Galaxies, their environment and feedback...

With: U. Becciani (INAF-OACt), S. Cielo (SSC),
C. Tortora (ETH), N. Napolitano (Capodimonte)
A. Romeo (Univ. A. Bello, Santiago),
J. Sommer-Larsen (Munich and Copenhagen)
A. Dobrotka (Bratislava)
J. Silk, S. Kaviraj, S. Shabala (Oxford)

K. Schawinski (Yale)

n(M_{DM},z): probing (only) systematics?
Direct simulations of AGN feebdack

Outline

 High resolution mass functions and the origin of spin (Environment)

- Galaxies in (true) Voids (Environment)
- Physical models of AGN feedback (Evolution)

Prehistory: the '50s of N-body simulations.....

• 2001: 256³~16 million bodies , 70 Mpc/h, $m_p = 1.37*10^{11} M_{SUN}$

3 cubic volumes – appr. same # of halos in each
 DOUBLE: 827 (912) halos

SINGLE: 768 (796) halos

VOID: 815 halos

• SKID: grav. Bound halos

•
$$l_{\text{group}} = 100 \text{ h}^{-1} \text{ Kpc}$$

2009.....

• $1000^3 = 10^9$ bodies , 85 Mpc/h, $m_p = 4.37*10^9 M_{SUN}$

>149.000 halos identified by AHF

n(M,z) can now be studied with very little statistical uncertainty
 (Reed et al., 2005; Tinker et al., 2008; Warren et al., 2008,.....)

<u>NOTE</u>: These simulations are done with Parallel Treecodes, using comparatively small # CPUs (248)

FLY @ Trigrid

 $> 70*10^9$ bodies using PM (Lbox > 150-200 Mpc/h (Teyssier et al., 2007)

Red: z=0.1 Blue: z=0.3 Cyan: z=0.5 Yellow: z=0.9 Green: z=1.0 Black: z=1.5

Fits: Tinker et al. (2008), for z=0.5 and 1.5 MF of galactic-sized DM halos: we now only probing systematics?

~40.000 halos with > 100 particles

• FOF selected halos provide Mfs which are systematically Sheth-Tormen...

• Why AHF/SKID halos result in a different MF ?

Excess at low-λ, deficit at high λ beyond statistical uncertainty
 Cramer Theorem: deviations from lognormal arise from correls.: ln(J/M^{5/2}) and ln(|E|)

What about spin/angular momentum?

Spin (Peebles, 1980):

 $\lambda = J |E|^{1/2} / G M^{5/2}$

lognormally distributed (?)

FLY4: A distributed N-body code

• Treecode (Barnes & Hut, 1990): <u>Parallel</u> \Rightarrow particles are divided among the processors, and the tree is partially replicated on the remote CPUs

<u>*Distributed*</u> \Rightarrow only one single tree – particles are cyclically migrated to remote CPUs

Advantages: Less memory occupation (\Rightarrow bigger runs), higher numerical precision,

Con's: constant workload (n times more CPUs – same t_{cpu}, no scaling)

<u>NOTE</u>: These simulations are done with Parallel Treecodes, using comparatively small # CPUs (248) *Becciani et al., Comp. Phys. Comms.* <u>136</u>, 54 (2001),

85 Mpc h⁻¹, mp= $4.29*10^7$ M_{sun} h⁻¹

Galaxies in (true) Voids (Sorrentino, V.A.-D. And Rifatto, A&A 460, 673, 2006)

Previous and subsequent work *(using 2dF or SDSS)*: Goto et al., 2003; Balogh et al., 2004a,b; Rojas et al. 2004, 2005 [2dF in Voids]; Hoyle et al., 2005; Blanton et al., 2005; Croton et al., 2005, Tanaka et al., 2005; Weinamnn et al., 2006; Deng et al, astroph/0609601; Park et al., astro-ph/0611610

• Our work: look <u>only</u> at (u-r) statistics and use a 3D selection criterion to extract a subsample of *genuine Void galaxies* (lying far from Void boundaries)

• Peebles (2001), <u>Void</u> <u>phenomenon</u>: HC scenarios suggest A sudden transition in galaxy properties with environment

 Not seen in clustering statistics

• Larger statistical samples made available with 2dF and SDSS

DM Halos in voids: no galaxy-galaxy inter. (*tidal fields*) \rightarrow spherical collapse should apply

Observations before 2dF and SDSS

• Elsässer, Popescu et al. (1996, 1997): Void galaxies

trace filaments

• Grogin & Geller (2000): Cfa2, 15R and CS: $-22 \leq R \leq -18$,

complete in redshift

• Galaxies in Voids are a <u>subset</u> of galaxies in low density environments Selection:

a) $0.05 \le z \le 0.095$ median: z = 0.061b) $M_r \le M_r^* + 1.45$ (-20) c) <u>Neighbouring galaxies:</u> $D_{ij} \le D_{max}$ (=5 Mpc) & $|z_i - z_j| \le 10^3$ Km/sec

• Local gal. density: 2. + 3. above

• Distributions almost insensitive to D_{max} up to Dmax ~ 10 Mpc Used DR4: 1.)-3.) results in 91566 gals.

• The environmental transition happens at almost the same (u-r) • NOTE: we apply Kcorrection to each galaxy in our sample

 More interesting, the transition is continuous – no evident transition, no "void" galaxy <u>mix</u> of populations

	All	Early (%)	Late (%)
$0 \le N < 4$	7205	31.3	31.7
$4 \le N < 7$	8402	36.2	28.4
$7 \le N < 11$	17490	38.0	26.7
$11 \le N < 18$	17393	41.1	24.1
$18 \le N < 30$	18608	45.2	21.1
$30 \le N < 41$	9595	46.8	18.8
$41 \le N < 59$	9215	50.4	16.6
$59 \le N < 127$	8470	55.1	14.0

 Using SDSS morphol. indicator instead of spectroscopical ones gives the same color distribution \rightarrow environmental uniformity is evident in the SF activity

AGN positive feedback at $z \approx 0$: Minkowski object

- $L = 18 h^{-1} kpc from NGC 541$
- GALEX: UV colors
- $t_* \approx 7.5 \text{ Myr}, \text{ M}_* \approx 1.9 \times 10^7 \text{ M}_{sur}$ SFR $\approx 0.52 \text{ M}_{sur}/\text{yr}$

F555W (HST)

Croft, v. Bruegel et al., 2006)

... More positive fbck, at $z \approx 3.18$: 4C 41.17

- $W_{jet} \approx 2 \times 10^{46} \text{ ergs s}^{-1}$
- $M_* \approx 8 \times 10^{10} M_{sun}$
- Enhanced SF region detected far from the jet (cocoon ?)

HST F702W, Bicknell et al., ApJ 540, 678 (2000)

Region S: SFR $\approx 110 \text{ M}_{sun}$ /yr Region NE+NEE: SFR $\approx 220+30 \text{ M}_{sun}$ /yr

Recent star formation in early-type galaxies **GALEX** results in the nearby Universe

= 0.00

Kaviraj et al., ApJ (Dec 2007), astro-ph/0601029 Yi et al., ApJ, 619, L111 (2005) Schawinski et al., ApJ (Dec 2007), astro-ph/0601036 Early-types have red optical colours with small scatter

But their UV colours show spread of 6 mags

 Signatures of widespread recent star formation

AMR jet simulations: setup

- FLASH v. 2.5 with cooling function (up to T ~ 10¹¹ K)
 6 ref. Levels, 20 in. mesh cells, 40 kpc h⁻¹ box → 1_{min} = 7.85
- pc h⁻¹
- Isoth. equil. ISM embedded in NFW DM halo (\rightarrow inhom.)
- 9 2D + 3 3D sims.: $100 < \sigma_v < 300$ km/sec
- Used scaling relations between $\sigma_{_{\!V}}-\rho_{_{\!C,ISM}},\,\sigma_{_{\!V}}-M_{_{\!BH}},\sigma_{_{\!V}}$
- $-M_{bulge}$, M_{bulge} $-P_{jet}$ for init. configur.
- $10^7 < M_{BH} < 5.5 \times 10^8 < M_{sun}$, $2 \times 10^{44} < P_{jet} < 7.2 \times 10^{45} < erg$
- Sec⁻¹

AMR jet simulations crucial points

<u>Adaptivity</u>: Spatial resolution: 7.5 pc/L_{box} = 40 kpc

Large (~ 10-40 kpc) scale: feedback on SFR

 Small (20-50 pc) scale: backflow feeds the circumnuclear region (V.A.-D. & Silk, 2009)

Simulating Jet-ISM interactions

(V.A.-D. & Silk, 2008, 2009; Tortora et al., 2009a, b, Kaviraj, V. A.-D. And Silk, 2010)

Cloud's density evolution

• t $\gg t_{cc} = (n_{cl}/n_{jet})^{1/2} r_{cl}/v_{sh}$ never totally destroyed

• Cooling \Rightarrow thermal instability \Rightarrow filaments

• Positive feedback: $\Delta t \simeq 1.87*10^5 \text{ h}^{-1} \text{ yrs.}$, @ W_{iet} = 10^{46}

 $t = 3*10^{-5}$ t0 $\simeq 3.6*10^{5}$ h⁻¹ yrs.

time = 3.00e-05 (units of t_0) number of blocks = 151612

 $t \simeq 5.4^{*}10^{5} h^{-1}$ yrs.

• Positive/Negative feedback: $\Delta M_*/M_* \simeq 1.27/0.42$

time = 1.62e-04 (units of t_0) number of blocks = 531876

Log10 Density (3.524*10⁻³⁸ g/cm³)

time = 5.20e-05 (units of t_0) number of blocks = 225688

• $\tau_{Ev} \simeq 3.3^{*}10^{20} n_{c} R_{c}^{2} T_{env}^{-5/2} ln(\Lambda)/30 \simeq$ 3.16*10⁷ yrs. (*Cowie & McKee*, 1997) Positive feedback from pre-shocks propagating before the cocoon

• Compression → *positive feedb*.

time = 1.62e-04 (units of t_0) number of blocks = 531876

• Global time evolution: a <u>moderate</u> amount of positive feedback followed (t > t_{shock}) by a significant negative feedback

• Only ISM clouds within $r \leq r_{max,coc}(t|W_{jet},n_{ISM},T_{ISM})$ are affected by pos. feedback Negative feedback dominates for $W_{jet} > 2.7*10^{41} \text{ ergs sec}^{-1}$

E's sample selection criteria

(*Kaviraj et al.*, 2007)

SDSS ∩ GALEX | {morph. + spectral criteria}

- Morphology: **fracDev > 0.95** (g,r,i) ~ 90% successful
- $m_r < 16.8$ (matching morph. from vis. comp. to COMBO-17), z < 0.1
- Cross match with 595 GALEX detections (I $_{\rm s}$ < 4"), no multiple objects
- Type 1 AGN = "QSO" SDSS flag Type 2 AGN: BPT (1981) indices (as in Kauffmann et al., 2003), [OIII/H β], [NII/H α]

0.00

0.02

0.04

0.06

Redshift

gals. not excluded by line analysis

0.12

0.10

0.08

Colour evolution in (F,N)UV is much more evident than in g,
 r

• Δ (FUV-NUV) mostly concentrated in 1-2 Gyrs. \rightarrow timescale of transit in the green valley of the (u-r,g-r) diagram

Observed points are embedded into the envelope of the predicted evol. tracks

• NUV/optical evolutionary tracks for Z = (0.008, 0.02[solar], 0.05)/(----, -, ---) • Red: $t_{AGN} = 0.1$ Gyr Blue: $t_{AGN} = 1$ Gyr Green: $t_{AGN} = 5$ Gyr Yellow: $t_{AGN} = 10$ Gyr

 Median. syst. scatter in (NUV-r) : 0.65 → smaller than obs. dispersion

A significant evolution is also observed in galaxy r-band sizes

• Compare with Lisker and Janz (arxiv:0810:2999) Note: we are not restricted to dEs' \rightarrow a larger range in R_{eff}

• A weak correlation between t_{AGN} and NUV is seen

The jump in (NUV-r) is age-dependent

• Hor. lines: SSPs at $z_f = 3$, observed at z = 0, for $Z = 10^{-4}$, $4*10^{-4}$, $4*10^{-3}$, $8*10^{-3}$ (top to bottom)

•Optical colours are much lesser pronounced and age-sensitive

• The large scatter is intrinsic (UV upturn)

Backflow → Circumnuclear Starburst (V. A.-D. & Silk, 2008)

• Nuclear star forming rings AGN act. (e.g. Davies et al., SIMFONI obs., $I_s = 0.085'' \sim 10 \text{ pc}$)

• Sugg.: nucl. Ring SF is directly activated by jet dynamics \rightarrow it <u>follows</u> after $\Delta t \sim 10^5$ yrs jet's expn. <u>And</u> onset of UV/activity within $\sim 10-25$ kpc

Internal flow within the cocoon: Model

Crocco theorem (1937)

- Origin of circulation: gradients of stagnation enthalpy $(\vec{v} \nabla)\vec{v} = -\frac{1}{\rho}\nabla p$
- (Quasi-)stationary flows ($\partial /\partial t = 0$):
- Main formulation: $\vec{v} \times \operatorname{curl} \vec{v} = \nabla h - T \nabla S.$ $h = U + \frac{p}{\rho} + \frac{1}{2}v^2$ Stagnation enthalpy

• $\nabla S = 0$ across an ideal shock \rightarrow circulation arises only from $\nabla h \neq 0$

• Main features of the model are reproduced in simulations

Mass flow in a circumnuclear region

•All this gas has <u>no ang. mom.</u> - $<\rho v^2 > \sim <\rho T > \sim p_{disc}$

 $compression \rightarrow starburst$

In all 3 cases, peaks at t ~
 1.9x10⁷ yrs., with aver.
 values 0.32 - 0.76 M_{sun}/yr.,

Model predictions

•For each snapshot, determine M_n and ρ_{BS} directly from simulation, then apply the 3-steps circ. model. Blue dashed curves. model predictions Mass and press. flows predicted by the model are in excellent agreement with simulations, before the destruct. of the recoll. shock

The final question:

Mass Functions are the most secure predictions one can get from state-of-the-art N-body simulations

How much <u>statistical</u> nonlinearity is hidden in going from halos to light?

