 6 31.422 - 6 31.438	-1.666 -1.666	+0.006 $+0.006$	- 24 25.151 - 24 25.167	52.069 52.069	14 38.2 14 40.9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 1.666 - 1.666	+0.006 +0.006	- 24 25.155 - 24 25.164	52.116 52.108
Maggio 16	14 44.8 14 50.7	- 6 18.504 - 6 18.452	-18.711 -18.771	$+0.015 \\ +0.015$	24 29.319 24 29.337	52.119 52.129	14 45.9 14 49.6	- 6 18.432 - 6 18.424	-18.722 -18.760	$\begin{vmatrix} +0.015 \\ +0.015 \end{vmatrix}$	- 24 29.323 - 24 29.333	52.184 52.164

^{*)} La correzione per la parallasse delle penne sul cronografo di Padova, è già applicata alle differenze degli orologi registrate nelle colonne 3.º e 9.º **) Serie di segnali non arrivata a Vienna.

Comparazione degli orologi di Padova e di Milano.

T		1	Tanky i	SE	GNALI dati	da PADO	VA.			SI	EGNALI dati	da MILA	VO	
	DATA	4	nrie mpo di		Cronog. di Padova	Cronografo	di Milano	Z mingar	o le	no a a	Cronog. di Padova	Cronografo	di Milano	
	1875		Istante medio di ciascuna serie di segnali in tempo dell'orologio di Milano	Padova-Milano Differenza registrata dei due orologi	Correzione dell'orologio, corretta per la parallasse delle penne corrispond. all'istante medio della serie	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	l_4-t_4	Istante medio di ciascuna serie di segnali in tempo dell'orologio di Milano	Padova-Milano Differenza registrata dei due orologi	Correctione dell'orologio, correcta per la parallasse delle penes, corrispond. al-1'stante medio della serie	Correzione dell'orologio corrispond. al- l'istante medio della serie	Parallasse delle penne	$l_4 + t_4$
	HOW LIVE				143778-4				a Ward					祖共宣言
	Maggio	6 6	$ \begin{array}{c c} h & m \\ 13 & 44.2 \\ 13 & 50.5 \end{array} $	$^{m}_{+34}^{s}_{48.118}$ $^{48.129}$	$ \begin{array}{c c} & m & s \\ & -23 & 52.093 \\ & -23 & 52.108 \end{array} $	$+12.982 \\ +12.984$	$-0.072 \\ -0.077$	$+10^{m}_{43.115}^{s}_{43.114}$	$ \begin{array}{c c} h & m \\ 13 & 45.8 \\ 13 & 49.3 \end{array} $	+3448.143 48.139	$ \begin{array}{c c} -23 & 52.097 \\ -23 & 52.105 \end{array} $	$+12.982 \\ +12.983$	$-0.077 \\ -0.077$	$+10^{h}_{43.141}^{s}_{43.128}$
	Maggio	7 7	14 2.2 14 7.5	+34 51.967 51.977	-23 55.437 -23 55.451	+13.275 $+13.276$	-0.097 -0.097	+10 43.352 43.347	14 3.4 14 6.3	+3451.969 51.978	-23 55.440 -23 55.448	$+13.275 \\ +13.276$	-0 097 -0.097	$+10 \frac{43.351}{43.351}$
	Maggio	8 8*	14 4.9	+34 55.869 -	—23 59.118 — —	+13.736 -	-0.100 -	+10 43.115 -	14 6.3 14 9.3	+34 55.890 55.886	23 59.122 23 59.130	+13.736 $+13.737$	-0.100 -0.100	+10 43.131 43.118
	Maggio	9	14 4.0 14 11.0	+34 59.596 59,599	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$+14.180 \\ +14.182$	-0.078 -0.078	+10 43.296 43.282	14 5.3 14 9.8	+34 59.617 59.618	$ \begin{array}{rrrr} -24 & 2.201 \\ -24 & 2.210 \end{array} $	$+14.180 \\ +14.181$	-0.078 -0.078	+10 43.314 43.305
	Maggio	10 10	14 4.7 14 10.6	+35 3.710 3.698	-24 5.898 -24 5.916	$+14.685 \\ +14.687$	-0.101 -0.101	+10 43.228 43.196	14 6.3 14 9.3	+35 3.736 3.735	$-24 5 904 \\ -24 5.912$	$+14.685 \\ +14.686$	-0.101 -0.101	+10 43.248 43.238
	Maggio	11 11	14 8.5 14 13.5	+35 7.911 7.921	$ \begin{array}{rrr} -24 & 9.772 \\ -24 & 9.784 \end{array} $	+15.143 +15.145	0.100 0.100	+10 43.096 43.092	14 9.8 14 12.3	+35 7.963 7.964	$ \begin{array}{rrrr} -24 & 9.775 \\ -24 & 9.782 \end{array} $	+15.144 $+15.145$	-0.100 -0.100	+10 43.144 43.137
	Maggio	12 12	14 9.6 14 15.3	+35 11.975 11.985	-24 13.288 -24 13.305	$+15.580 \\ +15.582$	-0.107 -0.099	+10 43.214 43.197	14 10.8 14 13.8	+35 12.028 12.031	$ \begin{array}{r} -24 \ 13.291 \\ -24 \ 13.300 \end{array} $	$+15.580 \\ +15.581$	-0.099 -0.099	+10 43.256 43.249
	Maggio	13 13	14 14.6 14 20.5	+35 16.327 16.330	-24 17.190 -24 17.210	+15.973 $+15.975$	-0.108 -0.116	+10 43.272 43.261	14 16.3 14 19.3	+35 16.350 16.359	$-24\ 17.196$ $-24\ 17.206$	+15.974 $+15.975$	-0.116 -0.116	+10 43.296 43.294
	Maggio	14 14	14 19.0 14 24.5	+35 20.681 20.693	-24 21.123 -24 21.142	+16.507 $+16.509$	-0.092 -0.092	+10 43.143 43.134	14 20.3 14 23.3	+35 2 0.703 20.721	-24 21.128 -24 21.138	$+16.508 \\ +16.509$	-0.092 -0.092	+10 43.159 43.166
	Maggio	15 15	14 26.9 14 32.5	+35 25.325 25.331	-24 25.233 24 25.252	$+16.917 \\ +16.919$	-0.057 -0.057	+10 43.232 43.217	14 28.3 14 31,3	+35 25.336 25.349	-24 25.237 -24.25.248	$+16.918 \\ +16.918$	-0.057 -0.057	+10 43.238 42.240
10*	Maggio	16 16	14 28.3 14 33.6	+35 29.894 29.902	-24 29.374 -24 29.389	+17.326 + 17.327	$ \begin{array}{c c} -0.057 \\ -0.057 \end{array} $	+10 43.251 43.243	14 29.8 14 32.3	+35 29.935 29.942	-2429.378 -2429.385	$+17.326 \\ +17.327$	-0.057 -0.057	+10 43.288 43.287
	Serie	non	arrivata a	Milano.							4. 2. 2. 2.			F 2 5 6

Dalle due colonne intitolate l-t, l+t de' quadri che precedono furono dedotte le varie differenze di longitudine osservate, non che le durate di trasmissione della corrente attraverso le corrispondenti linee. Fu presa la media dei due valori di l-t e di l+t dati per ogni sera, ne fu dedotto un valore di l col rispettivo peso, ed un valore di t. Il peso di ogni valore di l fu calcolato colla formola

$$\frac{g_{\circ} g_{\circ}}{g_{\circ} + g_{\circ}}$$

in cui g_* e g_* sono i pesi delle correzioni dell'orologio (v. p. 34, 35 e 54) delle sere corrispondenti nelle due stazioni orientale ed occidentale alle quali l si riferisce.

Dai singoli valori di una stessa l, avuto riguardo al peso, fu dedotto il valor medio di l non che il suo error probabile; il valor medio di l sommato algebricamente coll'equazion personale fra i due osservatori nelle due stazioni a cui l si riferisce diede il valore della differenza delle longitudini fra le stazioni stesse; gli errori probabili dell'equazion personale e del valor medio di l diedero l'error probabile ond'è affetta la differenza trovata delle longitudini.

Dei singoli valori di ogni t fu presa semplicemente la media, e trovata così la durata della trasmissione della corrente attraverso la linea non che il suo error probabile.

I calcoli accennati risultano chiaramente in tutti i loro dettagli dal quadro numerico che segue, intitolato appunto:

Calcolo delle differenze di longitudine.

	VIE	NNA-MI	LANO	1,603	Bil A	i dilimeta	MOI	NACO-M	ILANO	ea, C	elco.
Data	l-t	l+t		Peso	t	Data	$l_3 - t_3$	l_3+t_3	l_3	Peso	t_3
Maggio 4	+28. 35.391	+28. 35.462	m s +28, 35,426	4.8	* +0.035	Maggio 4	m s	m s	+ 9.40.174	3.0	+0.035
5	.355	.427	,391	4.8	.036	5	.164	.182	.173	4.5	.009
6	.354	.430	.392		.038		.066		.079		.01
7	.283	.367	.325	GE -	.042	1	.122	36		6	.00
8	.297	.394	9 - 1 - CO. [-	Et :	.048	A on	.006	.058			.02
9	.290	.396		2	.053	12	.027	.095		3.8	.03
11	.258	.365			.053	13	.136	.168			.01
14	.229	.379	.304	6.0	.075	14	.024	.042	Secretary Si		.00
15	.274	.315	.295	6.7	.021	15	.130	.153		6.2	.019
16	.350	.448	.399	5.5	.049	16	.080			-	.08
t durat	a della trasp	nissione dell	a corrente (s 0.045 ±	s = 0.003	l, durata	a della trasn	striffiance ?	a impresent	000	
	1+	m s 28. 35.353 :	± 0.010.		20.5	distang		- 9. 40.110	8		2 0.000
	one personal		em o	4124		Equazio	ne personal	e — 0.031	± 0.007.		
Differe	nza delle lo	ongitud <mark>ini</mark> -	28.35.179	± 0.03	17	Differen	za delle lo	ngitudini 4	- 9.40.079	± 0.01	3.
	PA	DOVA-M	ILANO	8.00	0.0	T,8.	VIE	NNA-PA	DOVA		
Data	l_4-t_4	l_4+t_4	l_4	Peso	t_4	Data	l_2-t_2	$l_2 + t_2$	l_2	Peso	t_2
Maggio 6	+10. 43,114	+10. 43.134	m s +10.43.124	4.2	s +0.010	Maggio 6	m s +17.52.238	m s +17. 52.287	m s +17.52.263	4.4	+0.024
7	.349	.351	.350	0.8	.001	7	51.938	.056	51.997		.059
8	.115	.124	.119	0.9	.005	8	52.180	.229	52.204	1.7	.02
9	.289	.309	.299	5.0	.010	9	52 046	.085	52.065	6.0	.020
10	.212	.243	.227	4.2	.015	10	52.082	.123	52.102	4.0	.02
11	.094	.140	.117	2.9	.023	11	52.137	.191	52.164	4.4	.02
12	.205	.252	.228	5.7	.024	13	52.086	.105	52.095	4.0	.020
13	.266	.295	.280	5.0	.014	14	52.025	.123	52.074	6.0	.049
14	.138	.162	.150	6.0	.012	15	52.069	.112	52.090	6.0	.022
45	.224	.239	.231	5.5	.008	16	52.124	.174	52.149	6.0	.025
15		.287	.267	5.5	.020						
16	.247	.201				naintenat			- D 2 2		pillan
16	a della trasn		a corrente 0	.013 ±	0.002	$t_2 = \mathrm{dur}$	ata della tra	smiss. della	corrente 0.0	029 ±	0.003
16	a della trasn l_4+	nissione della m s $10.43.220$	± 0.013.	.013 ±	0.002		$l_2 = +$	-17.52.122	corrente 0.0 ± 0.014.	029 ±	0.003.
t_4 durat	a della trasn	nissione della m s $10.43.220$ e -0.068 :	± 0.013. ± 0.012.			Equazion		-17.52.122 -0.106	$\pm 0.014. \\ \pm 0.014.$		

Ai risultati del quadro che precede vuole essere aggiunto quello che riguarda la differenza di longitudine fra Vienna e Monaco, e che ci fu cortesemente comunicato dal prof. Oppolzer e dal colonn. Orff. Dalle operazioni eseguite risultò la differenza stessa uguale a 18^m. 55° 110 ± 0°. 020, e la corrispondente durata della trasmissione della corrente uguale a 0°. 015 ± 0°. 001.

Noi abbiamo quindi fra le quattro stazioni di Vienna, Monaco, Padova e Milano le cinque osservate differenze di longitudine che seguono:

Vienna-Milano

$$L = 28^m$$
 35°. 179 ± 0°. 017

 Vienna-Monaco
 $L_1 = 18$
 55. 110 ± 0. 020

 Vienna-Padova
 $L_2 = 17$
 52. 016 ± 0. 020

 Monaco-Milano
 $L_3 = 9$
 40. 079 ± 0. 013

 Padova-Milano
 $L_4 = 10$
 43. 152 ± 0. 018.

Fra le medesime devono esistere le due relazioni

$$L = L_1 + L_3$$

$$L = L_2 + L_4$$

e ad esse infatti i valori osservati soddisfanno entro i limiti degli errori probabili. Ma poichè le due equazioni di condizione scritte devono essere rigorosamente soddisfatte, noi abbiamo dietro esse determinato il sistema più probabile dalle correzioni x, x_1 , x_2 , x_3 , x_4 , da apportarsi rispettivamente ai valori osservati di L, L_1 , L_2 , L_3 , L_4 , e trovato per esse, tenendo conto dei rispettivi pesi, i seguenti valori (1)

$$x = +0.0004$$

$$x_{t} = -0.0068$$

$$x_{2} = +0.0063$$

$$x_{3} = -0.0029$$

$$x_{4} = +0.0051$$

(1) I valori delle correzioni x, x_1 ... furono ottenute applicando il solito metodo di compensazione di Gauss. Per esso i valori compensati λ , λ_1 , λ_2 , λ_3 , λ_4 , dipendono dai valori osservati L, L_1 , L_2 , L_3 , L_4 , per mezzo delle relazioni.

$$\begin{split} \lambda &= L - \frac{\alpha}{M} \left\{ CL - E \left(L_1 + L_3 \right) - D \left(L_2 + L_4 \right) \right\} \\ \lambda_1 &= L_1 + \frac{\alpha_1}{M} \left\{ EL - B \left(L_1 + L_3 \right) + \alpha \left(L_2 + L_4 \right) \right\} \\ \lambda_2 &= L_2 + \frac{\alpha_3}{M} \left\{ DL + \alpha \left(L_1 + L_3 \right) - A \left(L_2 + L_4 \right) \right\} \\ \lambda_3 &= L_3 + \frac{\alpha_3}{M} \left\{ EL - B \left(L_1 + L_3 \right) + \alpha \left(L_2 + L_4 \right) \right\} \\ \lambda_4 &= L_4 + \frac{\alpha_4}{M} \left\{ DL + \alpha \left(L_1 + L_3 \right) - A \left(L_2 + L_4 \right) \right\} \end{split}$$

nelle quali α , α_1 , α_2 , α_3 , α_4 , sono numeri proporzionali ai quadrati degli errori probabili r, r_1 , r_2 , r_3 , r_4 , delle quantità osservate L, L_1 , L_2 , L_3 , L_4 ;

$$A = \alpha + \alpha_1 + \alpha_3$$
 $D = \alpha_1 + \alpha_3$
 $B = \alpha + \alpha_2 + \alpha_4$ $E = \alpha_2 + \alpha_4$
 $C = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ $M = AB - \alpha$

ai quali corrispondono le seguenti differenze di longitudine compensate:

 Vienna-Milano
 $\lambda = 28^m$ 35^s . $179 \pm 0.^s$ 012

 Vienna-Monaco
 $\lambda_4 = 18$ 55. 103 ± 0.018

 Vienna-Padova
 $\lambda_2 = 17$ 52. 022 ± 0.019

 Monaco-Milano
 $\lambda_3 = 9$ 40. 076 ± 0.011

 Padova-Milano
 $\lambda_4 = 10$ 43. 157 ± 0.014

Queste differenze si riferiscono ai rispettivi centri delle stazioni di osservazione; per Vienna ad un punto della Türkenschanze poco lungi dall'area su cui sorge il nuovo Osservatorio imperiale, per Monaco al pilastro centrale dell'Osservatorio di Bogenhausen, per Padova al luogo dello strumento d'osservazione in quell'Osservatorio reale (Meridiano del quadrante murale), per Milano al centro dell'istrumento portatile dei passaggi provvisoriamente nel Giardino botanico di Brera.

Già in occasione delle operazioni di longitudine fra Milano, Sempione e Neuchatel erasi trovato che questo centro era più orientale della torre maggiore della nostra Specola di metri 23, 765, lunghezza che pel parallelo di 45° e 28′ sull'elissoide di Bessel fa 0.° 073. Sommando questa quantità alle differenze appena scritte in cui entra Milano si ottiene:

1.º Differenza di longitudine fra Vienna (Türkenschanze) e il centro della torre maggiore dell'Osservatorio di Milano

$$28^{\text{m}}$$
 35^{s} . $252 \pm 0^{\text{s}}$. 012 .

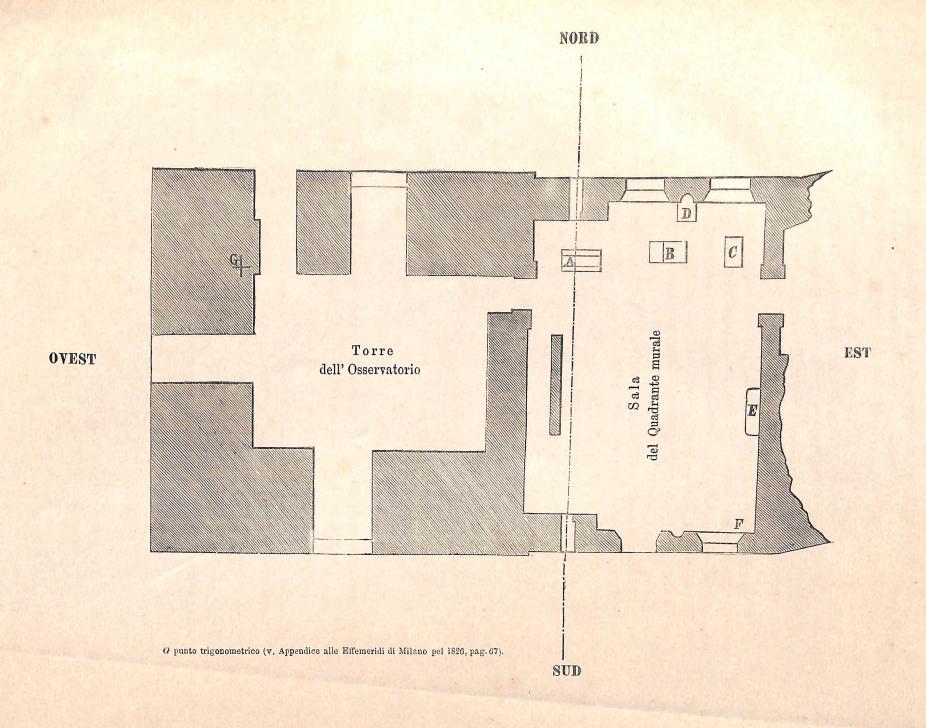
2.º Differenza di longitudine fra Vienna (Türkenschanze) e il pilastro centrale dell'osservatorio di Bogenhausen a Monaco

$$18^{\text{m}}$$
 55^{s} . $103 \pm 0^{\text{s}}$. 018 .

3.º Differenza di longitudine fra Vienna (Türkenschanze) e l'Osservatorio reale dell'Università di Padova (quadrante murale)

$$17^{\text{m}}$$
 52^{s} . $022 \pm 0.^{\text{s}}$ 019 .

4.º Differenza di longitudine fra il pilastro centrale dell'Osservatorio di Bogenhausen a Monaco e il centro della torre maggiore dell'Osservatorio di Brera a Milano


$$9^{m} 40^{s} . 149 \pm 0^{s} . 011$$
.

5.º Differenza di longitudine fra l'Osservatorio reale dell'Università di Padova (quadrante murale) e il centro della torre maggiore dell'Osservatorio di Brera a Milano

$$10^{\text{m}}$$
 43^{s} . 230 ± 0 . 014 .

Gli errori probabili ρ , ρ_1 , ρ_2 , ρ_3 , ρ_4 , dei valori compensati λ , λ_1 , λ_2 , λ_3 , λ_4 , sono dati dalle formole

$$\begin{split} & \rho^2 \!= \left(1 - \alpha \left(\frac{C}{M}\right)^2 r^2 + \alpha^2 \frac{E^2}{M^2} (r_1^2 \!+ r_3^2) + \alpha^2 \frac{D^2}{M^2} (r_2^2 \!+ r_4^2) \right. \\ & \rho_1^2 \!= \left(1 - \alpha_4 \frac{B}{M}\right)^2 r_4^2 + \alpha_1^2 \frac{E^2}{M^2} r^2 \!+ \alpha_1^2 \frac{B^2}{M^2} r_3^2 + \frac{\alpha^2 \alpha_1^2}{M^2} (r_2^2 \!+ r_4^2) \right. \\ & \rho_2^2 \!= \left(1 - \alpha_2 \frac{A}{M}\right)^2 r_2^2 + \alpha_2^2 \frac{D^2}{M^2} r^2 \!+ \alpha_2^2 \frac{A^2}{M^2} r_4^2 + \frac{\alpha^2 \alpha_2^2}{M^2} (r_1^2 \!+ r_3^2) \right. \\ & \rho_3^2 \!= \left(1 - \alpha_3 \frac{B}{M}\right)^2 r_3^2 + \alpha_3^2 \frac{E^2}{M^2} r^2 \!+ \alpha_3^2 \frac{B^2}{M^2} r_4^2 + \frac{\alpha^2 \alpha_3^2}{M^2} (r_2^2 \!+ r_4^2) \right. \\ & \rho_4^2 \!= \left(1 - \alpha_4 \frac{A}{M}\right)^2 r_4^2 \!+ \alpha_4^2 \frac{D^2}{M^2} r^2 \!+ \alpha_4^2 \frac{A^2}{M^2} r_2^2 \!+ \frac{\alpha^2 \alpha_4^2}{M^2} (r_1^2 \!+ r_3^2) \right. \end{split}$$

LIBRERIA

DI

ULRICO HOEPLI

EDITORE

MILANO

Galleria De-Cristoforis, 59-62.

PUBBLICAZIONI DEL R. OSSERVATORIO DI BRERA IN MILANO

(in 4.º grande.)

		A CONTRACTOR
I.	Celoria G., Sul grande commovimento atmosferico avvenuto il 1.º di agosto 1862 nella Bassa Lom-	
	bardia e nella Lomellina, pag. 12 con una tavola litografata	1. —
II.	Schiaparelli G. V., Osservazioni astronomiche e fisiche sulla gran Cometa del 1862, pag. 38 con 5	
	tavole litografiche ,	3.50
III.	— I precursori di Copernico nell'antichità, pag. 52	2. 50
IV.	Celoria G., Sulle variazioni periodiche e non periodiche della temperatura nel clima di Milano, pag. 86	
	con 3 tavole litografiche	3.50
V.	Tempel G., Osservazioni astronomiche diverse fatte nella Specola di Milano negli anni 1871 a 1874,	
	pag. 20 con tre tavole fotografiche rappresentanti la Cometa di Coggia, una carta delle Pleiadi,	
-	e due tavole litografiche	4.50
VI.	Piazzi G. e Oriani B., Corrispondenza astronomica, pag. 204	9.55
VII.	(Parte 3.ª) Osservazioni di stelle cadenti fatte nelle stazioni italiane durante l'anno 1872, pag. 84 "	3.70
VIII.	Schiaparelli G. V. e Celoria G., Resoconto delle Operazioni fatte a Milano nel 1870 in corrispondenza	
	cogli Astronomi della Commissione geodetica svizzera per determinare la differenza di longitudine	
	dell'Osservatorio di Brera coll'Osservatorio di Neuchâtel e colla stazione trigonometrica del Sempione.	
IX.	Schiaparelli G. V., Le Sfere Omocentriche di Eudosso, di Callippo e di Aristotele, pag. 61 con due	
	tavole litografiche	3.50
X.	Celoria G., Sull' Eclissi solare totale del 3 giugno 1239, pag. 26 con una tavola litografica "	2. —
XI.	- Sugli Eclissi solari totali del 3 giugno 1239 e del 6 ottobre 1241, pag. 20 con due tavole litograf. "	2
XII.	Frisiani P., Su alcuni temporali osservati nell'Italia superiore (estate 1876), pag. 20 con tre tavole	
	litografiche	2. —
XIII.	Celoria G., Sopra alcuni scandagli del cielo, eseguiti all'Osservatorio Reale di Milano, pag. 148 con	
	cinque tavole litografiche	5
CIV.	Celoria G., e Lorenzoni G., Resoconto delle operazioni fatte a Milano ed a Padova nel 1875 in corri-	
	spondenza cogli astronomi austriaci e bavaresi per determinare le differenze di longitudine fra gli	
	Osservatorj astronomici di Milano e di Padova e quelli di Vienna e di Monaco	3)0
	(La continuazione è în corso di stampa.)	

È pubblicata la ristampa della 2.ª edizione delle

FIGURE RECIPROCHE NELLA STATICA GRAFICA

del professore

LUIGI CREMONA

Direttore della R. Scuola di Applicazione per gli Ingegneri in Roma.

Con 5 Tavole litografate ed una introduzione de.

GIUSEPPE JUNG

Professore di Statica Grafica e di Geometria projettiva nel R. Istituto Tecnico superiore di Milano.

Un volume in-8 - L. 3. -

Astr

Isservat

*B