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Abstract. The new generation of wide field CCD detectors for astronomical ap-
plications will produce a huge data flow which cannot be effectively handled with
traditional - interactive softwares. We discuss here the performances of the software
Neural Extractor (NExt): a neural network based package capable to perform in a
fully automatic way both object detection and star/galaxy classification on large
format astronomical images. Extensive testing shows that NExt produces objects
catalogues which are both reliable and cleaner of spurious objects than catalogues
produced using other packages.

1 Introduction

Astronomical Wide Field Imaging (=WFI) is the only tool to tackle prob-
lems requiring the study of rare objects or of statistically significant samples
of objects selected either at optical or near infrared wavelenghts. Therefore,
WEFTI has been and still is of paramount relevance to almost all fields of astro-
physics: from the search for minor bodies in the solar system to the structure
and dynamics of the Galaxy, to cosmology. Furthermore, the scientific ex-
ploitation of the new generation 8 meter class telescopes which are mainly
aimed to observe targets which are often too faint to be even detected on
old fashion photographic surveys such has the POSS-II, has created the need
for digital all-sky surveys realised with large format CCD detectors mounted
on dedicated telescopes (cf. Sloan-DSS, MEGACAM and VST+Omegacam,
VISTA projects).

An aspect which is never too often stressed is the humongous problem
posed by the handling and processing of the huge data flow produced by this
new generation of dedicated survey instruments. VST and Omegam, for in-
stance, shall produce an estimate 100 GB of data per observing night which
need to be archived, prereduced and calibrated on a relatively short time
scale; tasks which cannot be effectively performed using the traditional, in-
teractive software packages (such as MIDAS, TRAF, etc.) designed to deal
with smaller frames and less massive data sets. In this paper we address two
aspects which are at the heart of most WFI based research, namely catalogue
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extraction and computer aided data mining. The final goal of the analysis of
WFI data is usually the extraction of catalogues of objects containing astro-
metric, photometric and morphological information. These catalogues need
to have (i) well defined completeness; to be (ii) as clean as possible from
spurious objects; to be (iii) reproducible. Requirements which are not always
matched by the available packages. Ferguson [4], for instance, has compared
catalogues extracted from the Hubble Deep Field by different groups using S-
Extractor [3] finding that: i) near the detection limit the results are strongly
dependent on the assumed definition of ”what an object is” (in terms of area
and detection treshold); ii) in some image areas the object detection perfor-
mances are worse than what can be obtained by an untrained astronomer
through visual inspection. These problems may be at least partially solved
adopting specifically tailored Artificial Intelligence tools.

2 NExt: Neural Extractor

NExt or Neural Extractor [1] is a new package based on Neural Networks

(=NN) which can perform object detection, deblending and star/galaxy clas-

sification and seems capable to solve most of the above listed problems.
The most relevant aspects of NExt can be summarised as follows:

e NExt does not require any a-priori assumption on what an object is but
just assumes the minimal definition of two adiacent connected pixels;

e NExt does not require any fine tuning of the detection and classification
parameters;

e to perform star/galaxy classification NExt does not use any arbitrarily
defined set of features but rather it selects on objective grounds the most
significant ones.

The first step of the procedure consists in an optimal compression of the
redundant information contained in the pixels, via a mapping from pixels
intensities to a subspace individuated through Principal Component Anal-
ysis (=PCA), see Fig. 1. From a mathematical point of view, in fact, the
segmentation of an image F' is equivalent to splitting it into a set of discon-
nected homogeneous (accordingly to an uniformity predicate P) regions Si,
Sa, ..., Sp in such a way that their union is not homogeneous: | J S; = F with
SiS; =0, i # j, where P(S;) = true Vi and P(S;|JS;) = false when S;
is adiacent to S;.

Since the attribution of a pixel to either the ”"background” or the ”ob-
ject” classes depends on both the pixel value and the values of the adiacent
pixels, we used a (n x n) mask (with n = 3 or 5) and, in order to lower the
dimensionality of the imput pattern we used an unsupervised PCA NN to
identify the M (with M < n x n) most significant features.

This M-dimensional projected vector is then used as input for a second
non-linear NN which classifies pixels into classes. In this respect, we have to
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Fig. 1. The overall scheme of the adopted segmentation strategy

stress that non linear PCA NN’s based on a Sigmoidal function outperform
linear PCA NN’s since they achieve a much better separation of faint objects
close to the detction limit of the image (Fig. 2). Linear PCA’s, in fact, produce
distributions with very dense cores (background and faint objects) and only
a few points spread over a wide area (luminous objects).
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Fig. 2. Simplified scheme of the different performances of linear and non linear NNs
in increasing the contrast between background pixels and faint objects pixels

Non linear PCA’s, instead, produce better sampled distributions and a
better contrast between faint and bright objects. After this step, the prin-
cipal vectors can be used to project each pixel in the eigenvector space. An
unsupervised NN is then used to classify pixels into a few classes (on average
6, since fewer classes produce poor classifications and more classes produce
noisy ones). In all cases, however, only one class represents the ”background”.
The classes corresponding to the "non-background” pixels are then merged
together to reproduce the usual object/non object dychotomy. In order to
select the proper NN architecture, we tested Hierarchical and Hybrid unsu-
pervised NNs and the best performing turned out to be the Neural-Gas (NG),
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the Multi Layer Neural Gas (MLNG), the Multi Layer Self Organizing Map
(ML-SOM) and the GCS+ML Neural Gas, for details see [1], [7].

Once the objects have been detectedi, NExt measures a first set of pa-
rameters (namely the photometric baricenter, the peak intensity and the flux
integrated over the area assigned to the object by the mask). These parame-
ters are needed to recognize partially overlapping objects (from the presence
of multiple intensity peaks) and to disentangle them.

At difference from what other packages (cf. FOCAS) do, multiple peaks
are searched at several position angles after compressing the dynamical range
of the data (in order to reduce the spurious peaks produced by noise fluctu-
ations) and, once a double peak has been found, objects are split perpendic-
ularly to the line joining the peaks. A problem which is often overlooked in
most packages is that the deblending of multiple (more than 2 components)
objects introduces spurious detections: the search for double peaks and the
subsequent splitting produces in fact in each segment of the image a spurious
peak which is identified as an additional component in the next iteration.
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Fig. 3. Example of how most packages erroneously split a triple source into four
components
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In order to correct for this effect, after the decomposition, NExt runs a re-
composition loop based on the assumption that true celestial objects present
a rapidly decreasing luminosity profile and that, therefore, erroneously split
objects will present a strong difference on the two corresponding sides of
adiacent masks. After deblending, contour regularisation takes place and as-
trometric and photometric parameters are measured.

Our present implementation of NExt measures the following parameters
(but other can be defined by the user accordingly to specific needs): photo-
metric barycenter coordinates, semimajor and semiminor axes, position angle,
object area, the Kron radius, twelve parameters inspired by work [5] (namely
object diameter, ellipticity, average surface brightness, central intensity, fill-
ing factor, area, armonic radius, five luminosity gradients); the Miller and
Coe [8] radii and five FOCAS features (second and fourth moment, average
ellipticity and average central intensity).

3 Object detection performances

One main problem in testing the performances of an extraction algorithm is
that the comparison of catalogues obtained by different packages leads often
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to ambiguous results: in the case of conflict it is difficult if not impossible, to
decide which algorithm is correct and which is not. We therefore decided to
test several packages (NExt, S-Extractor and SKICAT) on the DPOSS field
covering the North Galactic Pole, a region where accurate catalogues obtained
at large telescopes (and therefore with a much deeper completeness limit than
the DPOSS) are available. More precisely, we used the catalogue obtained by
Infante and Pritchet [2] (hereafter IP92) using deep high resolution plates
taken at the CFHT to define the ”True” objects. All packages were run on
the same DPOSS region covered by the IP92 catalogue and results were
compared. We have to stress that, since in using S-Extractor the choice of
the parameters is not critical, we adopted the default values.

The results are presented in Fig. 4. In both the left and the right panels,
the upper part shows the number of objects in the IP92 catalogue (it is
clearly visible that the IP92 catalogue is complete to almost two magnitudes
below the DPOSS completeness limit). The lower left panel gives the fraction
(True/Detected) of objects detected by the various NNs and by S-Extractor
and shows that all implementations are more or less equivalent in detecting
True objects (the best performing being S-Extractor and MLNGS5 (where the
5 denotes the 5 x 5 mask implementation of the MLNG NN).

Much more different are the performances in detecting ”false” or spurious
objects, id est objects which are not in the TP92 catalogue but are detected
on the DPOSS material. In this case, NNs outperform S-Extractor producing
in same cases (MLNGS5) up to 80% less spurious detections.

4 Star/Galaxy classification

The first step consists in identify among the measured parameters those which
are most significant for the classification task. In order to select the relevant
ones, we adopted the sequential backward elimination strategy [6] which
consists in a series of iterations eliminating at each step the feature which is
less significant for the classification. Extensive testing showed that the best
performances in star/galaxy classification are obtained by using 6 features
only (two radii, two gradients, the second total moment and a Miller and Coe
ratio). Star/galaxy classification was performed by means of a MultiLayer
Perceptron (MLP) NN. In order to teach the NN how to classify galaxies, we
divided the data set into three subsets, namely the training, validation and
test sets. Learning was performed on the training set and the early stopping
technique is used to avoid overfitting [6]. As a comparison classifier we used,
once more, S-Extractor which also uses a NN (a MLP) trained on a set of 108
simulated images to attach to each object a ”stellarity index” ranging from 0
(galaxies) to 1 (stars). We wish to stress here that NExt is (to our knowledge)
the only package trained on real, noisy data. The training was then validated
on the validation set and tested on the test set. Results are shown in Fig. 5
and confirms that NExt misclassifies less galaxies than S-Extractor, whose
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Fig. 4. Comparison of the performances of different NN’s architectures plus S-
Extractor in detecting " True” (up) and ”False” (bottom) objects

performance have been optimized by the use of the validation set (for a fair
comparison).

5 Conclusions

NExt is a fully automatic non interactive package aimed to perform object
detection and star/galaxy classification on large format astronomical images.
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Fig. 5. Comparison of the performances of MLNG5 and S-Extractor in classifyng
Stars and Galaxies

Its main characteristics may be summarised as follows: i) NExt performs bet-
ter than any available software (less spurious objects and at least equivalent
completeness); ii) it is fully modular and can be included in any automatic
data processing pipeline; iii) it is less subjective than other packages for what
detection and classification criteria are concerned.
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