

Identification of asteroids and comets: methods and results

F. Manca, P. Sicoli, and A. Testa

Osservatorio Astronomico di Sormano, Loc. Colma del Piano, 22030 Sormano (CO), Italy. Web page: www.brera.mi.astro.it/sormano/

Abstract. Useful and practical methods to identify asteroids and comets, using software developed at Sormano Astronomical Observatory, are presented together with some obtained results.

Key words. Asteroids – Orbit identification – Orbit computation

1. Introduction

With more than 76 million asteroids observations available in the Minor Planet Center database (november 2010), one the most intriguing task is to assign to each of them its object identification and orbit. "The complete identification process consists of uniquely ascribing all known observations to specific individual minor planets" wrote Brian Marsden in the mid-eighties, pointing out that "... relatively little has actually been published on the subject before" (Marsden 1986).

The problem was assessed and broadened a decade later in a series of papers where new methods and approaches were discussed (Milani 1999; Milani & Valsecchi 1999; Milani et al. 2000, 2001) The philosophy and the aim of a such work transpire in few words reported in the first of those papers: "... improvements in the algorithms can indeed help the observers to substantially decrease the rate at which asteroids are lost, and to increase the rate at which the lost ones are recovered".

Send offprint requests to: F. Manca

2. Identification of asteroids and comets

In short, identifications are possible in the following four cases:

- 1. there is a sufficient number of observations for computing two sets of orbital elements, one for each observation arc, together with their covariance matrices;
- 2. there are observations obtained at the same opposition which did not permit an orbit calculation;
- 3. orbital elements are accurate enough as to allow a search in the database for single or double night observations;
- 4. recovery is attempted by means of observing campaigns or using old plates.

The present work takes into account only the first three cases. For the first one we have developed *IDA* (IDentification of Asteroids), a software used to compare and filter all the orbital elements included in the database (Testa 1998).

More specifically it analyzes the orbital elements of newly discovered objects and suggests tentative identifications as starting points

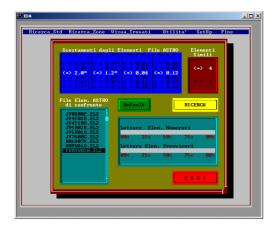


Fig. 1. Screen capture of a run of program IDA

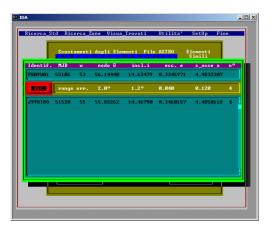


Fig. 2. Screen capture of a run of program IDA

for possible linkages between the corresponding sets of observations. This approach in many cases revealed some difficulties, notably when the duration of the two observational arcs involved is short. An example of a similar particular case was the identification of the comet P/2009 W1 = 1999 XO188 (Minor Planet Electronic Circular 2009-Y21). For the second and third case we used MAPPA2 (Testa 1997), a sort of dedicated planetary, regularly updated with orbits of asteroids and comets published by the Minor Planet Center. The program allows the plot of all the objects in a selected area of the celestial sphere, highlighting the identification candidates on the basis of parameters such as motion, magnitude and posi-

Fig. 3. Screen capture of a run of program MAPPA2

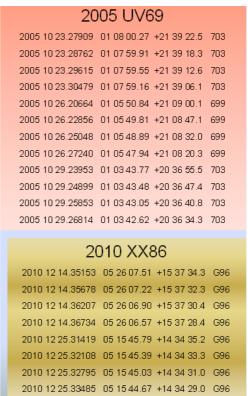


Fig. 4. Screen capture of a run of program MAPPA2

tion angle. This system is particularly suitable for objects with a very short observational arc. A typical example is the asteroid 2005 UV69 = 2010 XX86 (Minor Planet Electronic Circular 2011-A33).

Information about the results obtained are available at the web address http://www.brera.mi.astro.it/sormano/ Milani, A., & Valsecchi, G.B. 1999, Icarus, identification/Identification.html.

References

Marsden, B.G. 1986, in Asteroids Comets Meteors II, Lagerkvist C.-I. et al. eds., 3 Milani, A. 1999, Icarus, 137, 269

140, 408

Milani, A., et al. 2000, Icarus, 144, 39

Milani, A., Sansaturio, M.E., Chesley, S.R. 2001, Icarus, 151, 150

Testa, A. 1997, personal communication Testa, A. 1998, personal communication