On the Radial Stellar Content of Early-Type Galaxies

F. La Barbera

INAF-Osservatorio Astronomico di Capodimonte

R.R. de Carvalho⁽¹⁾; I.G. de la Rosa⁽²⁾; I. Ferreras⁽³⁾; R.R. Gal⁽⁴⁾; P.A.A. Lopes⁽⁵⁾; A. Pasquali⁽⁶⁾; R. Swindle⁽⁴⁾

(1)INPE-DAS, Sao Paulo, Brazil; (2)IAC, Tenerife, Spain;
(3) University College London, UK; (4) University of Hawaii, Honolulu, USA;
(5)OV/UFRJ, Rio de Janeiro, Brazil; (6)ARI, Heidelberg University, Germany

Introduction: ETGs formation + SPIDER

Internal color gradients

SPIDER (SDSS+UKIDSS; z<0.1)
 correlation with galaxy properties
 environment
 beyond 1R_{eff}

Early-type galaxies (ETGs)

ETGs (E+S0's) dominate

high mass end of the galaxy distribution

highest density regions (i.e. clusters)

explaining their formation scenario is crucial for any theory of structure formation

Competitive scenarios — "In-situ" (monolithic) Merging

ETG formation - "Monolithic"

Eggen+'62; Larson '75

gravitational collapse of gas proto-cloud intense burst of star formation supernovae-driven wind

 \rightarrow old stellar populations + tight observed correlations (CM+FP)

→ hierarchical paradigm ?

Revised "monolithic" collapse

Kawata'01; Kobayashi'04; Merlin & Chiosi'06: in a CDM framework, ETGs can form "monolithically", through the assembly of many subgalaxies (10^9M_{Sun}) at z \geq 2-3.

SPH simulation from Kobayashi'04

ETG formation - "Wet"/"Dry" mergers

Toomre'77, Kauffman+'93:ellipticals form by "wet" merging of gaseousdisc galaxies $z\sim15$ $z\sim2$

- → arises naturally in a hierarchical framework
- → old stellar populations/scaling relations ?

SPH simulation of major merger at z~2 (Kobayashi '04)

Kauffmann & Haenelt'00; Khochfar & Burkert'03: the most recent mergers of bright E's involved gas-poor galaxies observed at both low- and high-z (van Dokkum+'99; Van Dokkum'05) explaining both evolution in number density (Bell+'04) and size growth (Daddi+'05)

Example of "dry"/"red" merger at z~0 (van Dokkum'05)

THESE and OTHER processes (e.g. tidal interactions) depend on the ENVIRONMENT where galaxies reside

Spheroid's Panchromatic Investigation in Different Environmental Regions (SPIDER)

UKIDSS-Large Area Survey (Y=20.5, J=20, H=18.8, K=18.4) Total sky coverage ~1,200 sq. deg.

SPIDER: sample and galaxy parameters

Volume-limited sample (Miller+'03) of 39,993 ETGs from SDSS-DR6

Sersic structural parameters are <u>homogeneously</u> derived in grizYJHK with 2DPHOT (La Barbera+'08)

62 days of CPU time

INPE-LAC cluster + INAF-OAC beowulf (65 CPUs)

SDSS spectra: STARLIGHT (Cid Fernandes+'05) with α-enhanced MILES models (Cervantes+'07)

The environment of the SPIDER

Three decades in local galaxy density AND two decades in parent halo mass

..... SPIDER papers

Sample + data analysis (La Barbera et al. '10a)

Scaling relations from g through K vs. environment (La Barbera+ '10b, c)

Star formation histories+stellar masses (de la Rosa+ '11; Swindle+ 11)

Characterization of the evolutionary state of galaxy groups (Ribeiro+'11, submitted)

Optical+NIR internal color gradients vs. environment (La Barbera+ '10d; La Barbera+ '11)

Introduction: ETGs formation + SPIDER

Internal color gradients

SPIDER (SDSS+UKIDSS; z<0.1)
 correlation with galaxy properties
 environment
 beyond 1R_{eff}.....

Internal color gradients (CGs) in ETGs

Metallicity is the main driver (Peletier+'90) as confirmed by absorption-line gradients (Gonzalez'93)

Age plays a secondary role, <u>still debatable</u> (e.g. Wu+'05)

The effect of internal dust <u>seems</u> to be negligible (Michard '05; Savoy+'09; but see Wise & Silva'96)

CGs of massive galaxies

Observations	Formation scenarios
 → Metallicity/age gradients > Age gradients ∇_t < 20-30% (Saglia+'00; Wu+'05) > Metallicity gradient -0.4 < ∇_Z <-0.2	"In-situ" formation - gas-rich merging
(Tamura+'00; La Barbera+'03; Ferreras+'05)	ALL
 Dependence on luminosity/mass No dependence (Peletier+'90; Michard'05; Park+'07; Ferreras+'09) Flattening at both low and high mass (Roche+'10; Tortora+'10) Steepening (Tamura & Ohta'03; den Brok'11) 	Mergers Mergers "In-situ" formation
 The environment Shallower CGs at high density	Mergers
(La Barbera+'05; Ko & Im'05; den Brok+'11) No dependence (Park+'07; Roediger+'11)	"In-situ" formation

Color gradients (CGs) from 2D Sersic fitting

The galaxy image, in a given band W, is modeled as

 $I_{W}(x, y) = S(x, y; \mu_{o,W}, \mathbf{r}_{e,W}, \mathbf{n}_{W}) * P(x, y)$ $S \longrightarrow 2D \text{ Sersic law}$ $P \longrightarrow PSF \text{ model}$ $\mu_{o,W}, \mathbf{r}_{e,W}, \mathbf{n}_{W} \longrightarrow \text{ structural parameters}$

ETG Sersic fitting in r band (2DPHOT)

Parametric vs. non-parametric (median-stacked) g-r color profile for 100 ETGs ($10^{11}M_{sun}$; SDSS data).

The CG is defined as the slope of the linear fit to the parametric color profile:

$$\nabla_{W_1-W_2}(r_{eW_1}, n_{W_1}, r_{e,W_2}, n_{W_2}) = -2.5 \times \log(I_{W_1} / I_{W_2})$$

in the radial range of 0.1 to 1 R_e.

Introduction: ETGs formation + SPIDER

Internal color gradients

SPIDER (SDSS+UKIDSS; z<0.1)
 correlation with galaxy properties
 environment
 beyond 1R_{eff}.....

Color and stellar population gradients

Other studies have then found evidence for positive age gradients in massive galaxies (e.g. Clemens+'09, using SDSS spectra; Tortora+'10; Roediger+'11)

Correlation with mass/luminosity

..... one of the most debatable issues

Do the ∇ 's correlate with mass ? There is NO unique answer.

Correlation with stellar populations and mass: the role of age/metallicity gradients

Different behavior of "low" and "high" mass ETGs

At high-mass, the lack of correlation between
 ▶ ∇_{*} and mass is because of an anti-correlated variation of age and metallicity gradients

Notice the trend with $[\alpha/Fe]$ (significant at 7σ 's!!), which is due to ∇_{Z} .

What is driving what?

"high" mass ETGs

Correcting for the correlation of ∇ 's with σ_0 , we find that all correlations are removed but the ones with $[\alpha/Fe]$.

 $\rightarrow \sigma_0, [\alpha/Fe]$

Introduction: ETGs formation + SPIDER

Internal color gradients

SPIDER (SDSS+UKIDSS; z<0.1)
 correlation with galaxy properties
 <u>environment</u>
 beyond 1R_{eff}

Age and metallicity gradients vs. environment

Introduction: ETGs formation + SPIDER

Internal color gradients

SPIDER (SDSS+UKIDSS; z<0.1)
 correlation with galaxy properties
 environment
 <u>beyond 1R_{eff}</u>

Outer stellar populations

 \Rightarrow We median-stack the color profiles of ~700 (best-quality data) ETGs

 \Rightarrow SED fitting of g-X (X=rizYJHK) up to $8 \cdot R/R_e$

The change of ∇_Z suggests that the outer (old and metal-poor) stellar population has a different origin than the inner one.

Summary

Positive age gradients (~5-20% per radial decade) in ETGs

For $M^*>10^{11} \cdot M_{Sun}$, we find a strong correlation of age/metallicity gradients with mass \longrightarrow expected by "in-situ" formation (for R \leq 1Re)

At given mass, a strong correlation between metallicity gradient and $[\alpha/Fe]$ exists \implies gas-rich mergers dilute the ∇_Z , and decrease the $[\alpha/Fe]$

Group ETGs have stronger (age) gradients than their field counterparts later gas-cooling in field ETGs, producing a younger, more metal-rich population in the galaxy outskirts

The metallicity gradient changes beyond $\sim 2 \cdot R_e$

minor mergers "depositing" metal-poor/old stars in the galaxy outskirts

A variety of processes contribute to the formation of bright ETGs, their efficiency depending on environment/mass/radius

.... IN PROGRESS

+ M. Paolillo; B. De Filippis

+A. Mercurio; M. Paolillo; E. Pompei

