A mid and far-IR view of the star formation activity in galaxy systems and their surroundings

Andrea Biviano INAF/Osservatorio Astronomico di Trieste A&A 532, A77 (2011) DOI: 10.1051/0004-6361/201016174 © ESO 2011

Spitzer observations of Abell 1763

III. The infrared luminosity function in different supercluster environments

A. Biviano¹, D. Fadda², F. Durret^{3,4}, L. O. V. Edwards², and F. Marleau⁵

- ¹ INAF/Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34131 Trieste, Italy e-mail: biviano@oats.inaf.it
- ² NASA Herschel Science Center, Caltech 100-22, Pasadena, CA 91125, USA
- ³ UPMC Université Paris 06, UMR 7095, Institut d'Astrophysique de Paris, 98bis Bd Arago, 75014 Paris, France
- ⁴ CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98bis Bd Arago, 75014 Paris, France
- ⁵ Department of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, ON M5S 3H4, Canada

Astronomy & Astrophysics manuscript no. aa17973-11 October 28, 2011 © ESO 2011

The evolution of the star formation activity per halo mass up to redshift ~1.6 as seen by Herschel*

P. Popesso¹, A. Biviano², G. Rodighiero³, I. Baronchelli³, M. Salvato¹, A. Saintonge¹, A. Finoguenov¹, B. Magnelli¹,
C. Gruppioni⁴, F. Pozzi⁵, D. Lutz¹, D. Elbaz⁶, B. Altieri⁷, P. Andreani^{8,2}, H. Aussel⁶, S. Berta¹, P. Capak^{9,10}, A. Cava¹¹,
A. Cimatti⁵, D. Coia⁷, E. Daddi⁶, H. Dannerbauer⁶, M. Dickinson¹², K. Dasyra⁶, D. Fadda¹³, N. Förster Schreiber¹,
R. Genzel¹, H. S. Hwang⁶, J. Kartaltepe¹², O. Ilbert¹⁴, E. Le Floch⁶, R. Leiton⁶, G. Magdis⁶, R. Nordon¹, S. Patel¹⁵,
A. Poglitsch¹, L. Riguccini⁶, M. Sanchez Portal⁷, L. Shao¹, L. Tacconi¹, A. Tomczak¹⁶, K. Tran¹⁶, and I. Valtchanov⁷

Outline:

mid-IR & multiwavelength observations of a z=0.23 supercluster (A1763+A1770+large-scale filament):

constraining the star-formation activity of galaxies in different environments (cluster virial region, cluster outskirts, intra-cluster filament)

far-IR observations of clusters and groups identified in GOODS and COSMOS:

constraining the global star-formation activity of galaxy systems at different redshifts (cmp. with the field)

Interpretation

What do we want to do with these data?

gain a better understanding of
galaxy star formation = f(environment)

→ determine the *differential* distributions of galaxy SFRs (≡ IR galaxy luminosity function) as well as the *total* SFR (≡ total IR luminosity) for different regions of the supercluster

SFR [M
$$_{\odot}$$
 yr⁻¹]=1.7 10⁻¹⁰ L_{IR} [L $_{\odot}$] (Kennicutt 98)

To determine the IR galaxy luminosity function and total IR luminosity for different regions of the supercluster...

> ...select sample of IR emitters members of the supercluster, 153 from z, 314 from z_{phot}

Base the selection on our 24 μ m survey, \approx 80% complete down to 0.2 mJy

[it is deeper than the surveys at 70 and 160 μ m, and the 24 μ m emission is also closely related to recent star formation]

To determine galaxy IR luminosities and stellar masses, fit galaxy Spectral Energy Distributions (SEDs) with model templates:

for L_{IR}:

Use GRASIL (Silva+98) & Polletta+07 models and integrate best-fit model SEDs from 8 to 1000 μ m to determine the total IR luminosity of each galaxy

for M_{\star} :

Use models of Maraston 05, correct for absorption (Calzetti+00) with E(B-V) free to vary, and restrict the fit to $\lambda < 4 \ \mu$ m to determine the stellar mass of each galaxy

Example of restricted ($\lambda < 4 \mu m$) SED template fit:

Extinction E(B-V) is a free parameter, varying from 0 to1 mag, no dust emission in model \Rightarrow stop fit at $\lambda < 4 \mu$ m

Example of full SED template fit:

61 templates (GRASIL & Polletta's models) in 5 broad classes: ETG, SFG, SBG, PSBG, AGN

The contribution of the different SED classes to the IR LF:

AGNs identified by their SED, and also using other diagnostics (from optical spectroscopy, X-ray and radio data, IRAC colors) → AGN contribution subtracted from IR LF

What is the effect of the environment?

We identify 3 environments: core (<r500) large-scale filament outskirts (= the whole

field except the

core and the

filaments)

What is the effect of the environment?

LIRGS (L_{IR}>10¹¹ L_☉) are located mostly in the region of the filaments

They do *not* have high SFR/M_⋆ (∝ circle size)

Completeness and purity corrections

By counting the number of supercluster members in bins of L_{IR} we do **not** obtain the IR luminosity function (IR LF), because our sample is neither complete nor pure (contamination from non-members).

Therefore we evaluate: Completeness = $C(f_{24})$ & Purity = $P(f_{24})$ both for the spectroscopic sample only and for the full (spectroscopic+photometric) sample.

We then correct the IR counts to get the pure & complete (P=1 & C=1) IR LF

The IR LFs in 3 different supercluster environments

The densities of IR-emitting galaxies, n_{IR}, are normalized by the densities, n_r, of normal, r-selected galaxies in the same regions

full sample

spectroscopic sample

The total SFR in the different environments

Integrate the IR LFs

of the core, the filament, & the outskirts to get their total IR luminosities (and total SFRs, Σ SFRs, from Kennicutt's relation)

Divide these∑SFRs by the number of normal, r'-band selected galaxies in the 3 regions

The total SFR in the different environments

higher fraction of **IR-emitters** & milder decline of IR LF at bright end The filament is the supercluster region with the strongest star-formation activity

SFR/M, vs. M, for IR-emitting galaxies

The relation is ≈ in different supercluster regions

Core Filament Outskirts

full sample

spectroscopic sample

SED-class fractions of IR-emitting galaxies in different supercluster regions

The fraction of different SED classes is ≈ in different supercluster regions

Comparison with previous works

The galaxy \sum SFR / total mass in cluster cores increases with z (but not as predicted by Bai+09)

Herschel observations of bright IR-luminous galaxies

in X-ray detected galaxy systems at $0.1 \le z \le 1.6$

Sample:

(Mostly) Herschel-based IR luminosities for galaxies in groups (M < 3 × 10^{14} M_{\odot}) and clusters (M \ge 3 × 10^{14} M_{\odot}) at 0.1 \le z \le 1.6

[PACS Evolutionary Probe GT pgm, Lutz+11, groups in COSMOS field, Finoguenov+, in prep. PACS GOODS-Herschel pgm, Elbaz+11]

Spectroscopic completeness: 50-85% for LIRGs ($L_{IR} \ge 10^{11} L_{\odot}$)

Total SFR (<r₂₀₀) / M₂₀₀ vs. redshift

Total SFR (<r₂₀₀) / M₂₀₀ vs. redshift

Summary:

 \star At z \geq 0.2, SF activity in filaments, groups \geq SF activity in the field \star At all z, SF activity in cluster cores < SF activity in other environments \star sSFR vs. M \sim in all environments (for IR-emitting galaxies) \star SED-class distribution of IR-emitting galaxies \approx in all environments \star Main SED class is that of normal, star-forming galaxies; (post-) starburst mode concerns $\leq 1/3$ of all IR-emitting galaxies (but a higher fraction of LIRGs)

 \star The total SFR per unit mass increases with z in all galaxy systems

Interpretation:

 ★ Must quench SF in cluster cores (but not in groups); must do so rapidly (sSFR vs. M_{*} does not change in clusters);
 → interaction with dense intra-cluster gas

★ Must (slightly) enhance SF in filaments, groups wrt the field, especially for massive (10¹⁰ M_☉) galaxies;
 → major galaxy-galaxy interactions and mergers

★ Must reduce SF activity per unit mass in galaxy systems with time;
 → SF of field galaxies ↓ due to gas consumption
 + infall rate of field galaxies ↓ as Universe expands
 + quenching SF of infallen field galaxies in cluster cores

What next?

→ A1763:

analysis of galaxy spectral line-indices

What next?

→ A1763:

analysis of galaxy spectral line-indices analysis of GALEX UV data covering the full supercluster

Analysis of GALEX UV data covering the full supercluster

What next?

→ A1763:

analysis of galaxy spectral line-indices analysis of GALEX UV data covering the full supercluster Herschel OT proposal to cover the full supercluster in far-IR

What next?

→ A1763:

analysis of galaxy spectral line-indices analysis of GALEX UV data covering the full supercluster Herschel OT proposal to cover the full supercluster in far-IR

→ Other clusters:

48^{hrs} on 8 (proto)clusters at 0.9<z<2.4 (Herschel GT accepted, p.i. B. Altieri)

97^{hrs} on 8 clusters at 1.4<z<1.8 (Herschel OT accepted, p.i. P. Popesso)

