Colour gradients of early-type galaxies at 1<z<2: constraining their assembly history

> Adriana Gargiulo, Paolo Saracco, Marcella Longhetti INAF - Osservatorio Astronomico di Brera

In collaboration with Francesco La Barbera INAF-Osservatorio Astronomico di Capodimonte

Milan, November 7-9 2011

OUTLINE

- Why studying colour gradients and light profiles of high-z early-type galaxies;
- Multiband light profiles of high-z ETGs;
- UV–U and U-R colour gradients of high-z ETGs;
- Stellar populations analysis;
- Conclusions.

AIM OF THE PROJECT

To tackle the central point of the formation of early-type galaxies (E+S0; ETGs) discriminating the scenarios of their mass assembly.

AIM OF THE PROJECT

To tackle the central point of the formation of early-type galaxies (E+S0; ETGs) discriminating the scenarios of their mass assembly.

METHOD

To determine the spatial distribution of the different stellar populations as close as possible to their formation epoch and investigate if and how their fundamental properties spatially change.

AIM OF THE PROJECT

To tackle the central point of the formation of early-type galaxies (E+S0; ETGs) discriminating the scenarios of their mass assembly.

METHOD

To determine the spatial distribution of the different stellar populations as close as possible to their formation epoch and investigate if and how their fundamental properties spatially change.

MEANS: COLOUR GRADIENTS OF HIGH-Z ETGs

The only measurements that can provide us with information on the distribution of stellar populations in high-z ETGs.

Hubble Space Telescope (HST) deep images have allowed us to push the study of colour gradients up to $z \sim 2$, when the Universe was only 3-4 Gyr old.

COLOUR GRADIENTS: THE DEFINITION

The gradient of the colour X-Y is classically defined as the logarithmic slope of the color profile $(X-Y)(r) = \mu_X(r) - \mu_Y(r)$ $\mu_X(r), \mu_Y(r)$: light profiles in X and Y band, respectively gives quantitative information on the radial colour variation in galaxies.

 $\begin{array}{c}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf$

NEGATIVE COLOUR GRADIENT: galaxy redder toward the centre

POSITIVE COLOUR GRADIENT: galaxy bluer toward the centre

COLOUR GRADIENTS: THE DEFINITION

The gradient of the colour X-Y is classically defined as the logarithmic slope of the color profile $(X-Y)(r) = \mu_X(r) - \mu_Y(r)$

 $\mu_{X}(r)$, $\mu_{Y}(r)$: light profiles in X and Y band, respectively

gives quantitative information on the radial colour variation in galaxies.

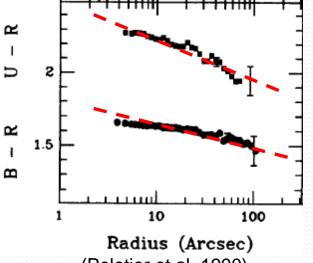
NEGATIVE COLOUR GRADIENT: galaxy

redder toward the centre

POSITIVE COLOUR GRADIENT: galaxy

bluer toward the centre

COLOUR GRADIENTS: WHAT INFORMATION CAN WE DERIVE FROM?


Colour variations

Metallicity/Age gradient

Presence of dust Radial variationt of

star-formation time scale

(Peletier et al. 1990)

Variation of the

properties of the

underlying stellar population

SELECTION AND MAIN CHARACTERISTICS OF THE SAMPLE

The sample: 34 ETGs at $0.9 < z_{spec} < 2$ selected in the GOODS South field, 90% complete to K =20.2, morphologically selected (both visual and through the light profiles) with:

• spectroscopic redshift;

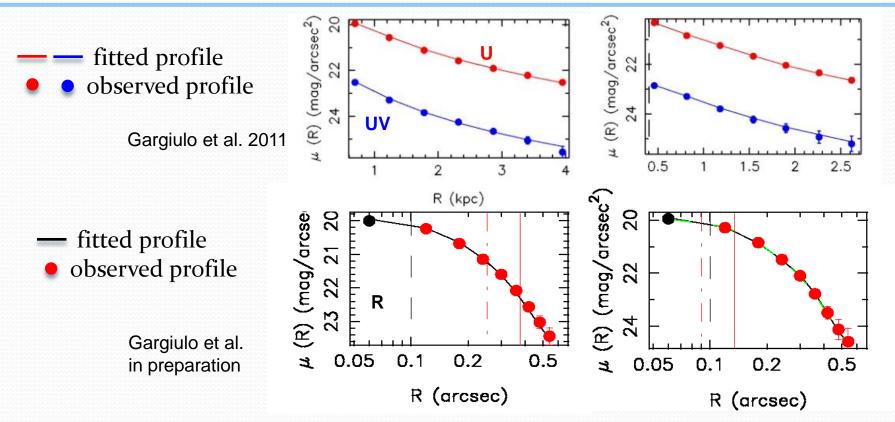
photometry in 14 bands: F435W, F606W, F775W e F850LP → HST/ACS;

3 bande U, J, H, K \rightarrow ESO-VLT

3.6, 4.5, 5.8, 8.0 µm → Spitzer;

• recent HST/WFC3 images in the near-infrared (F160W) for 16 ETGs.

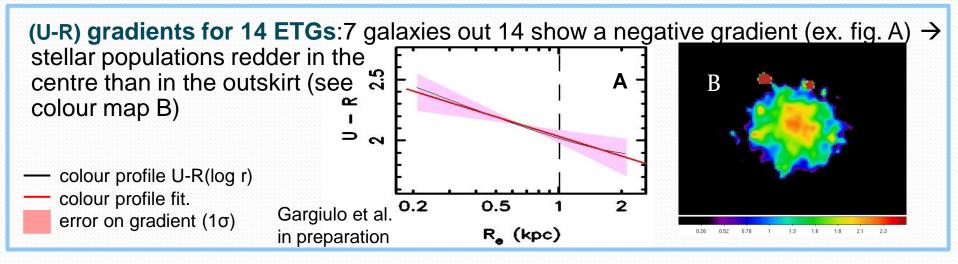
SELECTION OF COLOURS


We have studied gradients of two colours: ~(UV -U)_{restframe} (F606W-F850LP) e ~(U-R)_{restframe} (F850LP-F160W) to investigate the spatial distribution of :

UV,U emission, sensitive to dust and dominated by the light of young stellar populations;

R emission, mainly dominated by the light of old stellar populations.

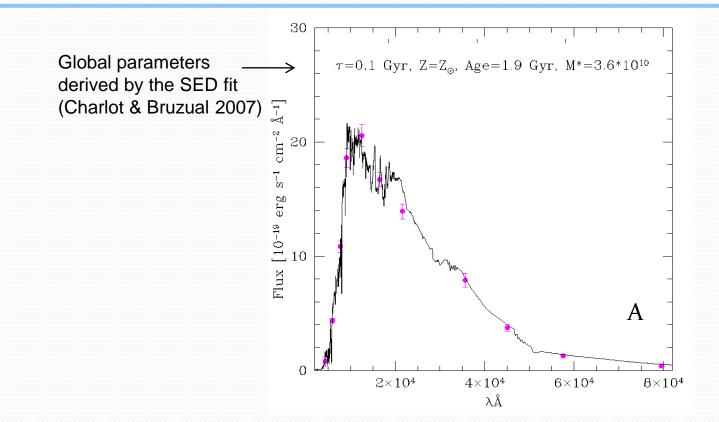
MULTIBAND FITTING OF LIGHT PROFILES


We have modelled the light profiles $\mu(r)$ in the F606W, F850LP e F160W bands with a Sersic profile recovering the structural parameters (R_e , n, μ_e).

Structural parameters were fully tested both through the comparison of the fitted and real light profile, and through simulations.

COLOUR GRADIENTS: RESULTS

Known the light profiles, we estimate the colour profiles and derive :

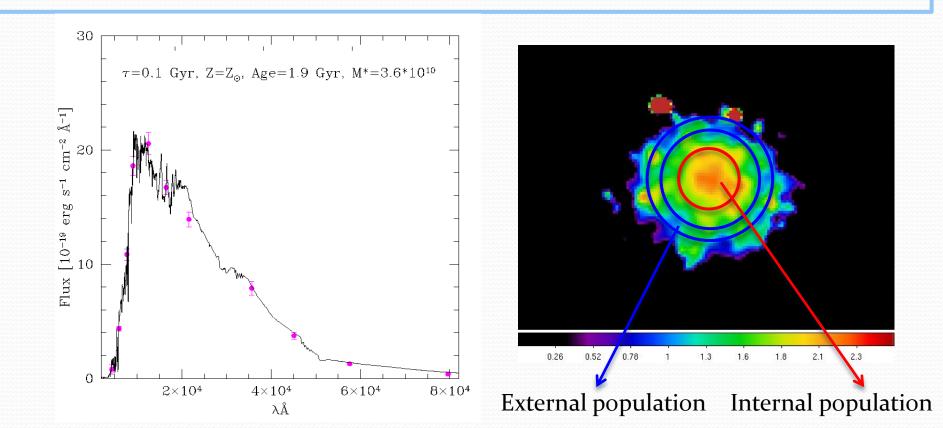


(UV-U) gradients for 20 ETGs. Despite the short wavelength baseline covered $(\Delta\lambda \sim 2000 \text{ Å})$, 50% of our ETGs shows significant colour gradients, D both positive (stellar populations and bluer in the centre than in the 2.6 2.6 outskirt, 5 ETGs;ex. fig C) and 2.4 negative (5 ETGs; ex. fig D). 0.2 0.5 2 1 0.2 0.5 Gargiulo et al. 2011 R (kpc) R (kpc)

Radial age, metallicity, star-formation time scale variation or something else?

For each galaxy:

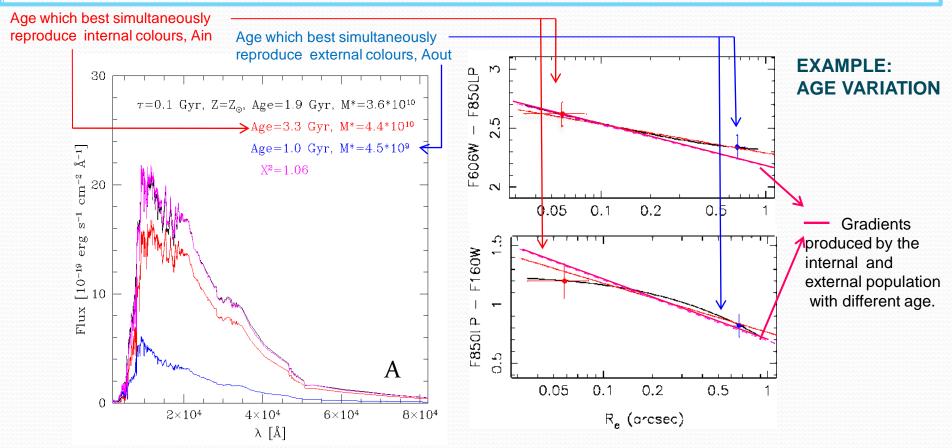
•Spectral energy distribution fitting (SED, black line in fig A) \rightarrow global properties of the underlying stellar population: age A, metallicity Z, star-formation time scale τ , dust extinction A_v;



Gargiulo et al. in preparation

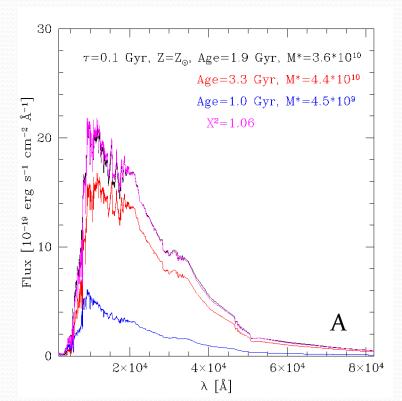
Radial age, metallicity, star-formation time scale variation or something else?

For each galaxy:


• U-R colour map → ETG modelled as dominated by two populations, an internal and an external one, with inizial parameters equal to (A, Z, т, A_v)_{global};

Radial age, metallicity, star-formation time scale variation or something else?

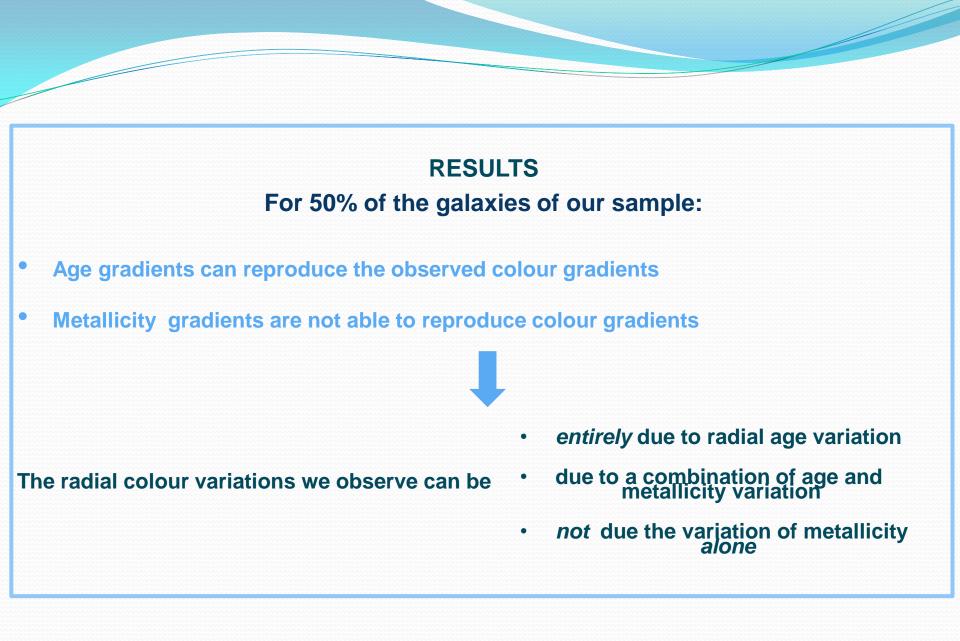
For each galaxy:


• For each population, we have fixed three initial parameters, for ex. $(Z, \tau, A_v)_{global}$, and looked for the values of age A, Ain e Aout, able to simultaneously reproduce the internal and external colour.

Radial age, metallicity, star-formation time scale variation or something else?

For each galaxy:

• For each population, we have fixed three initial parameters, for ex. $(Z, \tau, A_v)_{global}$, and looked for the values of age A, Ain e Aout, able to simultaneously reproduce the internal and external colour.



Defined the two populations able to reproduce the observed colour gradients:

$$(A_{in}, Z_{global}, T_{global}, A_{v, global})$$
 and $(A_{out}, Z_{global}, T_{global}, A_{v, global})$

their contribution to the total mass is fixed such that their sum is the best representation (magenta line) of the observed SED.

We repeat the analysis for each parameter $(A, Z, \tau, and A_v)$ and for simultaneously variations of two stellar parameters.

SUMMARY

- Thanks to the resolution and quality of HST images, we ascertain the feasibility of colour gradient estimates in high-z (z>1) ETGs;
- We detect radial UV U colour variations, both positive and negative, in 10 galaxies out 20 (~50 %) and negative U – R colour gradients in 7 galaxies out 14;
- Colour gradients of 50% of our sample can be interpreted as principally due to radial age variation. A
 minor contribution due to dust cannot be excluded. Contrary, radial variation of metallicity and
 star-formation time scale are not able to reproduce the observed colour.
- For the remaining part of the sample, the variation of a single parameter of the stellar populations or the combined variation of two of them cannot reproduce the observed colour gradients;

CONCLUSIONS

- We have unexpectedly found that, despite the age of our galaxies, all younger than 3-4 Gyr, they already exhibit significant differences in the properties of their stellar content.
- The short time (3-4 Gyr) at disposal to interact with other systems, and the observed differences both in the colour gradients values and in the stellar population properties suggest differences in the formation mechanism of ETGs.

ONGOING WORK...

Can radial change of IMF justify the observed colour gradients?

FUTURE WORK...

Direct comparison with local ETGs colour gradients

thanks