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Abstract

Astronomical wide field imaging deals with Terabytes data sets and requires new strategies
for data reduction and analysis. We discuss here the application of different types of neural
nets to the detection and extraction of celestial objects. Preliminary tests show that neural nets
are more effective than traditional techniques.

1.  Introduction

Wide field imaging and hence sky surveys are used in all fields of observational
astronomy and cosmology [1]. Large format photographic plates such as those used
for Schmidt telescopes or panoramic (larger than 8kx8k) CCD detectors contain up
to 106  celestial objects and a typical survey consists of hundreds or thousands of
such individual plates or frames. The processing of such an humongous amount of
data (in the pixel-space)  cannot be handled with the traditional interactive data
reduction techniques and calls for A.I. (Artificial Intelligence) based procedures
capable to push as far as possible the automatic extraction of useful information
from the digitized data. In order to build catalogues of object parameters we need
first to detect the objects against the (noisy) background and then to measure some
properties of the detected objects such as, for instance, the degree of spatial
resolution (point-like or extended objects) geometrical (elongation, position angle of
the major axes of the best fitting ellipse, etc.), morphological (type) and photometric
(total and isophotal magnitudes, color indexes, etc.). In what follows we shall
describe the application of a specifically tailored Neural Net (NN) package to the
segmentation of astronomical images, id est to the detection of objects against a
noisy background. The raw material used for the testing are Schmidt plates obtained
at the European Southern Observatory (ESO) Schmidt telescope in the R
photometric band. The useful field of each plate covers 5 x 5 sq. deg. of the sky. The
plates were digitized using the Perkin & Elmer PDS Microdensitometer at the



Astronomical Observatory of Capodimonte in Naples and calibrated through
calibration spots taken simultaneously to the scientific exposition.

2. PCA Neural Nets

Principal Component analysis (PCA) is a widely used technique in data analysis.
Mathematically, it is defined as follows: let C=E(xxT) be the covariance matrix of L-
dimensional zero mean input data vectors x. The i-th principal component of x is
defined as xT c(i), where c(i) is the normalized eigenvector of C corresponding to the
i-th largest eigenvalue λ (i).

The subspace spanned by the principal eigenvectors c(1), ... , c(M), (M<L) is
called the PCA subspace (of dimensionality M) [2], [3]. PCA's can be neurally
realized in various ways [4], [5], [6], [2], [7], [8]. The PCA network used by us is a
one layer feedforward neural network which is able to extract the principal
components of the stream of input vectors. Typically, Hebbian type learning rules
are used, based on the one unit learning algorithm originally proposed by Oja [6].
Many different versions and extensions of this basic algorithm have been proposed
during the recent years (see [9], [10], [3], [8]). The structure of the PCA NN can be
summarized as follows: there is one input layer, and one forward layer of neurons
totally connected to the inputs; during the learning phase there are feedback links
among neurons, that classify the network structure as either hierarchical or
symmetric. After the learning phase the network becomes purely feedforward. The
hierarchical case leads to the well known GHA algorithm [8], [10]; in the symmetric
case we have the Oja's subspace network [6]. PCA neural algorithms can be derived
from optimization problems, such as variance maximization and representation error
minimization. We can generalize these problems to nonlinear problems, getting
nonlinear algorithms (and relative networks). These have the same structure of the
linear ones: either hierarchical or symmetric. These learning algorithms can be
further classified in: robust PCA algorithms and nonlinear PCA algorithms [9], [10].
We define robust PCA so that the objective function grows less than quadratically.
The non linear learning function appears at selected places only. In nonlinear PCA
algorithms all the outputs of the neurons are nonlinear function of the responses. We
have seen both in preceding experiments [11] and in this paper that the hierarchical
robust NN reaches the best performance. Specifically, in the experiments we
compared hierarchical robust NN with learning function g(t)= tanh(αx) with linear
PCA.

3. Neural nets for image segmentation

For the segmentation we used Hierarchical and Hybrid NNs.  The former is a
Multilayer Unsupervised NN, while the latter is structured in two layers: the first
one being an unsupervised neural net and the second a clustering algorithm. Aim of
both setups is to attain a number of elements equal to the number of classes in which
we want to segment the input image. In the following sections we shall describe first
the neural models and the clustering algorithms and hence the hierarchical and
hybrid networks.



3.1 Unsupervised neural nets

Kohonen [12],[13] Self Organizing Maps (SOM) are composed by a neuron layer
structured in a rectangular grid. When a pattern x is presented to the net each neuron

i receives the components and computes the distance di  from its weight vector wi .
The unit which has the minimum distance from the input pattern will be the winner.
The adaptation step consists in the modification of the weights of the neurons in the
following way:
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where ε( )t  is a  gain term 
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function with variance σ( )t decreasing with x and d i k( , )  is the distance in the grid
between the i and the k neurons.

The Neural-Gas NNs have a learning algorithm [14] which works better than the

preceding one: in fact, it is quicker and it reaches a lower average distortion value1.
It uses a soft-max adaptation of the weights and it classifies the neurons in an
ordered list ( , , ... , )i i im1 2   following their distance form the input pattern. The

weight adaptation depends on the position rank i( )of the i neuron in the list in the
following manner:
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The algorithm applies the gradient descent technique to the error function:
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The neural net is composed by a linear layer of neurons.
The Growing Cell Structure (GCS) [15] is a NN which is able to change its

structure depending on the data set. Aim of the net is to map the pattern space into a
two-dimensional discrete structure A in such a way that similar patterns are
represented by topological neighbor elements. The structure A is a two-dimensional
simplex where the vertices are the neurons and the edges attain the topological
information. Every modification of the net always maintains the simplex properties.
The learning algorithm starts with a simple three node simplex and tries to obtain an
optimal network by a controlled growing process: for each x pattern of the training
set the winner and the neighbors weights are adapted as follows:
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1 Let P(x) be the pattern probability distribution over the set V n⊆ ℜ  and let  wi x( )

be the weight vectorof the neuron which classifies the pattern x, therefore we define
average distortion as:
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where  εb  and εn  are constants which determine the adaptation strength for the
winner and for the neighbors, respectively.
The insertion of a new node is made after a fixed number  λ of adaptation steps. The
new neuron is inserted between the unit which has win more times than the others
and the more distant of its topological neighbors. The algorithm stops when the
network reaches a pre-defined number of elements.

A simpler algorithm is the K-means clustering algorithm [16] in its on-line
release which applies the gradient descent directly to the average distortion function
above defined as follows:
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The main limitation of this technique is that the error function presents many local
minima which stops the learning before reaching the optimal configuration.

The last unsupervised learning algorithm is the Maximum Entropy [17] which
applies the gradient descent with soft-max adaptation of the weights to the error
function
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where β is the inverse temperature and takes value increasing in time.

3.2 Hybrid neural nets

Hybrid NNs are composed by a unsupervised single layer NN and a clustering
algorithm that uses the information derived by the NN learning algorithm. After the
learning of the net, we must apply the clustering algorithm to have a neuron partition
in subsets. Their number is equal to the number of the output classes. Furthermore,
we want that neurons with similar weight vectors will be in the same class, while
neurons with very distant weight vectors will be in different classes. The best
strategy is clearly to apply the clustering algorithm directly to the weight vectors of
the unsupervised NN after the learning.
A non-neural agglomeration clustering algorithm that divides the pattern set (in this
case the weights of the neurons) W w wm= { , ... , }1    in l cluster C Cl1, ... ,   (with
l<m) can be briefly summarized as follows:
1.  we initially divide W in m clusters C Cm1, ... ,   such that C wi i= { };

2.  we compute the distance matrix D such that D d C Cij i j= ( , );

3.  we find the smallest element Dij  of the matrix D and we unify the clusters Ci

and C j  in a new one C C Cij i j= ∪ ;

4.  if the number of clusters is greater than l then go to step 2 else stop.



This is the shared basis of many algorithms appeared in literature [18]. The only
difference is the distance function. For example, two different choices can be:
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 (average between groups).

The output of the clustering algorithm will be a labeling of the patterns (in this case
neurons) in l different classes.

3.3 Unsupervised hierarchical neural nets

An alternative approach is to use a new unsupervised single layer NN instead of a
clustering algorithm. In this way the second layer NN learns from the weights of the
first NN and clusters the neurons on the basis of  a similarity measure or a distance.
If we apply this process several times then we obtain the unsupervised hierarchical
NNs. The number of neurons at each layer decreases form the first to the output
layer, and, as a consequence, the net takes a pyramidal aspect as illustrated in Figure
1. The net takes as input a pattern x and then the first layer finds the winner neuron.
The second layer takes the first layer winner weight vector as input and finds the
second layer winner neuron and so on until the top layer. The activation value of the
output layer neurons is 1 for the winner unit and 0 for all the others. Briefly, the
learning steps of a s layer hierarchical NN with training set X are the following:
1. The first layer is trained on the patterns of X  with one of the previous learning

algorithms.
2. The second layer is trained by using the same algorithm or one of the other

previous ones on the  elements of the set  X2 which is composed by the weigh
vectors of the first layer winner units.

3. By using the same algorithm or one of the others, we iterate the process to the i-
th layer NN (i>2) on the training set X i  which is composed by the weight
vectors of the winner neurons of the i-1-th layer when presenting X  to the 1-st
layer NN, X2 to the 2-nd layer and so on.

By varying the learning algorithms of the layers we obtain different NNs with
different properties and abilities. For instance, by using only SOMs we have a
Multi-layer SOM (ML-SOM) [19] where every layer is a two-dimensional grid. We
can easily obtain ML-Neural-Gas, ML-Maximum-Entropy or ML-K-means organized
on a hierarchy of linear layers. The ML_GCS has a more complex architecture and
has at least 3 units for layer.

We can think to have hierarchical NNs where different layers have different
learning algorithms so that we can take advantage from the properties of  each
model (for example since we cannot have a ML-GCS with 2 output units, then we
can use another NN in the output layer).

To solve our basic problem, we need to have a hierarchical NN with a number of
output layer neurons equal to the number of  the output classes. In this way the



labeling becomes a simple problem without reducing the generalization capacity of
the net. In fact, the first layer neurons are enough to correctly accomplish the
distribution probability density of the input patterns. On the other hand, the number
of neurons of a layer cannot rapidly decrease with respect to the number of units of
the preceding layer, a hierarchical NN is slower than a single layer NN, and the
computing time depends on the layer number. After the learning phase,  it is simple
to label in a unique way the input neurons depending on the corresponding output
units. In this way we use single layer NNs in the computation on the test set.

4.  Experimental results

The experiments were performed on a 1° by 1° degree extracted from one of the
plates. Each pixel is a 16 bit integer and each plate is a 8 kbytes ×  8 kbytes. In order
to identify the principal components of the system we used a 5 x 5 running window
to feed both a non linear  PCA neural network and a traditional linear PCA. In both
cases it turned out that 90% of the information is contained in three components
only. As it is clear from Figure 2, the non linear PCA neural network outperforms
the traditional PCA tool allowing a much better discrimination of the objects against
the background at faint light levels. In Figure 3 we also show the advantage of
adopting a hyperbolic tangent as activation function of the non linear PCA net. With
respect to the linear case, the distance between faint and luminous object is reduced
and the contrast between background and objects is greatly increased.

We therefore used both Hierarchical and Hybrid neural nets to segment the
image in six classes. The results of the application of the NNs are summarized in
Table 1 and Table 2 and Figure 4, which - for the sake of clarity - refers only to a
small fraction of the field. The NN dimensions are illustrated in the second column
of Table 1. The performance of the NNs has been computed as distortion rate and as
percent of correct detected object after the deblending which is applied to all the
segmented images in the same way. This third and final step consists in running a
simple algorithm capable to resolve partially overlapping objects. The best
performing networks are the Hierarchical (3 layers) Neural gas and the GCS +
Neural gas (first layer GCS plus two layers of neural gas). In fact, for what concern
the average distortion rate, ML_SOM , ML_Neural Gas and GCS + Neural gas
reach the same value of the hybrid Neural Gas systems as shown in Table 1. For
what concern the performance in the object identification tasks, ML_Neural Gas and
GCS + Neural gas  reach a similar correctness percent (more than 93%) and the
identification of about 720 correct objects, while the only comparable model is the
ML_SOM with a 92.33% of correctness but only 699 correct objects. The
comparison of GCS + Neural gas (chosen because is faster than ML_Neural Gas
with a comparable correctness) with FOCAS is shown in Table 3 and Figure 5,
where our system outperforms the standard system.

References

[1] Jarvis J.F., Tyson J.A., FOCAS: Faint Object Classification And Analysis
System in The Astronomical Journal, vol. 86, no. 3, pp. 476-495, 1981.



[2] Oja E., Ogawa H., Wangviwattana J., Learning in nonlinear constrained
Hebbian network, In T. Kohonen et al. (Eds.), Artificial neural networks,
385-390, Amsterdam: North-Holland, 1991.

[3] Oja E., Karhunen J., Wang L., Vigario R., Principal and independent
components in neural networks - recent developments, Seventh Italian
Workshop on Neural Networks, Vietri 1995, M.Marinaro & R.Tagliaferri
Ed.s, World Scientific Pu. Singapore, 16-35, 1996.

[4] Baldi P., Hornik K., Neural networks for principal component analysis:
learning from examples without local minima, Neural Networks, 2, (7), 53-
58, 1989.

[5] Jutten C., Herault J., Blind separation of sources, part I: an adaptive
algorithm based on neuromimetic architecture, Signal Processing, 24, (1), 1-
10, 1991.

[6] Oja E., A simplified neuron model as a principal component analyzer,
Journal of Mathematical Biology, 15, 267-273, 1982.

[7] Plumbley M., A Hebbian/anti Hebbian network which optimizes information
capacity by orthonormalizing the principal subspace, in Proc. IEE Conf. on
Artificial Neural Networks, Brighton, UK, 86-90, 1993.

[8] Sanger T. D., Optimal unsupervised learning in a single-layer linear
feedforward network, Neural Networks, 2, 459-473, 1989.

[9] Karhunen J., Joutsensalo J., Representation and separation of signals using
nonlinear PCA type learning, Neural Networks, 7, 113-127, 1994.

[10] Karhunen J., Joutsensalo J., Generalization of principal component analysis,
optimization problems, and neural networks, Neural Networks, 8, 549-562,
1995.

[11]  Rasile M., Milano L., Tagliaferri R., Longo G., Periodicity Analysis of
Unevenly Spaced Data by means of Neural Networks, Proceedings of the  9th
Italian Workshop on Neural Nets WIRN Vietri '97, M. Marinaro & R.
Tagliaferri Ed.s, Springer-Verlag, London (pp. 201-212) (1997).

[12]   Kohonen T., Self-organized formation of topologically correct feature maps
in  Biological Cybernetics, vol. 43, pp. 59-69, 1982.

[13]   Kohonen  T., Self-organization and associative memory (2nd edition)
Springer-Verlag Berlin, 1988.

[14]   Martinetz T., Berkovich S., Schulten K., Neural-Gas Network for Vector
Quantization and its Application to Time-Series Prediction in IEEE
Transactions on Neural Networks, vol. 4, no. 4, pp. 558-568, 1993.

[15]   Fritzke B., Growing Cell Structures - A Self-Organizing Network for
Unsupervised and Supervised Learning in Neural Networks, vol. 7, no. 9, pp.
1441-1460, 1994.

[16] Lloyd S., Least squares quantization in PCM in IEEE Transaction on
Information Theory, vol. IT-28, p. 2, 1982.

[17] Rose, Gurewitz F., Fox G., Statistical mechanics and phase transition in
clustering in Physical Review Letters, vol. 65, no. 8, pp.945-948, 1990.

[18]   Everitt B., Cluster Analysis Social Science Research Council. Heinemann
Educational Books. London, 1977.

[19]    Koh J., Suk M., Bhandarkar S., A Multilayer Self-Organizing Feature Map
for Range Image Segmentation in  Neural Networks, vol. 8, no. 1, pp. 67-86,
1995.


