An internal driver of galaxy evolution is needed to produce galaxy "downsizing"

> P. Monaco Universita` di Trieste - INAF-OATs

In collaboration with:

F. Fontanot, G. De Lucia, R. Somerville, L. Silva, E. Vanzella, B. Lo Faro, S. Cristiani, P. Santini, A. Grazian, A. Fontana & the GOODS-MUSIC team

The many manifestations of downsizing:

Fontanot, De Lucia, PM, Somerville & Santini, 2009, MNRAS 397, 1776

archaeological DS

more massive galaxies host older stellar populations

•star formation DS:

the mass of the typical SF galaxy grows with z

•stellar mass DS:

the number density of smaller galaxies evolves faster since $z{\approx}1$

Chemical DS:

the metallicity of smaller galaxies evolves faster with z

• chemo-archaeological DS: more massive ellipticals have higher [a/Fe] ratios

• AGN DS:

the number density of fainter AGN peaks at lower z

Downsizing in stellar mass: GOODS-MUSIC

- Fontana, PM et al. 2006, A&A 459, 745
- ~3000 K-selected galaxies in GOODS-S
- complete to Ks~23.5 (AB)
- broad-band coverage from U to MIR (ACS@HST, VLT, IRAC@Spitzer)
- 28% spectroscopic redshifts
- well-trained photometric redshifts for all galaxies (14 bands)
- reliable stellar mass estimates up to z~4

Stellar mass density in massive galaxies (>10¹¹ M_{sun}): data vs models

The average assembly of massive galaxies is reproduced by models

(+ De Lucia, Somerville etc.)

Stellar mass function at z~1

All models consistently overpredict the number of $\sim 10^{10} M_{sun}$ galaxies at $z \sim 1$

Downsizing?!?

(Fontanot, PM, Silva & Grazian, 2007, MNRAS 382, 903)

DS in stellar mass

comparison of three models:

- Garching-De Lucia
- Monaco & Fontanot (Morgana)

Somerville 08

(assumed error on mass: 0.25 dex) with observational

estimates of stellar mass

functions by:

- Panter+ 07, SDSS
- Cole+ 01, 2MASS
- Bell+ 03, 2MASS+SDSS
- Borch+ 06, COMBO17
- PerezGonzalez+ 08, Spitzer
- Bundy+ 06, DEEP2
- Drory+ 04, MUNICS
- Drory+ 05, FDF+GOODS
- Fontana+ 06, GOODS-MUSIC
- Pozzetti+ 07, VVDS
- Marchesini+ 08, 3 fields

Good agreement at high masses no downsizing at small masses Galaxy secular evolution: is it all that matters? Milano 2011

Galaxy secular evolution: is it all that matters? Milano 2011

Galaxy secular evolution: is it all that matters? Milano 2011

Underestimate IF errors

in mass are neglected!

Galaxy secular evolution: is it all that matters? Milano 2011

Galaxy secular evolution: is it all that matters? Milano 2011

Downsizing in star formation rate

z<2:

but

the mass function of model passive galaxies does not peak! secular evolution: is it all that matters? Milano 2011

Downsizing in star formation rate

z<2:

Archaeological downsizing

Ages from from Gallazzi+ 06, SDSS

Severe problems with less massive galaxies

Small galaxies ($<10^{11}$ M_{sun}) in these models form too early:

- they are too passive at z<3
- they are already in place at z=1
- they are too old at z=0

No environmental effect: when the problem raises these galaxies are mostly central

We expect an excess in the prediction of small star-forming galaxies at high redshift

Important to look into the faint high-redshift Universe

Lyman-break galaxies: "observing" a model

- Produce galaxies in a box
- Output their properties on a time grid
- Transform time into line-of-sight distance and redshift
- Transform number densities in surface densities
- Produce GRASIL spectra and magnitudes (with Chabrier IMF)
- Add noise and Lyman-alpha emission to model magnitudes
- Select samples using the same color criteria as observations
- Compare number counts and redshift distributions to data
- Compare to luminosity functions derived from observations

Luminosity function vs Bouwens et al. 07

Luminosity function vs Bouwens et al. 07

second best-fit model

Redshift intervals:

- 3.4 < z < 4.5 (B-drop)</p>
- 4.5 < z < 5.5 (V-drop)
- 5.5 < z < 6.5 (i-drop)

"Excessive" galaxies

absolute UV magnitude: M_{UV} ~-18 star formation rate: SFR~10 M_{sun} yr⁻¹ apparent magnitude: z_{850} ~27 stellar mass: M_{*} ~10⁸-10⁹ M_{sun} @z~6 to 10⁹-10¹⁰ M_{sun} @z~4 bimodal metallicity: Z~solar and Z~0.25 solar hosted in halos of: M_{h} ~10¹¹ M_{sun} with circular velocities: V_~100-200 km/s

Important contributors to the IGM pollution

Waiting for ALMA, JWST and E-ELT!

Suppressing this excess of star formation (with a Dekel & Silk-like SN feedback)?

$$V_{sn}^2 = e_{sn} E_{sn} / M_{star,sn}$$

massive outflow if

 $V_c < V_{sn}$

at $z\sim0$ it must be minimal for

 $V_c=220 \text{ km/s}$

An (apparently) Pindaric flight

Initial conditions of a Milky Way-like halo from Stoher et al. (2002)

Conservation of angular momentum depends on stellar feedback

Weak feedback and primordial cooling

ilano 2011

Strong feedback and metal cooling

ilano 2011

Strong feedback and metal cooling

new_GA1 gas density ($M_{\odot} \text{ pc}^{-2}$)

new_GA1 qas density (M_{\odot} pc⁻²)

ilano 2011

Conclusions

- O Stellar mass downsizing is **not** reproduced by galaxy formation models
- O This is most likely caused by excessive star formation in small galaxies at z~5 (visible as faint V-dropouts)
- O This excess is most likely connected to the difficuly of producing bulge-less galaxies in N-body simulations
- O SN feedback cannot solve this discrepancy if effective energy injection per unit stellar mass is constant (as in Dekel & Silk 1986)
- O This problem must be solved by an internal driver of galaxy evolution Galaxy secular evolution: is it all that matters? Milano 2011