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Don't esitate: ask me when I am unclear, when
you want to make comments or to pose
questions, to suggest a solution, or .. when
you want

I'm provocative, but serius.

Caveat: talk for astronomers.




I am an astronomer, why be
bothered with stats?

We don't need stats to say
that these data and model
differ, right?
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We don't need stats
neither to say that
the only thing to do
is to go back to the

telescope, right?
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uncertainty should be determined better than a factor 2
(unless you like 1.5 sigma results as you like 6 sigma results).

Therefore, the uncertainty should be carefully determined, to
discriminate significant from insignificant results.




One more reason to pay attention to the
statistical analysis: not to find impossible
(unphysical) results i.e. finding something
that cannot occur, like negative masses

Here are some published (and sometime
famous) examples
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Maximum likelihood (best)
estimates sometime fail to
provide acceptable results.

Every physically acceptable

value is better than the claimed
best valuel

What "best" does it means?
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Scatter may plausibly be negative
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S/N can be negative

Solaly LRGa, Samples 8 and &

2006, MNRAS 372,
425
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often it is foo small, not correctly
quantifying the degree of uncertainty.

One example:




Temperature errors of faint
extended xray sources
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1) Measurements near boundaries (fractions,

completeness, hardness ratios, sources/features
with few counts ...)

-> accounting for boundaries

2) nuisance parameters

I.e. I would like to measure an interesting parameter,
without precise knowledge of another parameter that I
known to influence the measurement:

-> parameter estimation in presence of a
huisance parameters




Bayesian methods solve mentioned
odities




Lesson zero: all what
you need to assume is:




p(x.y) = p(x|y)*p(y)=p(y x)*p(x)

ex: in a bag I have 4 blue balls and 10 red balls. If T extract two of them
without replacement, what is the probability that both are red?

The probability of getting red the first ball, p(x), is =10/14

The probability of getting red the second ball, after having get a red ball in
the first extraction, p(y|x), is = 9/13

The probability of getting red both, p(x,y), is the product
10/14* 9/13= p(y|x)*p(x)




p(x) = Z, p(xy) = | p(xy)dy

Ex: ina bag I have 4 blue balls, 10 red balls, 5 blue dies and 3 green
cards. What is the probability of extracting something blue?

The sum of the probability of extracting a blue ball (4/22) and the
probability of extracting a blue dies (5/22),=9/22

usefull o measure uncertainty in presence of nuisance parameters, as
explained later.




Posterior = c* Likelihood™ prior

Can be derived from the product rule, or, in alternative, assumed as axiom,
and the product rule derived.

Central tool for parameter estimation




p(0|data)= ¢ * p(data|B) * p(6)

if p(6|data) is a narrow (almost delta) function, 6 is very well determined
if p(6|data) is a flat function, 6 is badly determined

Do you want to known the
uncertainty? Compute the
posterior, and its width! This
is the mantra of most
applications: spell a prior,
compute the likelihood,
multiply them, and compute
the width of the result.

Posterior




Everything comes from the two
axioms, no other ingredients
used.




Lesson one: where
unrealistically small errors

comes from and how to avoid
them




Empirically, claimed LF errors are underestimated by a factor 2 at
least (Andreon, 2004, A&A 416, 865)

consequence of (having forgot) the sum rule of probabilites:

p(x) = I p(x.y)dy

Std derivation assumes no evolution on M*
in order to derive it, i.e.
oM’

= =()
¢ 0z

the unknown nuisance parameter Q has
been taken fixed instead of marginalizing
over it.

@ (M variation)

Common mistake. Other example: keep
alpha fixed when observations do not




Lesson two: where
unpossible results

(often) come from
and how avoid them




bkg.

The astronomical recipe for background subtraction of Poisson signals,
'unbiased estimate’ of sampling theory:
n_net = n_tot - n_bkg (Zwicky 1957, Oemler 1973, etc.)
But, if
n_tot = 3 (galaxies, photons, whatever)

n_bkg = 5 (idem) true (average) mean value perfectly known

what about n_net?
n_net = n_tot - n_bkg=-27?

what does it means to have observed a negative signal when it is defined to
be positive?




problem: The Bayes theorem

p(signal|data)=c*p(data|signal)*p(signal)

= ¢* Poisson(x=3; A=5+signal) * p(signal)

Because of the prior (p(signal)=0 if signal<0), posterior( Ysignal<0)=0

uniform prior, mean: 1.63; shading:
shortest 68 % confidence interval
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Lesson three: Bayes
theorem embodies the

correction for Malmquist
bias




ex. modelled around Kenter
et al 2005, ApJS 161, 9 (x-
ray survey with sources as
faint as 2-4 photons).

p(ul4) = c* p(4| 1) p(n)

at the studied fluxes, the
prior p(4) (=number counts
for astronomers) is well
known, p(w)= P with beta

approx 2.5 (euclidian slope).

4 photons are observed but
the maximum a posteriori
(most probable) is about 1.5!

posterior

=
s

=
b
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Lesson four: moving from
textbook examples to

research applictions




parameters often got toghether.

The evolution of the blue fraction (Butcher-Oemler effect) measures the
change with cosmic times of the star formation activity in clusters.

Fraction in presence of a background: D'Agostini (2004, physics/0412069)
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i

the scatter around the colour-
magnitude relation put a strong
constraint on the age of stars in these
objects and, indirectly, on the ages of
the galaxies themselves.

Problem: background galaxies (about 4
for every cluster galaxy).

Abell 1185 cluster (Andreon, Cuillandre et al.
2006, MNRAS 372, 60)
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Stars determination of the intrinsic scatter of a correlation in presence of
heteroscedastics errors on both x and y (solution due to D*Agostini 2005,
physics/0511182) without the precise knowledge of which galaxies are
cluster members, i.e. in presence of a background possibly displaying
another correlation (solution due to Andreon 2006, MNRAS, 372, 60).

Marginalization in a large dimensional space by using MCMC
stochastical computations.
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Lesson five: model selection
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preferred to another one?

e.g.
i) do my data provide evidence for a luminosity evolution ?
i) What fits better: a de Vaucouleurs or an exponential law?
In(Z(R))=R¥" with N=4 (de Vaucouleurs) or N=1 (exponential)
-> this task is named model selection

models are often not hierarchically nested.




Does The relation 1s linhear or
bended?

bendend, 2006, ApJS 164, 334

cannot said with these data,
other data say "no"”, Andreon et
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al. 2006, MNRAS 372, 60 3
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Directly from bayes theorem:

P(H, D) _ P(H,) P(DIH)
P(H,|D) P(H,)P(DIH,)

evidence ratio = prior ratio * Bayes factor
includes the Occam razor, ie penalizes models with unnecessary complexity
allow o compare models, including not hierarchically nested models.

allow to accumulate evidence in favour of the simplest model.

Often hard to calculate, require integrations over large dimensional space.
Approximations are welcome, BIC is one of them.
BIC=-2InL,, +kInN
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marginalization and model selection

Astro: How the assembly of galaxy masses proceed? Evolution of the
3.6 micron LF measures the growth history of galaxy masses.

Stats: determination of the 3.6 micron LF and model selection among
various possible mass growth histories.

Data: 1000 member galaxies (plus a 4500 background galaxies, whose
distribution is estimated from a larger background formed by 107000
galaxies) from one of Legacy Spitzer surveys (SWIRE)

Two derivations: standard and bayes, both published in Andreon (2006,
A&A 448, 447), so I can blame without bless anyone ...




Step 1: parameter estimation

Bin in z and mag, don't care if bins are optimally chosen

Don't care if n(L) is defined to be positive and found negative (positive

background fluctuation)
Assume no evolution, don't worry the risk of a circular raisoning

take unconstrained parameters (alpha) fixed, i.e. neglect the role of

huisance parameters : : .
P Redshift~0.3 fit Best fit
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Step 2: simplistic model selection. Compare data and models in order to
select the best model.

E models are obviously best, but does
13 other model are rejected?

Do the best model need to be
refined? (model complexity issue)

At this point of the talk, we known
that problems are there. Therefore I
stop with the simplistic analysis, and
I use bayesian methods.

a2 04 08 08
red=shift.




Bayesian analysis

Don't bin in z and mag, bayesian methods don't require bins,
Account for boundaries: n(Mass)dMass is positively defined.
Model evolution - and, eventually

refine the model
Marginalize over nuisance parameters

(alpha).

Mass growth histories,

converted in 3.6 micron

luminosity evolution by using

Grasil models | 2 4

Trelr—haels timae (o)




Step 1. model selection.

Models are not hierarchically nested, likelihood ratio test cannot be used.

Questions to answer:
1) Which model best describes the data? Which models are rejected?

2) Do models need to be refined by a further evolutionary term (taken prop to z)?

(model complexity)

I used the BIC=-2 InL,,; +k In N

R1: E (no mass growth) models are preferable to all the other (ABIC>H)
R2: no

Step 2: once T have selected the model, I can compute the mass function because




.. I known the mass evolution
and I known at which mass I
should put galaxies observed
to have mass; at z;.

lg{n. gal)

[Msnl:l
12 11. 11 1% 10




In my field, Bayesian methods are almost unknow.

Imaginary values of velocity dispersions

Possible negative M/L ratios of clusters

Negative star formation rates

Fractions of blue galaxies outside [0-1]

Spectroscopic of photometric completeness larger than 1
Number density profiles of cluster systematically negative
Conclusions in contradictions with hypothesis

Fun results can be avoided by using Bayesian methods.




Thank you




