Laboratorio di Informatica

per chimica industriale e chimica applicata e ambientale

ESERCITAZIONE 2

Uso dell'accessorio calcolatrice e conversione di numeri

AA 2002/2003 © Morpurgo, Zanaboni Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

- Uso dell'accessorio calcolatrice per
 - Passaggi fra basi diverse
 - Aritmetica assoluta nelle dimensioni byte, word, Dword, Qword
 - Complemento a 2 e in eccesso
 - Cenni su floating point

AA 2002/2003 © Morpurgo, Zanaboni

numeri binari e cifre esadecimali

0	0	1000	8
1	1	1001	9
10	2	1010	Α
11	3	1011	В
100	4	1100	C
101	5	1101	D
110	6	1110	Е
111	7	1111	F

Nota: le cifre ottali e decimali sono un sottoinsieme

AA 2002/2003 © Morpurgo, Zanaboni

3

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

numeri binari e cifre esadecimali

Aprire la calcolatrice, da START, Programmi, accessori

selezionare la notazione scientifica e la rappresentazione esadecimale;

digitare le varie cifre e vedere a cosa corrispondono in binario, ottale, decimale

AA 2002/2003 © Morpurgo, Zanaboni

Sistemi di num: quelli usati in informatica

- Calcolate a mano il valore del numero binario 100110
- Verificate il conto con la calcolatrice come segue:
- selezionate BIN
- scrivete 100110
- selezionate DEC: comparirà la conversione in decimale

AA 2002/2003 © Morpurgo, Zanaboni

5

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

Fare i conti: proprietà notevoli

- (pn1) 1 seguito da n 0 rappresenta Bⁿ; ad es.
 - base 2: $100000 = 2^5$
 - base 10: $100000 = 10^5$
 - base 8: $100000 = 8^5$
 - base 16: $100000 = 16^5$
- completate la tabella soprastante, dando i valori decimali per esteso, usando la calcolatrice

AA 2002/2003 © Morpurgo, Zanaboni

Fare i conti: proprietà notevoli

- (pn2) **n** *cifre massime* rappresentano **B**ⁿ-1; ad es:
 - base 2: 11111 = 2⁵ 1
 base 10: 99999 = 10⁵ 1
 base 8: 77777 = 8⁵ 1
 base 16: FFFFF = 16⁵ 1
- ESERCIZIO: completate la tabella soprastante, dando i valori decimali per esteso, usando la calcolatrice

AA 2002/2003 © Morpurgo, Zanaboni

7

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

Dalla rappresentazione al numero

• Completare il conto

```
base 2: 1011 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 =
```

- A) facendo i conti a mano
 - B) usando la calcolatrice
- Usando la calcolatrice, completare

```
• base 8: 2705 = 2 \cdot 8^3 + 7 \cdot 8^2 + 0 \cdot 8^1 + 5 =
```

• base 16: $3F01 = 3 \cdot 16^3 + 15 \cdot 16^2 + 0 \cdot 16^1 + 1 =$

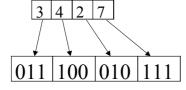
AA 2002/2003 © Morpurgo, Zanaboni

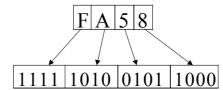
Dal numero alla rappresentazione

Completare a mano la tabella

numero	div base	quoz.	resto	
35	2	17	1	cifra bin. meno significativa
17	2	••		

Verificare poi il risultato con la calcolatrice scrivendo il numero in DEC e selezionando poi BIN


AA 2002/2003 © Morpurgo, Zanaboni


9

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

Conversioni basi 8,16 - base 2

Ricordiamo

AA 2002/2003 © Morpurgo, Zanaboni

10

Conversioni basi 8,16 - base 2

- A MANO
 - Passare da 3317 ottale a binario
 - e poi passare dal binario ottenuto all'esadecimale
- verificare i conti con la calcolatrice
- Quante sono le cifre binarie corrispondenti al numero esadecimale
 - AF3300F?
 - Rispondere e poi verificare

AA 2002/2003 © Morpurgo, Zanaboni

11

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

lunghezze base 10 - base 2

- La prima potenza di 10 vicina ad una potenza di 2 è:
 - $10^3 \sim 2^{10} = 1024$
- Un conto approssimato $2^{32} = 2^{30} \cdot 2^2 = (2^{10})^3 \cdot 4 \sim (10^3)^3 \cdot 4 = 10^9 \cdot 4$
- verificare con la calcolatrice di quanto è l'errore

AA 2002/2003 © Morpurgo, Zanaboni

12

Interi assoluti

 Trovare in decimale, ottale, esadecimale (con la calcolatrice) il massimo intero assoluto rappresentabile con registri di

```
• 8 bit (Byte): 11111111 (la calcolatrice vi ferma a 8)
```

- 16 bit (Word) : 11111....11 (vi ferma a16 cifre)
- 32 bit (Dword): 111...... 11 (vi ferma a 32 cifre)
- 64 bit (Qword): 1111 11 (vi ferma a 64 cifre)

AA 2002/2003 © Morpurgo, Zanaboni

13

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

Interi relativi in modulo e segno

- Dare i numeri relativi rappresentati in modulo e segno (il bit in blu) da:
 - 01001100
 - 11000000
 - 10000000
 - NOTA: tale rappresentazione non è disponibile sulla calcolatrice. Separate il bit di segno e lavorate con i valori assoluti.

AA 2002/2003 © Morpurgo, Zanaboni

14

Complemento a 2

- In complemento a 2 con n bit: il complemento è a 2ⁿ
 - $0...(2^{n-1}-1)$ rappresentano $0...(2^{n-1}-1)$
 - Il bit del segno è 0
 - 2^{n-1} ... (2^n-1) rappresentano -2^{n-1} ... -1
 - Il bit del segno è 1
 - Esempio con 8 bit: il complemento è a 256;
 - 00000000 .. 01111111 rappresentano 0..127
 - 10000000..11111111 rappresentano -128..-1

AA 2002/2003 © Morpurgo, Zanaboni

15

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

Complemento a 2

- La calcolatrice col tasto +/- passa da un numero al suo opposto, calcolato come complemento a 2; scegliendo, in binario, la dim byte, verificare quanto segue:
 - -56 decimale è rappresentato dal suo complemento 200
 - NOTA: la calcolatrice passa dai decimali relativi alla loro rappresentazione in base 2,8,16 in complemento nelle dimensioni byte, word, Dword, Qword; provate con tutte
 - Nella dimensione byte, provate a pigiare più volte +/-;
 - cosa succede? Perché?
 - Provate a vedere i numeri e i loro opposti nelle basi 2,8,16

AA 2002/2003 © Morpurgo, Zanaboni

16

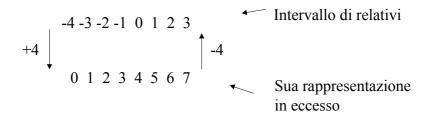
Complemento a 2

- Trovare il minimo ed il massimo relativo rappresentabile in Byte, Word, Dword, Qword usando la calcolatrice e ricordando che:
 - Primo bit = 0: intero positivo o nullo;
 - Max ad es. in 8 bit: 01111111
 - Primo bit = 1: intero negativo
 - Min ad es. in 8 bit: 10000000; notate che la calcolatrice mostra solo il valore assoluto (quello che la macchina ha in pancia), anche passando al decimale
 - Passate voi al relativo rappresentato vedendone il complemento a 2 con il tasto +/-

AA 2002/2003 © Morpurgo, Zanaboni

17

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri


Complemento a 2: overflow

- Nella dimensione byte fate la somma dei due numeri binari positivi 01011010 + 01000001
- Il risultato è positivo? Se non lo è si ha un errore di overflow
- Sommate ore due negativi che non diano overflow (diano un risultato negativo) e due che diano overflow (diano risultato positivo)

AA 2002/2003 © Morpurgo, Zanaboni

In eccesso

- Per rappresentare un intervallo -N..+(N-1) mediante positivi si può traslarlo di +N, detto eccesso:
 - -N..+(N-1) in eccesso N diventa 0..2N-1

AA 2002/2003 © Morpurgo, Zanaboni

19

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

In eccesso

- · Esempio con 8 bit
 - l'intervallo da rappresentare è -128..+127
 - L'eccesso è dunque +128; con esso si manda
 - -128..+127 **→** 0..255
 - Trovare la rappresentazione binaria con eccesso 128 di
 - 42
 - -42
 - usando la calcolatrice, dovrete usare i valori assoluti, dal momento che non avete a disposizione la rappresentazione in eccesso

20

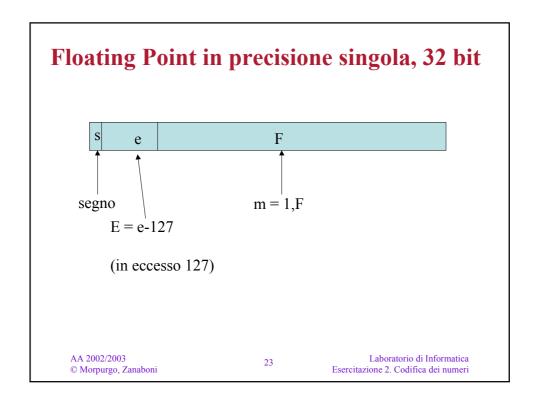
AA 2002/2003 © Morpurgo, Zanaboni

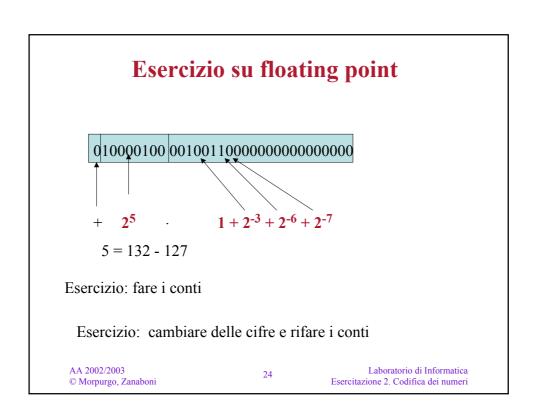
Floating Point

- Virgola mobile: m E e con
 - mantissa per i numeri diversi da 0: $1 \le m \le B$;
 - e esponente
 - significato $\mathbf{m} \mathbf{E} \mathbf{e} = \mathbf{m} \cdot \mathbf{B}^{\mathbf{e}}$
 - Esempio decimale: 0,0344013 in virgola mobile si scrive:
 - 3,44013 E 2 = $3,44013 \cdot 10^{-2}$

AA 2002/2003 © Morpurgo, Zanaboni

2.1


Laboratorio di Informatica Esercitazione 2. Codifica dei numeri


Floating Point

- Esempio binario: 10,1001 in virgola mobile si scrive:
 - 1,01001 E 1 = $(1+2^{-2}+2^{-5}) \cdot 2^{1}$
- Esercizio: usando la calcolatrice, completare il conto precedente;
 - la calcolatrice usa un misto fra numeri frazionari e floating point, per cui non potete vedere la rappresentazione floating point;
 - Dovete fare i conti indicati con l'aiuto della calcolatrice

AA 2002/2003 © Morpurgo, Zanaboni

22

Esercizio su floating point

Esercizio: Trovare la rappresentazione floating Point in precisione singola dei numeri

270,175

-5,8 NB: viene periodico, fermarsi a 23 cifre binarie

AA 2002/2003 © Morpurgo, Zanaboni

25

Laboratorio di Informatica Esercitazione 2. Codifica dei numeri

Esercizio sulla precisione

Il max rappresentabile Max

Il massimo rappresentabile N diverso da Max

Trovare Max - N e discutere in relazione alla nozione di precisione Suggerimento: la differenza fra le mantisse è 2^{-23}

AA 2002/2003 © Morpurgo, Zanaboni

26