Galaxy Evolution and Environment 2 7-9 November 2011

### The colour-density relation up to z=1.5: observations vs semianalytical models

Olga Cucciati (INAF-OATs) Gabriella De Lucia (INAF-OATs) Elena Zucca (INAF-OABo) Angela Iovino (INAF-OABrera)

. . .

### Outline

- Questions we want to address
- The colour-density relation in real data (VVDS)
- The mock galaxy catalogues
  - Galaxy properties
  - The colour-density relation
- Comparison
- Conclusions

### The questions

- We compute the colour-density relation in mock galaxy catalogues with the same method as in the VVDS. Our aims:
  - Quantify the cosmic variance
  - Quantify the effects of sampling rate and boundary effects on the colour-density relation

• Give constraints on galaxy evolution in semianalitycal models

#### Our data: The First-Epoch VVDS redshift sample



Le Fevre et al 2005

- Purely flux limited sample:  $17.5 \le I_{AB} \le 24$
- **Spectroscopic catalogue** (Le Fevre et al. 2005):
  - ~ 7000 galaxies with secure redshifts
- Photometric catalogue (McCracken et al. 2003):
  - ~ **36000** objects
  - complete up to  $I_{AB} = 24$
- Dimensions:
  - sky area of 0.7 x 0.7 deg<sup>2</sup>
  - → ~ 40 x 40  $h^{-1}$  Mpc at z=1.5



#### Environment: density contrast

Cucciati et al 2006

3D galaxy density contrast  
(spherical or cylindrical volumes):  
$$\delta(r,R) = \frac{\rho(r, R) - \overline{\rho(r)}}{\overline{\rho(r)}}$$

$$\rho(\mathbf{r}) = \sum_{i=1}^{n_i} \frac{m_i W(|\mathbf{r} - \mathbf{r}_i|, R)}{\Phi_i}$$

$$W(r,R) \rightarrow filter$$

R

- m  $\rightarrow$  weighting function
- $\Phi \rightarrow$  selection function
  - $\rightarrow$  filter radius

### Density reconstruction reliability tested with simulations



VVDS data: Colour-density evolution

Cucciati et al 2006

Density has a role to play in determining galaxy colours at fixed redshift/luminosity



### Mock galaxy catalogues

MILLENNIUM DM simulation (Springel et al 2005)

Semianalytical models of galaxy evolution from De Lucia & Blaizot 2007

Light cones:

1) catalogues defined with the same limiting flux and sky area as VVDS  $\rightarrow$  full mock catalogues

2) Applying the whole observational pipeline of the VVDS to the parent catalogues  $\rightarrow$  **VVDS-like mock catalogues** 

### Number counts



### Mean inter-galaxy separation



# The density distribution



### Luminosity and colours: the LF



### Luminosity and colours: the LF



# The colour distribution



### Colour-density relation in mocks

Full mock catalogues

Cosmic variance: from ~15% at z~0.3 to ~4% at z~1.3



### Colour-density relation in mocks

VVDS-like mock catalogues



### The reliability of the trends



### The density field vs halo mass



### Conclusions

- Quantify cosmic variance: from ~15% at z~0.3 to ~4% at z~1.3
- Corrections for <100% sampling rate and for boundaries effects do not have effects on the general dependence of the fraction of red and blue galaxies on environment (positive or negative slope)
- At z<1.2, the colour-density relation in mocks is in agreement with what we find in the VVDS, but it is the opposite at z>1.2 (at least for blue galaxies)

 $\rightarrow$  Next step (1): understand which galaxy population drives this trend in simulations

 $\rightarrow$  Next step (2): understand the meaning of environment on different scales