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Abstract. We present a neural network based approach to the
determination of photometric redshift, which is a very important
parameter to find the depth of astronomical objects in the sky.
The method was tested on the Sloan Digital Sky Survey Early Data
Release reaching an accuracy comparable and, in some cases, better
than Spectral Energy Distribution template fitting techniques. We
used Multi-Layer Perceptrons operating in a Bayesian framework
to compute the parameter estimation, and a Self Organizing Map to
estimate the accuracy of the results, evaluating the contamination
between the classes of objects with a good prediction rate and with
a poor one. In the best experiment, the implemented network
reached an accuracy of 0.020 (robust error) in the range 0 < zpp0; <
0.3, and of 0.022 in the range 0 < zpp0t < 0.5.

INTRODUCTION

Redshifts number among the most crucial cosmological parameters. They,
in fact, are a conventional term to denote the recession velocity of galaxies
and trough the Hubble law which establishes a linear relationship between
distance and recession velocity, redshifts become the most effective way to
evaluate galaxy distances. The accurate knowledge of the redshifts for large
samples of galaxies is therefore a pre-condition for most extragalactic and cos-
mological studies. Unfortunately, the measurement of accurate redshifts re-
quires low/medium resolution spectroscopy with large telescopes, a technique
which is very demanding in terms of (expensive) telescope time. An alterna-
tive (even though less accurate) approach is the evaluation of the so called



”photometric redshifts”, id est the derivation of redshift estimates starting
from photometric data obtained in several broad or intermediate photomet-
ric bands. This technique exploites the fact that in wide field astronomical
images tens of thousands of objects are recorded at the same time and only
a few exposure are required to provide the needed input data. Many differ-
ent approaches have been proposed to the evaluation of photometric redshifts
(see for instance [1],[2], [3], [4]). An approach, which is in the same line of the
one discussed here, can be applied only to what we shall call ‘mixed surveys’,
id est datasets where accurate and multiband photometric data for a large
number of objects are supplemented by spectroscopic redshifts for a small
but statistically significant subsample of the same objects. In this case, the
spectroscopic data can be used to constrain the fit of a polynomial function
mapping the photometric data [5], [6], [7].

Interpolative methods offer the great advantage that they are trained on
the real Universe and do not require strong assumptions on the physics of the
formation and evolution of stellar populations. Neural Networks (hereafter
NNs) are known to be excellent tools for interpolating data and for extract-
ing patterns and trends (cf. the standard textbook by Bishop [8]) and in
this paper, we shall discuss the application of a set of neural tools to the
determination of photometric redshifts in large "mixed surveys”. The Multi
Layer Perceptron (MLP) in the framework of the Bayesian learning was used
to interpolate the photometric redshfit with a very good predictive result on
objects until a given depth, while Self Organising Maps (SOM) were used
to identify the confidence of the objects to belong to good prediction classes
and to evaluate the degree of contamination of the final redshift catalogues.

NEURAL NETWORKS

NNs, over the years, have proven to be a very powerful tool capable to extract
reliable information and patterns from large amounts of data even in the
absence of models describing the data [8] and are finding a wide range of
applications also in the astronomical community: catalogue extraction [9],
star /galaxy classification [10], [9], galaxy morphology [11], [12], classification
of stellar spectra [13], [14], [15], data quality control and data mining [16].

The AstroMining software [17] is a package written in the Matlab envi-
ronment to perform a large number of data mining and knowledge discovery
tasks, both supervised and unsupervised, in large multiparametric astronom-
ical datasets. The package relies also on the Matlab ”Neural Network”, the
”SOM?” [18] and the ”Netlab” [19] toolboxes.

Using AstroMining, via interactive interfaces, it is possible to perform a
large number of operations: i) manipulation of the input data sets; ii) selection
of relevant parameters; iii) selection of the type of neural architecture; iv)
selection of the training validation and test sets; v) etc. The package is
completed by a large set of visualization and statistical tools which allow to
estimate the reliability of the results and the performances of the network.



The user friendly interface and the generality of the package allow both a wide
range of applications and the easy execution of experiments (more details on
other aspects of the AstroMining tool which are not relevant to the present
work may be found in [16].

The Multi Layer Perceptron - MLP

A NN is usually structured into an input layer of neurons, one or more hidden
layers and one output layer. Neurons belonging to adjacent layers are usually
fully connected and the various types and architectures are identified both
by the different topologies adopted for the connections and by the choice
of the activation function. Such networks are generally called Multi Layer
Perceptron (MLP; [8]) when the activation functions are sigmoidal or linear.
Due to its interpolation capabilities, the MLP is one of the most widely used
neural architectures. We implemented an MLP with one hidden layer and n
input neurons, where n is the number of parameters selected by the user as
input in each experiment.

It is possible to train NN’s also in the Bayesian framework, which allows
to find the more efficient among a population of NN’s differing in the hy-
perparameters controlling the learning of the network [8], in the number of
hidden nodes, etc.

The Bayesian method allows the values of the regularization coefficients
to be selected using only the training set, without the need for a validation
set.

The implementation of a Bayesian framework requires several steps: ini-
tialization of weights and hyperparameters; training the network via a non
linear optimization algorithm in order to minimize the total error function.
Every few cycles of the algorithm, the hyperparameters are re-estimated and
eventually the cycles are reiterated.

The Self Organizing Maps

The SOM algorithm [20] combines a competitive learning principle with a
topological structuring of nodes such that adjacent nodes tend to have simi-
lar weight vectors. The training is unsupervised and it is entirely data-driven
and the neurons of the map compete with each other [18]. These networks
are Self Organizing in that, after training, nodes tend to attain weight vec-
tors that capture the characteristics of the input vector space. SOM allows
an approximation of the probability density function of the training data,
the derivation of prototype vectors best describing the data, and a highly
visualized and user friendly approach to the investigation of the data. This
property turns SOM into an ideal tool for KDD and expecially for its ex-
ploratory phase: data mining [18].

During the training phase, one sample vector x from the input data set
is randomly chosen and a similarity measure is calculated between it and all
the weight vectors of the map. The Best-Matching Unit (BMU), denoted



as ¢, is the unit with weight vector having the greatest similarity with the
input sample x. The similarity is usually defined by means of a distance
measure, typically an Euclidean distance. After finding the BMU, the weight
vectors of the SOM are updated. The training is usually performed into two
phases. In the first phase, relatively large initial a value and neighborhood
radius are used. In the second phase both the a value and the neighborhood
are small from the beginning. This procedure corresponds to first tuning the
SOM approximately to the same space as the input data and then fine-tuning
the map. The SOM toolbox [18] includes the tools for the visualization and
analysis of SOM. Another advantage of SOM is that it is relatively easy to
label individual data, id est to identify which neuron is activated by a given
input vector. The utility of these properties of the SOM will become clear in
the next paragraphs.

APPLICATION TO THE SDSS-EDR DATA

A preliminary data release (Early Data Release or EDR) of the SDSS was
made available to the public in 2001 [21]. This data sets provide photometric,
astrometric and morphological data for an estimated 16 millions of objects
in two fields: an Equatorial 2¢7¢ wide strip of constant declination centered
around §=0 and a rectangular patch overlapping with the SIRTF First Look
Survey.

The EDR. provides also spectroscopic redshifts for a little more than
50.000 galaxies distributed over a large redshift range and is therefore repre-
sentative of the type of data which will be produced by the next generation
of large scale surveys. In order to build the training, validation and test sets,
we first extracted from the SDSS-EDR a set of parameters (u, g, r, i, z, both
total and petrosian magnitudes, petrosian radii, 50% and 90% petrosian flux
levels, surface brightness and extinction coefficients, [21] for all galaxies in
the spectroscopic sample.

In this data set, redshifts are distributed in a very dishomogeneous way
over the range 0 — 7.0 (93% of the objects have z < 0.7).

It needs to be stressed that the highly dishomogeneous distribution of the
objects in the redshift space implies that the density of the training points
dramatically decreases for increasing redshifts, and that: i) unless special
care is paid to the construction of the training set, all networks will tend to
perform much better in the range where the density of the training points
is higher; ii) the application to the photometric data set will be strongly
contaminated by the spurious determinations.

The photometric redshift evaluation
The experiments were performed using the NNs in the Matlab and Netlab

Toolboxes, with and without the Bayesian framework. All NNs had only one
hidden layer and the experiments were performed varying the number of the



Table 1: Column 1: higher accepted spectroscopic redshift for objects in the training
set; column 2: input parameters used in the experiment; column 3: number of
neurons in the hidden layer; column 4: robust errors evaluated on the test set;
column 5: number of objects used in each of the training, validation and test set.

Range parameters h.n. err. obj.s
z<0.3 r, u-g, g-r, r-i, i-z 18 0.029 12000
z < 0.5 r, u-g, g-r, r-i, i-z 18 0.031 12430
z < 0.7 r, u-g, g-r, r-i, i-z 18 0.033 12687
z<0.3 r, u-g, g-r, r-i, i-z, radius 18 0.025 12022
z < 0.5 r, u-g, g-r, r-i, i-z, radius 18 0.026 12581
z < 0.7 r, u-g, g-r, r-i, i-z, radius 18 0.031 12689
z< 0.3 r, u-g, g-r, r-i, i-z, radius, p. fluxes, s. brightness 22 0.020 12015
z < 0.5 r, u-g, g-r, r-i, i-z, radius, p. fluxes, s. brightness 22 0.022 12536
z < 0.7 r, u-g, g-r, r-i, i-z, radius, p. fluxes, s. brightness 22 0.025 12680

input parameters and of the hidden units. Extensive experiments lead us to
conclude that the Bayesian framework provides better generalization capabil-
ities with a lower risk of overfitting, and that an optimal compromise between
speed and accuracy is achieved with a maximum of 22 hidden neurons and
10 Bayesian cycles.

In Table 1, we summarize some of the results obtained from the exper-
iments and, in Figure 1, we compare the spectroscopic redshifts versus the
photometric redshifts derived for the test set objects in the best experiment.

Contamination of the catalogues

In practical applications, one of the most important problems to solve is
the evaluation of the contamination of the final photometric redshift cata-
logues or, in other words, the evaluation of the number of objects which are
erroneously attributed a zppot significantly (accordingly to some arbitrarily
defined threshold) different from the unknown zspe.. This problem is usually
approached by means of extensive simulations. The problem of contamina-
tion is even more relevant in the case of NNs based methods, since NNs are
necessarily trained only in a limited range of redshifts and, when applied
to the real data, they will produce misleading results for most (if not all)
objects which ”in the real word” have redshifts falling outside the training
range. This behaviour of the NNs is once more due to the fact that while
being good interpolation tools, they have very little, if any, extrapolation
capabilities.

Moreover, in the SDSS-EDR spectroscopic sample, over a total of 54,008
objects having z > 0, only 88%, 91% and 93% have redshift z lower than,
respectively than 0.3, 0.5 and 0.7. To train the network on objects falling
in the above ranges implies, respectively, a minimum fraction of 12%, 9%
and 7% of objects in the photometric data set having wrong estimates of the
photometric redshift.
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Figure 1: Photometric versus spectroscopic redshifts obtained with a Bayesian MLP
with 2 optimization cycles, 50 learning epochs of quasi-Newton algorithm and 5
inner epochs for hyperparameter optimization. Hyperparameters were initialized
at ®=0.001 and =50

An accurate estimate of the contamination may be obtained using unsu-
pervised SOM clustering techniques over the training set.

In Figure 2 we show the position of the BMU as a function of the redshift
bin. FEach exagon represents a neuron and the figures inside it give the
number of input vectors (in a given range) which have that neuron as BMU.
It is clearly visible that low redshift objects (z < 0.5) tend to activate neurons
in the lower right part of the map, intermediate redshift ones (0.5 < z < 0.7)
neurons in the lower left part and, finally, objects with redshift higher than
0.7 activate only the neurons in the upper left corner. The labeling of the
neurons (shown in the upper left map) was done using the training and
validation data sets in order to avoid overfitting, while the confidence regions
were evaluated on the test set. In Figure xx we split the objects into two
groups: in the first one we included all objects with z < 0.5 and in the
second one all those with z >= .5. Each cell is labeled as class 1 or class 2
accordingly to the relative distribution of input vectors belonging to a given
group which activate that cell. Therefore, test set may be used to map the
neurons in the equivalent of confidence regions and to evaluate the degree of
contamination to be expected in any given redshift bin. Conversely, when
the network is applied to real data, the same confidence regions may be used
to evaluate whether a photometric redshift correspondent to a given input
vector may be trusted upon or not.

The above derived topology of the network is also crucial since it allows to
derive the amount of contamination. In order to understand how this may be
achieved, let us take the above mentioned NN, and consider the case of objects
which are attributed a redshifts zpp,: < 0.5. This prediction has a high degree
of reliability only if the input vector activates a node in the central or right
portions of the map. Vector producing a redshift zpp,: < 0.5 but activating a
node falling in the upper left corner of the map are likely to be misclassified.



Table 2: Confusion matrix for the three classes described in the text.

objects ClassI Class I Class III
Class I 9017 95.4%  2.96% 1.6%
Class I 419 6.4% 76.6% 16.9%
Class IIT 823 3.8% 2.1% 94.2%

In our experiment, out of 9270 objects with zpnot < 0.5, only 39 (id est, 0.4%
of the sample) have discordant spectroscopic redshift. A confusion matrix
helps in better quantifying the quality of the results. In Table 3.2, we give
the confusion (or, in this case, ’contamination’) matrix obtained dividing the
data into three classes accordingly to their spectroscopic redshifts, namely
classI: 0 < 2 < 0.3, class II: 0.3 < z < 0.5, class III: z > 0.5. The elements on
the diagonal are the correct classification rates, while the other elements give
the fraction of objects belonging to a given class which have been erroneously
classified into another class. Furthermore, in the redshift range (0, 0.3), 95.4%
of the objects are correctly identified and only 4.6% is attributed a wrong
redshift estimate. In total, 94.2% are correctly classified. By taking into
account only the redshift range 0 < z < 0.5, this percentage becomes 97.3%.
From the confusion matrix, we can therefore derive a completeness of 97.8%
and a contamination of about 0.5%.

SUMMARY AND CONCLUSIONS

The application of NNs to mixed data, id est spectroscopic and photometric
surveys, allows to derive photometric redshifts over a wide range of redshifts
with an accuracy equal if not better to that of more traditional techniques.

The method makes use of two different neural tools: i) an MLP in Bayesian
framework used to estimate the photometric redshifts; ii) an unsupervised
SOM used to derive the completeness and the contamination of the final
catalogues. On the SDSS-EDR, the best result (robust error = 0.020) was
obtained by a MLP with 1 hidden layer of 22 neurons, after 10 Bayesian
cycles.

The method fully exploits the wealth of data provided by the new digital
surveys since it allows to take into account not only the fluxes, but also the
morphological and photometric parameters.

The proposed method will be particularly effective in mixed surveys, id
est, in surveys were a large amount of multiband photometric data is com-
plemented by a small subset of objects having also spectroscopic redshifts.
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Figure 2: Maps of the neuron activated by the input data set. Exagons represent
the NN nodes. In the map in the upper left corner, for a given node, the figures
n(m) can be read as follows: n is the class (n=1 meaning z < 0.5 and n=2 meaning
z > 0.5) and m is the number of input vector of the correspondent class which have
activated that node. This map was produced using the training and validation data
sets. The other maps, produced each in a different redshift bin, indicate how many
input vector from the test data set activated a given node.




