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A Bayesian approach to galaxy
evolution studies

1.1 Discovery space

We, astronomers, mostly work in the ‘discovery’ space, the region where effects

are statistically significant at . 3 sigma’s or near boundaries in data or parame-

ter space. Working in the ‘discovery space’ is a normal astronomical activity: only

few, among many, published results are initially found at large confidence. Posi-

tive defined quantities (such as mass, fractions, star formation rates, dispersions,

etc.) are sometimes found to be negative, or, more generally, quantities are some-

times found at unphysical values (completeness larger than 100 %, V/Vmax > 1

or fractions larger than 1, for example). Working in the ‘discovery space’ is a

normal activity of frontier-line research because almost every significant result

usually reach (if any) this status after having appeared first in the ‘discovery

space’, and because a good determination of known effects/trends usually trig-

gers searches for finer, harder to detect, effects, mostly falling in, again, the

‘discovery space’.

Many of us are very confident that commonly used statistical tools properly

work in the situations in which we use them. Unfortunately, in the ‘discovery

space’, and sometimes outside it, we should not take it for granted, as shown

below with a few examples. We cannot avoid working in this grey region, be-

cause, in order to move our results in to the statistically significant area, we often

need a larger or better sample. In order to obtain this, we first need to convince

the community (and the Time Allocation Committee) that an effect is probably

there, by working in the ‘discover space’. Furthermore, awaiting a larger sample

has the unappealing property that someone else will publish our result and he,

not us, will be credited for the discovery. Of course, we are assuming that a larger

sample exists and it is accessible, which is not always the case: there is just one

universe (and sky) already fully observed in the microwave. Or, a group formed

by 10 galaxies has no more than 10 galaxies to be used to measure its veloc-

ity dispersion. Or, gamma ray bursts (and any transient event) cannot become
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A BAYESIAN APPROACH TO GALAXY EVOLUTION STUDIES

permanent enough to allow us to collected enough photons to put our aimed

measurement, say polarization, in the ‘statistically’ significant area. Working in

the ‘discovery space’ region is therefore an essential part of the astronomer work.

Standard tools may fail (especially if mis-used) in many ways. In the next two

sections we will show some examples of failure in two idealized experiments, and

we will show that the Bayesian approach does not suffer from these failures. In

the first example we show that the maximum of the likelihood (the best fit) may

not be a good estimates of the true value: averaging the likelihood is preferable

to maximizing it. The second example shows that sometimes the observed value

is biased and highlights the bad things that may occur when the prior is ignored.

These two examples are very simple with respect to true problems, and they have

been chosen so as to make obvious the fact that the best fit value or observed

value may be bad or biased. The third example shows that when the sample size

is small, even simple operations on data, such as perform an average or fitting

it with a function, is a potentially risky operation and there is nothing that

guareantees that what is failing in a simple case works correctly in a difficult one.

In Sec ?? and 1.5 consider two realistic examples, showing failures of standard

methods more difficult to spot, but of the same nature of easely spotted failures:

all of them come from contradicting axioms of probabilities. In the first example

we want to measure the width of a distribution in presence of a contaminating

population. A mixture modelling on inhomogeneous Poisson processes easely

solve this problem. In the second example we want to fit a trend in presence of

contaminating population and we will use a mixture of regressions. We finally

conclude the chapter showing that the Bayesian approach allows to understand

what really is the number returned by tests like Kolomogorov-Smirnov, χ2, etc.,

named, in the statistical jargon, p− value.

1.2 Average vs. Maximum Likelihood

Maximum likelihood estimates (called ‘best fit’ by astronomers) are one of the

most used tools in astronomy and it is taken from granted that maximizing the

likelihood (or minimizing the χ2 = −2 lnL) will always give the correct result.

Mixture distributions naturally arise in astronomy when data come from two

populations, in such cases as a) a signal is superposed on a background, b) there

are interlopers in the sample, c) there are two distinct (by colour, morphology,

dynamical properties, etc.) galaxy populations, d) taking an image of the sky

using an instrument with a field of view large enough to accomodate more than

one source, or e) observing a galaxy spectrum we note the presence of two stellar

populations. Finally, there are many other cases as well. Let’s consider the simple

case of a mixture (sum) of two Gaussians:
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1.2 AVERAGE VS. MAXIMUM LIKELIHOOD

Figure 1.1 Left Panel: An example of mixture distribution in two di-
mensions. Readers may think that we displayed the spatial distribution
of photons coming from two astronomical extended sources as observed by
a perfect instrument (no background, perfect angular resolution, etc.), or
the distribution of two galaxy populations in a two dimensional parameter
space, or whatever else. Right panel: true (input) values, maximum like-
lihood estimate (MLE) and posterior (Bayes) probability distributions for
the example in the left panel.

p(yi|µ1, σ1, µ2, σ2, λ) = λN (yi|µ1, σ
2
1) + (1 − λ)N (yi|µ2, σ

2
2) (1.1)

where (µj , σj) j = 1, 2 are location (or center) and scale (or width) of the two

Gaussians N (yi|µj , σ
2
j ) = 1√

2πσj

e
− (yi−µj )2

2σ2
j , λ and 1 − λ are the proportions of

the two components and yi is the ith datum. Fig. 1.1 shows a two dimensional

example.

We want to determine the locations and scales of the two Gaussians with the

data at hand. The likelihood of independently and identically distributed data

is given by the the product, over the data yi, of the terms in eq. 1.1:

p(y|µ1, σ1, µ2, σ2, λ) =
∏

i

p(yi|µ1, σ1, µ2, σ2, λ) (1.2)

We usually maximize the likelihood in current problems, blindly assuming

that the maximum likelihood values are good estimates of the true value. Here

though, the parameters that maximize the likelihood above (the ‘best’ fit) are

not near their true value (e.g. those used to draw the points in Figure 1.1), but
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occur when µj = yi and σj → 0. In fact, the likelihood goes → ∞ as σj → 0,

because the ith term of eq 1.1 diverges and the remaining ones take a finite, non

zero, value.

The problem is a general characteristic of mixtures of probability distributions

of non-fixed variance, not only of Gaussians. The problem does not disappear

‘in the long run’, i.e. by disposing of a sufficiently large sample (that we don’t

have, Time Allocation Committes are reluctant to allocate and perhaps does not

exist). On the contrary, our chances of failure increase with sample size, because

there is an increasing number of values for which the likelihood goes to infinity,

one per datum.

Therefore, maximizing the likelihood, even for unlimited data, does not return

the size of two astronomical sources, or the velocity dispersion of a cluster in

presence of interlopers, or many other quantities in presence of two populations

or signals (or an interesting and an un-interesting population or signal). Even

worse, there is no “warning bell”, i.e. something that signals that something is

going wrong, until an infinity is found when maximizing the likelihood. In real

applications, as those described in sec 1.4 and 1.5, nothing as bad as an infinity

appears, and thus there is no “warning bell” signaling that something is going

wrong.

The Bayesian approach is not affected by such problematics: it never instructs

us to maximize any unknown parameter, because the sum axiom of probability

tells us to sum (or integrate) over unknown quantities, so that their effect is

averaged over all plausible values.

The right panel of Fig 1.1 shows the posterior distribution for the data shown in

the left panel, and adopting a constant prior up to very large values (the precise

values are irrelevant for this parameter estimation problem). The posterior is

well-behavied and it is centered on the input value. The likelihood, instead, has

hundreds of infinities, one per datum, all at σ = 0.

1.3 Priors and Malmquist/Eddington bias

Number counts are steep. It is well known to astronomers that the true value, µ,

of the source intensity differs from the measured counts, n, of the source when

n is small: even in presence of symmetric errors an object with n counts is more

probably to come from the numerous population of objects having µ < n than

the rare population having µ > n. Therefore, objects with n counts have, likely,

µ < n (e.g. Eddington 1913). A similar effect arises for parallaxes, star counts,

velocity dispersions and any noisy determination of a quantity concerning an

object drawn from a population that shows an important numerical change over
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1.3 PRIORS AND MALMQUIST/EDDINGTON BIAS

Figure 1.2 Posterior distribution (solid curve) of the source flux, having
observed four photons and knowning that source number counts have an
euclidean distribution (red dashed distribution). The maximum likelihood
estimate (MLE) is also reported.

the range included by the error on the measurand† (on µ, in our example), i.e.

most of the times in which a (Malmquist or Eddington) bias is invoked. Restated

in the statistical jargon, in parameter estimation problems where the prior, p(µ),

has a large change in the µ range where the likelihood is slowly varying, the prior

cannot be neglected.

As a quantitative example, tailored around the X-Boote survey (Kenter et

al. 2005), lets consider a Poisson process (i.e. anything Poisson-distributed),

p(n|µ) = 1
n!µ

ne−µ, with rate µ and a power law prior of logarithimic slope

α, p(µ) = µ−α (the latter is called number counts by astronomers). Having ob-

served four photons (i.e. n = 4), the maximum likelihood estimate of the source

rate is µ̂ = 4, but we, astronomers, known by experience that this value is wrong:

with better data we find, most of the times, µ < 4. Assuming an euclidean slope

α = 2.5 (the observed value of the slope of number counts at the rate of interest),

the posterior p(n|µ)p(µ) is ∝ 1
n!µ

ne−µµ−2.5. The posterior mean (or, in astro-

nomical terms, the Eddington corrected value) of the source rate is 2.5 photons,

40 % less than the originally observed value (n = 4).

The same holds true, as mentioned, for many noisy quantities, such as the

determination of a velocity dispersion with just a few velocities or the estimate

of N200 (cluster richness, see Andreon 2009 for details on the latter).

What is known in astronomy as Malmquist or Eddington bias is the manifes-

† Measurand it the parameter being quantified. It usually differs from the outcome of the
measurement because of the noise.
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tation of the important role of the prior when measurements are imprecise, i.e.

the fact that a correct inference proceeds along the Bayes theorem. The prior

(the correction for Malmquist bias) moves the result away from the observed

value, or the maximum likelihood estimate, and brings it near the true value.

The example shows that priors (the fact that there are much more fainter sys-

tem than bright ones) cannot be ignored in inferences, if one does not wish to

be wrong most of the time. Priors are specific to the Bayesian approach and,

usually, non-Bayesian methods consider them something to be avoided.

It is therefore apparent that prior-free and maximum likelihood methods are

in trouble.

1.4 Small samples

Astronomers are often faced to computing an average by combining a small num-

ber of estimates, or fit a trend or a function disposing of just a few data points.

We almost always start with a few measurements of an interesting quantity, say

the rate at which the galaxy mass increases. In most of the cases, the measur-

and may be parametrized in several ways. For example, if the aim is to mea-

sure the relative evolution of luminous (L) and faint (F) red galaxies, a central

topic on galaxy evolutionary studies, should we study L/F , F/L, or the chosen

parametrization does not matter? Both parametrization have been adopted in

recent astronomical papers (and the author, in Andreon 2008 took a third, differ-

ent, parametrization!). Specific star formation rates (sSFR) and e-folding times,

τ , are approximatively reciprocal measures (long e-folding times correspond to

small sSFR). To the author knowledge, any of the proposed parametrizations

(e.g. L/F vs F/L or sSFR vs τ) has a special status: there is any serious physi-

cal though behind the choice of one of them. Unfortunately (for the astronomers),

when the sample size is small, results obtained using commonly used formulae

(e.g. weighted average, best fit, etc.) does depend on the adopted parameteric

form. For example, an average value, computed by a weighted sum, or a fit per-

formed minimizing the χ2, has a special meaning, because the result depends on

which parametrization is being adopted.

As an example, let us consider two, for the sake of clarity, data points, (f/l)1 =

3 ± 0.9 and (f/l)2 = 0.3333 ± 0.1. The error weighted average 〈f/l〉 is 0.37.

The reciprocal values ((l/f)i = 1/(f/l)i; 0.3333 ± 0.1 and 3 ± 0.9) have error

weighted average equal again to 0.37, fairly different from the reciprocal of 〈f/l〉,

1/0.37 = 2.7. Therefore 〈f/l〉 6= 1/〈l/f〉, and they differ by much more than

their error (obvious, the error on the mean is smaller than the error on any data

point). At first sight, by choosing the variable parametrization, the astronomer

may select the number he want, a situation surely not recommended by the

scientific method. Similar problems are present with two data points differing by

just 1σ, or in general with small samples.
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1.5 MEASURING A WIDTH IN PRESENCE OF A CONTAMINATING POPULATION

One may argue that in the shown case the number of points is so small that

no one will likely make an average of them. However, one almost always starts

by averaging two or three values, or looks for trends or fits a function using a

number of data points only sliglhy exceeeding the number of parameters. Often,

few points are the result of a large observational effort (and obtained through

analysing thousands of galaxies, as in the example above) and it is very hard

(when not impossible) to assemble a larger sample, and thus the average of few

numbers is almost all we can do. For example, how many estimations of SFR at

z ∼ 6 exist? Should we not combine the very few available in some way to take

profit of all them? Small sample problems are often ’hidden’ in large samples:

even large surveys, such as the SDSS, 2dF, VVDS and CNOC2 surveys including

tens or hundreds of thousand of galaxies, estimate galaxy densities using sub-

samples equivalent to just one to ten galaxies. Finally, how many of us have

checked, before performing a fit or an average, if the sample size is large enough

to be insensitive to the chosen parametrization?

The described problem originates from the freedom, in the frequentist paradigm,

of choosing an estimator of the measurand (〈f/l〉 or 1/〈l/f〉 for example). All

estimators (satisfying certain conditions) will converge on the true value of the

estimand ’in the long run’, but without any assurance, however, that such regime

is reached with the sample size in hand. Untill this regime is reached, different

estimators will return different numbers. Bayesian methods do not present this

shortcoming, because they already hold with n = 2 and do not pass through the

intermediate and non unique step of building an estimator of the measurand.

This example shows that frequentist methods return the value of an estimator

of the measurand, neither the measurand itself, nor its probability distribution.

While these differences are easy to appreciate in our example, it is not so with

real cases, dealing with dispersion, slope or intrinsic scatter, discussed in next

sections.

1.5 Measuring a width in presence of a contaminating population

Let’s focus now on how to measure the scale (dispersion) of a distribution (say,

of velocities v), knowing that the sample is contaminated by the presence of

interlopers, but without the knowledge of which object is an interloper. The

main idea is not to identify or de-weight interlopers in the scale estimate, but

to account for them statistically, precisely as astronomers do with photons when

estimating the flux of a source in presence of a background.

We assume that data come from two populations: background galaxies, whose

distribution is assumed to be an homogeneous (i.e. the intensity is independent

on v) Poisson random process, and cluster galaxies, whose distribution is assumed

to be a Poisson process whose intensity is Gaussian-distributed in v, i.e
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I(vi|...) = NclusN (vi|vclus, σ
2
vi

+ σ2
clus) +

Nbkg

∆v
(1.3)

where ∆v is the (velocity) range over which velocities are considered (say,

±5000 km/s from the cluster preliminary velocity center), σvi
is the velocity

error, Nclus and Nbkg are the number of cluster and background galaxies, and

vclus and σclus are our (perhaps) most interesting quantities: the cluster redshift

and velocity dispersion.

Simple algebra shows that the likelihood of independently and identically dis-

tributed data, p(v|I(v)), is

p(v|I(v)) ∝
∏

i

I(vi|...) e−
R

v I(v|...) (1.4)

Combined with prior probability distributions for the parameters, this likeli-

hood function yields, via the Bayes theorem, the posterior distribution for the

function parameters θ, given the data. Uniform priors, zero-ed at unphysical

values of the parameters are often adequate for the samples usually available.

Marchov Chain Monte Carlo with a Metropolis sampler (Metropolis et al. 1953)

may be used to sample the posterior. The chain provides a sampling of the pos-

terior that directly gives credible intervals for whatever quantity, either for the

parameters θ or any derived quantity: for an interval at the desired credible level

it is simply matter of taking the interval that includes the relevant percentage

of the samplings.

Most literature estimates of (cluster velocity) dispersions are, instead, based

on the family of estimators presented by Beers, Flynn & Gebhardt (1991), often

called ‘robust’. We now compare the performances of the ‘robust’ method and

the Bayesian approach.

Let us consider a simulated ‘cluster’ having σv = 1000 km s−1 composed of

500 galaxies with Gaussian distributed velocities, superposed over a background

of 500 uniformly distributed (in velocity) interlopers, within ±3000 km s−1. Note

that within 1000 km s−1 from the cluster center there are on average 500 ·0.68 =

340 members and 500/3 = 83 background galaxies, i.e. the contamation is here

just 20 %. The large sample size has been adopted to leave data to speak by

themselves. Applying the methods of Beers et al. (1991) yields σ̂v = 1400 km s−1

which is an excessively large estimate of σv (and hence of mass). The posterior

mean is 940±85 km s−1 which is closer to the ‘true’ (input) value. This simulation

shows the presence of a systematic bias in the Beers et al. estimator, even for a

large sample. Actually, the bias is independent on the sample size, provided the

relative fraction of cluster and interlopers is mantained.

We now acknowledge that, in true life experiments, we do not precisely know

the model from which data are drawn (i.e. is the velocity distribution perfectly
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1.5 MEASURING A WIDTH IN PRESENCE OF A CONTAMINATING POPULATION

Figure 1.3 Perturbed velocity distribution (solid line), given by eq. 1.5,
and a Gaussian with identical first two moments (dashed blue line). The
former is used to generate hypothetic data, the latter is assumed to estimate
σv.

Figure 1.4 Left panel: Comparison between the distributions of the quoted
error (histograms) by ‘Robust’ (biweight estimator of scale, in blue) and
by our Bayesian method (in red) for 1000 simulations of 25 galaxies uncon-
taminated by background. ’Robust’ error estimate is noiser (the histogram
is wider) and somewhat biased, because the histogram is mostly on the
left of the true error (given by the standard deviation of returned velocity
dispersions). Bayesian errors (posterior standard deviation) are less biased
and show a lower scatter. Right panel: True (input) value of the velocity
dispersion, and histogram of recovered values by the biweight estimator of
scale (right histogram) and of by our Bayesian method (left histogram) for
1000 simulations of a sample of 25 galaxies, 50 % contaminated by back-
ground. In presence of a background, the ’robust’ estimate of the velocity
dispersion is biased.
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Gaussian? Does it have more power in the wings or is it slightly tilted?). Lets

therefore suppose that cluster substructure perturbs the velocity distribution,

that we now assume to be described by

p(v) ∝ ev/1000(1 + e2.75v/1000)−1 (1.5)

depicted in Fig 1.3 (solid line). The function has first and second moments

(mean and dispersion) equal to −460 and 1130 km s−1, respectively, excess kur-

tosis and a non zero skewness. We simulate 1000 (virtual) clusters of 25 members

each (and no interlopers) drawn from the distribution above (eq. 1.5), but we

compute the velocity dispersion using eq. 1.3, i.e. with a likelihood function ap-

propriate for members drawn from a Gaussian, to make our study more realistic.

The average of determined posterior means is 1140 km s−1 (vs. the 1130 km s−1

input value) with a standard deviation of 185 km s−1. The uncertainty (poste-

rior standard deviation), averaged over simulations, is 163 km s−1, close (as it

should be) to the scatter of the posterior means. The uncertainty has a negligible

scatter, 18 km s−1, indicating the low noise level of each individual uncertainty

determination. The uncertainty of the dispersion error is four time better with

a Bayesian estimation than using BCES, displaying a scatter of 70 km s−1, and

returning uncertainties as small as 73 km s−1 and as large as 865 km s−1 for data

that are supposed to give a unique, fixed, value of uncertainty (see left panel of

1.4).

As a more difficult situation, we now consider a sample drawn, as before,

from a distribution different from the one used for the analysis, but furthermore

∼ 50% contaminated by interlopers and consisting of half as many members:

13 galaxies are drawn from the distribution above (eq. 1.5), superposed to a

background of 12 galaxies, uniformly drawn from ±5000 km s−1. Within 1130

km s−1 (i.e. 1σv) from the center the average contamination is about 20 %. The

average of found posterior means is 1160 km s−1 (vs. the 1130 km s−1 input

value). The average uncertainty is 390 km s−1, with a low (80 km s−1) scatter.

The biweight estimator returns, on average, a strongly biased estimate, 2135 km

s−1, see Fig 1.4.

As mentioned, mixtures often arise in astronomy and our equations 1.3 and

1.4 equally hold for any Poisson signal superposed on a background, such as the

distribution of galaxies in colour or the spatial distribution of X-ray photons or

galaxies, or whatever. We just need to rename variables with names appropriate

to the measurand, and eventually, consider a more complex model, for example

if the background distribution is not uniform. In fact, the solution illustrated in

this section has been developed to measure the X-ray core radius of a cluster

of galaxies barely detected (Andreon et al. 2008) and later used to measure the

cluster velocity dispersion.
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1.6 FITTING A TREND IN PRESENCE OF OUTLIERS

Figure 1.5 Three simulated data sets of 25 objects (points), true trends
from which data are generated (red solid line), recovered trend by BCES
(dotted blue line) and mean (Bayesian) model (dashed green line). In our
1000 simulations, BCES results worser than those shown in central and
right panels occur in about 10 % of the cases (see text for details).

1.6 Fitting a trend in presence of outliers

Let’s consider an apparently different problem: we observed some quantities

x and y and we want to estimate some parameters describing how these two

quantities vary as a function of each other. In astronomy, these regressions

are named, say, Tully-Fisher, Faber-Jackson, Colour-Magnitude relations, Fun-

damental Plane, cluster scaling relation, Ghirlanda relation (for Gamma Ray

Burst), etc. Many articles present their own way for the determination of these

parameters (direct-, inverse-, orthogonal-, Bivariate Correlated Error and in-

trinsic Scatter-, Measurement errors and Intrinsic Scatter- fit). The Bayesian

approach allows a simple solution, even in the difficult case of a linear fit in pres-

ence of heteroscedastic (i.e. of different magnitude) errors on both variables and

an intrinsic scatter (i.e. not accounted for by experimental errors), and censored

or truncated data. In such case, and for an ignorable data collection process (see

below) and for variable having names appropriate for the colour–magnitude rela-

tion, slope a, intercept c, intrinsic scatter, σintr of the colour–magnitude relation,

and Gaussian photometric errors, the likelihood is a Gaussian (e.g. D’Agostini

2003; 2005; Gelman et al. 2004):
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A BAYESIAN APPROACH TO GALAXY EVOLUTION STUDIES

p(mi, coli|a, c, σintr , nobkg) ∝ N (coli|a mi + c, σ2
intr + σ2

coli + a2σ2
mi

)

(1.6)

where σmi
and σcoli are the errors on magnitude and colour of the ith galaxy.

The solution is quite intuitive: the colour magnitude relation has a width given by

the sum in quadrature of the intrinsic scatter, colour errors and magnitude errors

propagated on the colour (via the slope a). In spite of the solution simplicity,

many pages are spent in journals to decide which approximate procedure (usually

far more complicate that the equation above) should be used in which cases, all

of which can be shown to be approximations of eq. 1.6. Of course, a change of

variable names makes the result useful for whatever scaling relation.

To avoid recourse to maths, let us perform numerical simulations and com-

pare the Bayesian approach and the state-of-the-art non-bayesian astronomical

method, BCES (Akritas & Bershady 1996). BCES accounts for intrinsic scatter

and for heteroscedastic errors. We considered a sample of 25 objects obeying to

a linear trend of slope a = 5 with an intrinsic dispersion σintr = 1. Data have

Gaussian errors, σx = 1 and σy = 0.4. In detail, the true x values have been

drawn from a Gaussian having στ = 1 centered on µτ = 0. The true y values are

given by y = 5x (i.e. c = 0 in eq. 1.6). Observed x values and y values are com-

puted by adding to each true x and y some noise (a Gaussian variate with σx = 1

and σy = 0.4 respectively). Because of the intrinsic scatter, y is perturbed by

adding a Gaussian variate with σintr = 1. Figure 1.5 shows three simulated data

sets. Qualitatively, these plots look similar to, or better than, many LX −σv seen

on astronomical journals. We produced 1000 simulations of 25 data points. For

each simulation we compute the slope and slope error as determined by BCES.

We also compute the slope posterior mean and standard deviation, assuming

uniform priors for all parameters but for the slope a, for which we take an uni-

form prior on the angle α (a = tan α). Since in our problem σx is comparable to

the x range and the x distribution is far from being uniform (in the statistical

jargon “the data collection process is not ignorable”), the likelihood continues to

be described by a Gaussian, as eq. 1.6, but in a 2 dimensional (y, x) space. Per-

forming the algebra associated to the matrix product gives a Gaussian N (µ, σ2)

with parameters µ and σ2:

σ2 = (a2σ2
τ + σ2

intr + σ2
y)(σ2

τ + σ2
x) − a2σ4

τ (1.7)

µ = (σ2
τ + σ2

x)(yi − c − aµτ )2 − 2aσ2
τ (yi − c − aµτ )(xi − µτ ) +

+ (a2σ2
τ + σ2

intr + σ2
y)(xi − µτ )2 (1.8)

As στ → ∞, the likelihood converges to eq. 1.6 (i.e. eq 1.6 is an approximation
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1.6 FITTING A TREND IN PRESENCE OF OUTLIERS

Figure 1.6 Comparison between BCES (blue) and the Bayesian approach
(red) for our linear regression problem. We considered 1000 simulations of
a sample of 25 objects uncontaminated by interlopers. Left panel: BCES
sometimes returns badly wrong slope estimates: the BCES histogram dis-
tribution shows outliers, cumulated at −10 and 30. Right panel: True value
of the slope error (vertical arrows), as measured by the scatter of returned
slope minus input slope, and distribution of quoted errors (histograms).
BCES is overly-optimistic about the quality of its error, the very large
majority of the error estimates are small when the scatter between input
and output slope is large. Furthermore, BCES displays a large scatter in
the returned error, for data sample supposed to give identical values of
uncertainty.

of the present equation). Of course, the parameters used to produce the data (στ ,

µτ , σintr , a and c) are assumed to be unknown in both analysis.

The left panel of Fig 1.6 shows that both BCES method and the Bayesian

approach return slopes whose distribution is centered on the input value, at least

for our setting. However, BCES returns sometimes slopes much different from

the input one (look the histogram wings and in particular around -10, 30, where

we have cumulated more extreme values). The Bayesian approach does not show

such catastrophic failures. The right panel of Fig 1.6 shows the distribution of

the quoted errors. The important thing here is not how large (or small) a method

claim to be its error, i.e. the location of the plotted histogram, but the veracity of

claimed error, i.e. whether the quoted error distribution (i.e. histogram) is located

near or far from the true error (vertical arrow). The true error is computed as

the scatter between the returned slope and the input slope. On average, BCES

optimistically estimates errors by a large factor, mainly because in 10 % of the

cases it presents a catastrophical failure. The Bayesian method performs better

in this respect: the quoted slope uncertainty is equal to the scatter between the

input and output slopes, as it should be. Second, BCES displays a large scatter
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Figure 1.7 Left panels: Colour–magnitude diagrams for background galax-
ies (upper panel) and cluster+background galaxies (lower panel). These are
true data for the cluster Abell 1185, presented in Andreon et al. (2006a).
The solid line is the mean colour-magnitude relation of cluster galaxies
computed as described in the text. The shaded region marks the 68 %
highest posterior interval. Right panel: Posterior probability distribution
of the colour-magnitude intrinsic scatter. The jagged nature of the distri-
bution is due to the finite lengh of the used MCMC chain. A Gaussian
with first two moments matching the distribution is overplotted to guide
the eye.

of the quoted slope error, for data sample supposed to give similar values of

uncertainty.

To summarize, although BCES is not systematically in error, in ten percent of

our simulations, BCES returns badly wrong slopes with badly underestimated

errors. In a real application true values are unknown, and in such a case there is

no way to known whether the BCES result is one of the frequently good values or

a bad one. The Bayesian method better performs because it is better behavied:

there are no such catastrophic failures.

As formulated above, the problem does not account for our everyday experi-

ence: real samples are contaminated by interlopers, i.e. objects unrelated to the

ones we are interested in. Now our model will be a mixture of two regressions,

one carrying the signal (the cluster colour–magnitude relation) and the other

describing the background (galaxies, objects on the line of sight), with the usual

difficulty that we do not known which galaxy belongs to the cluster and which

one is simply projected along the cluster line of sight. A real case (the cluster

Abell 1185, from Andreon et al. 2006a) is shown in Fig. 1.7. The distribution of
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1.6 FITTING A TREND IN PRESENCE OF OUTLIERS

background galaxies in the m,col space is not uniform, and therefore the back-

ground is modelled by an inhomogeneous process, B(mi, coli|m, col). Therefore,

the likelihood of the ith galaxy, p(mi, coli|a, c, σintr), is given by the mixture of

two distributions:

p(mi, coli|a, c, σintr, α, M∗φ∗) = ΩjB(mi, coli|m, col)+

+ δcΩjN (coli|a mi + c, σ2
intr + σ2

coli + a2σ2
mi

)S(mi|α, M∗φ∗) (1.9)

In this equation we considered the usual case, i.e. we have at least a control

field (i.e. data from a sky region uncontaminated by the cluster contribution).

In such case, δc = 1 for cluster datasets , δc = 0 for the other datasets, Ωj is

the studied solid angle. Otherwise, it is just matter of replacing δc with a radial

profile. S is the usual Schechter (1976) function, with α, M ∗ and φ∗ parameters,

that describes the luminosity function of galaxies. We have also assumed that

the data collection model is ignorable, for mathematical convenience.

As in eq. 1.4, the likelihood of independently and identically distributed data

is given by the product, over the data mi, coli of the individual likelihood terms.

As shown there, the likelihood includes an integral term, given by the integral

of the model over the values ranges. The integral should be performed on the

appropriate colour and magnitude ranges (those accessible to the data) and it

is equal to the expected number of galaxies. This term disfavours models that

predict a number of galaxies very different from the observed one. If errors on

m (mag) are not negligible, S in eq 1.9 should be replaced by the convolution

between the Schechter function and the error function. The inference proceeds as

usual, by choosing a prior, computing the posterior, and summarizing the result

of the computation above with a few numbers, those of scientific interest.

The problem of determining an instrinsic scatter around a linear trend in pres-

ence of outliers or a background population is so difficult that, to our best knowl-

edge, there are no non-Bayesian solutions to be compared with our Bayesian ap-

proach. We cannot, therefore, simulate some data and compare the performances

of different methods, because of the lack of a contender.

Had we (mis-)used BCES, then the found slope of the colour magnitude-

relation shown in fig 1.6 would be completely wrong, and equal to the one of

the background population, outnumbering by a factor four the cluster popula-

tion. This occurs because BCES is not built to be robust against a contaminating

population. An ad hoc solution often used in astronomical papers is to remove

the slope dependency by subtracting off an expected one (e.g. one observed at

z = 0, assuming no slope evolution), measuring the scatter using ‘Robust’ meth-

ods, as described in previous section, and finally quadratically subtracting colour

errors from the measured scatter, following Stanford et al. (1996). This procedure

often lead to intrinsic scatter with 68 % error bars extending to negative values,
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including some examples in Stanford et al. (1996). We have already discussed the

shortcoming of using the ‘robust’ estimate of the scatter. The Bayesian method

does not require ad hoc methods, does not make assumptions on the trend slope,

and always returns positive intrinsic dispersions, as in the case of Abell 1185

shown in Figure 1.7.

Readers interested in fractions, fb, bounded in the [0, 1] range or hardness

ratios, H −S/(H + S), bounded in the physical range for data contaminated by

a background may consult Andreon et al. (2006b) and D’Agostini (2004) and

remember that the hardness ratio has the same mathematical properties of (is

equal to) 1− 2fb, i.e. one minus twice the (blue) fraction discussed in these two

works.

1.7 What is the number returned by tests like χ2, KS, etc.?

Many articles measure the ‘probability of rejecting the null hypothesis‘ using

some statistical tests, for example Kolmogorov-Smirnov’s, Kendall’s, Spearman’s

rank correlation, F−, Student’s t−, Wilcoxon rank, χ2 tests. Many of us have

noted oddities with the numbers (called p−values) returned by them: by taking

two statistical tests we sometimes found widely different ‘probabilities’, e.g. 0.001

and 0.861. How can this be the case, since the desired result is a single unique

value? In our example, which one is the good probability, the one rejecting the

null or the other one? The mere existence of a variety of tests, as opposed to

a single one, is an indication that no test always gives the desiderated number.

Actually, p-values are not the probability of the hypothesis, that is the desired

probability. They are the probability of observing more discrepant values of the

chosen statistic for hypothetical data drawn from null hypothesis, that is the

probability of rejecting the null hypothesis when it is true. There is nothing

strange that two different statistics (measures, say height and width) of data

drawn under the null hypothesis takes different values.

The difference between the p−values and probability of the hypothesis can be

better understood with an astronomical example: the detection of faint sources.

In such case, the null hypothesis to reject is “no source is there”. Let I0 be the flux

measured at the target position. A usual way to compute the detection confidence

is by measuring how frequently one observes larger values, > I0, under the null,

i.e. in areas free from sources: p(> I0|background). The p−value is, precisely, the

measured frequence. For many famous tests, like those mentioned at the start of

the section, the probability distribution of the test statistic is analytically known

and there is no need of further data (the background) in order to compute the

distribution of the test statistics.

Let us suppose to have found a p−value of 0.003, i.e. that measurements free

of sources gives p(> I0|background) = 0.003 (= 0.3 %, readers may of course

choose any other value). Should this means that the target is real at one minus
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the p−value confidence, p(source|I0) = 1 − 0.003 = 0.997, i.e. is real at 99.7 %

confidence ? Certaintly not. Qualitatively, if sources fill a small portion of the sky

there is a lot of sky left to the background. Then, statistical fluctuations of the

background, even rare ones, may overwhelm the number of true sources. In such

a case, only a very tiny fraction of detections are true, not 99.7 % as the p-value

leads us to believe. More quantitatively: let x be the portion of sky occupied by

sources (when observed in the same observational set up that gives a p−value

of 0.003), and N the number of independent beams in the sky. Note that x is

the probability a priori that there is a source in a beam. Then, xN beams are

occuped by sources and (1−x)N are not. Assuming a 100 % detection efficiency,

xN are true sources detected, and 0.003(1 − x)N will be instead false positive

detections. Thus, there will be xN + 0.003(1−x)N detections, but among them

only xN are true sources. The probability to be a true source, p(source|I0), is

given by the fraction of true detected sources over total number of detections:

x/(x + 0.003(1 − x)). If x = 0.07 %, a value appropriate for typical Chandra

exposures, then sources believed to be detected at 99.7 % confidence (or better,

with a p−value of 0.003) have 19 % probability of being real. Adopting instead a 5

% p−value, we end up with a catalog composed by entries that are junk 99 times

out 100, instead of being true sources 95 % of the times, as the p−value leave

to think. Only in fortunate cases (appropriate values of x) one may have similar

numbers for the p−value and the probability of rejecting the null hypothesis.

Therefore, these two probabilities are conceptually different and take different

values.

As shown in the example, the desired probability does depend on the a priori

probability of the (null) hypothesis (x in the example). However, virtually all

non Bayesian astronomical papers compute p−values but call them “the prob-

ability of rejecting the null hypothesis”. For example, in testing the reality of

a trend, the Sperman’ rank correlation test is often used, and the one minus

the p−value is quoted as probability to reject the null (“no trend”) hypothesis.

Such a practice ignores the essential role played by the a priori probability of the

competing hypothesis, which, in principle, may convert a “95 %” confident result

into an inconclusive result, as in our example. The Bayesian approach is based

on probabilities for the hypothesis, it cannot ignore them, and in our example

the Bayes theorem takes the expression we have used to evaluate the desired

probability.

1.8 Summary

The Bayesian approach solves some difficulties encountered with other proce-

dures. It works in the regime of typical researcher activity: when looked-for

effects are marginally significant, or near boundaries, such as when the small in-

trinsic dispersion of the colour-magnitude relation is to be determined, or when
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there is no agreement among astronomers how to set up the right procedure, as

for the regression problem in absence of a background. It also offers a solution

when none is there, as in the case of the fit of a trend in presence of a contami-

nating population. It works when otherwise obtained results are unsatisfactory,

as for velocity dispersions or for cases when other procedures return unphysical

values. The Bayesian approach already includes corrections for biases, as for the

Eddington bias. The ultimate reason for its good performances is highlighted in

two idealized cases at the start of this chapter, a) it obeys to the sum axiom

of probability and thus make averages (marginalize) over unknown quantities,

instead of maximize the value of some ad hoc estimators, and b) it performs in-

ferences following the Bayes’ theorem instead of considering priors as something

to be avoided. Finally, the Bayesian approach clarifies what other methods are

actually computing, for example what is the meaning of the number returned by

Kolmogorov-Smirnov, χ2, Wilcoxon rank tests.

Let’s conclude this chapter by remembering that the scientific method sug-

gests to always prefer a procedure known to work over one whose reliability is

uncertain.
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