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ABSTRACT

We analysed the richness-mass scaling of 23 very massive clusters at 0.15 < z < 0.55 with homogenously measured weak-lensing
masses and richnesses within a fixed aperture of 0.5 Mpc radius. We found that the richness-mass scaling is very tight (the scatter
is <0.09 dex with 90% probability) and independent of cluster evolutionary status and morphology. This implies a close association
between infall and evolution of dark matter and galaxies in the central region of clusters. We also found that the evolution of the
richness-mass intercept is minor at most, and, given the minor mass evolution across the studied redshift range, the richness evolution
of individual massive clusters also turns out to be very small. Finally, it was paramount to account for the cluster mass function
and the selection function. Ignoring them would lead to larger biases than the (otherwise quoted) errors. Our study benefits from:
a) weak-lensing masses instead of proxy-based masses thereby removing the ambiguity between a real trend and one induced by an
accounted evolution of the used mass proxy; b) the use of projected masses that simplify the statistical analysis thereby not requiring
consideration of the unknown covariance induced by the cluster orientation/triaxiality; c) the use of aperture masses as they are
free of the pseudo-evolution of mass definitions anchored to the evolving density of the Universe; d) a proper accounting of the
sample selection function and of the Malmquist-like effect induced by the cluster mass function; e) cosmological simulations for the
computation of the cluster mass function, its evolution, and the mass growth of each individual cluster.

Key words. galaxies: clusters: general – galaxies: elliptical and lenticular, cD – galaxies: evolution – methods: statistical

1. Introduction

The evolution of the relation between mass and richness in
galaxy clusters is interesting for both cosmological and astro-
physical reasons. From an astrophysical perspective, more mas-
sive clusters tend to have more of everything, and therefore to
factor out this obvious (mass) dependence (for example to stack,
combine, or compare clusters of different mass), one needs to
measure the scaling of richness with mass at the cluster red-
shift. Since this is usually not available, one needs knowledge
of present-day scaling and of its evolution. The evolution of the
richness-mass scaling is also interesting per se, because it gives
the evolution of the number of galaxies (per unit cluster mass,
alias the halo occupation number, Berlind & Weinberg 2002; Lin
et al. 2004). If galaxy mergers or infall are important, then the
richness-mass scaling should evolve, except for infalling mate-
rial that has a number of galaxies per unit mass close to the al-
ready infallen material.

From a cosmological perspective, one may infer the mass of
a cluster from knowledge of its richness (e.g. Andreon & Hurn
2010; Johnston et al. 2007). However, if the cluster has a red-
shift fairly different from the clusters used to calibrate the re-
lation, knowledge of the evolution is needed. From the inferred
masses, one may eventually learn about the cosmological param-
eters (e.g. Rozo et al. 2010; Tinker et al. 2012). However, if the
richness-mass relation evolves, but is taken to be unevolving, or
assumed to evolve in a different way than it does, then a bias
in the cosmological parameters would result when cosmological
samples are calibrated with samples with an un-matched redshift

distribution. Knowledge of the evolution of the richness-mass re-
lation is therefore paramount.

The richness-mass scaling is especially interesting when
alternative mass proxies (e.g. the X-ray temperature, or the
YX parameter, Kravtsov et al. 2006) are unavailable or their mea-
surement is infeasible. This often occurs for clusters at very high
redshift; for example at z > 1.45 only one cluster has a measured
X-ray temperature (JKCS 041 at z = 1.803, see Andreon et al.
2009, 2014) and hence a computable YX (YX requires the X-ray
temperature), but several clusters are known. Unavailability or
infeasibility also occurs at lower redshift (e.g. Faloon et al. 2013;
Menanteau et al. 2010), because of the cost of following up large
cluster samples in X-ray.

The determinations of the evolution of the richness-mass re-
lation require clusters spread over a sizeable redshift range with
known masses derived in a uniform way to avoid introducing
systematic biases (see e.g. Applegate et al. 2014). Such samples
are rare at best, and therefore most previous studies use mass
proxies in place of mass, for example X-ray temperature (e.g.
Lin et al. 2006; Capozzi et al. 2012). However, any result found
using a mass proxy in place of mass is ambigous: an evolution of
the richness-mass proxy (e.g. X-ray temperature) relation may
be due to the evolution of richness, or the proxy used to infer
the cluster mass. A lack of evolution may instead be due to two
evolutions that compensate each other. Furthermore, results are
sometimes contradictory (e.g. Lin et al. 2004 vs. Lin et al. 2006).
Direct masses are therefore needed to make progress in this
field.
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Lensing masses are starting to be available for cluster sam-
ples spread over a redshift range wide enough to probe evolution
(Hoekstra et al. 2012; Applegate et al. 2014) and have the ad-
vantage of directly measuring mass and removing the ambigui-
ties of previous attempts which were oblided to use mass proxies
because of the absence of directly measured masses.

In this work, we measure the evolution of the mass-richness
relation using a sample of clusters with directly measured, weak-
lensing masses. We also improve on previous studies by adopt-
ing fixed, metric apertures to measure richness and mass and by
not de-projecting quantities. The use of a fixed (in Mpc) aperture
separates the real (if present) evolution at a fixed radius from the
one induced by a conspiracy between a possible non-constant
richness-radius relation and the well-known pseudo-evolution of
the reference radius (e.g. r500) because of the evolving density of
the Universe. This is called pseudo-evolution because the radius
and the cluster mass would change even if the cluster mass pro-
file would not.

The use of projected quantities mitigates cluster orienta-
tion/triaxiality effects, because they are likely similar for both
the matter and the galaxy distribution (Angulo et al. 2012).
The advantage mainly consists in a simpler analysis, since de-
projected quantities would have correlated errors that have to be
accounted for in the analysis. For example, if de-projected quan-
tities were used and error covariance ignored, the intrinsic scatter
between richness and mass would be spuriously underestimated.

Although the use of directly measured masses is certainly an
improvement upon previous studies, current samples with weak-
lensing masses have an unknown selection function, as do previ-
ous cluster samples selected in other ways and studied in similar
contexts (e.g. Lin et al. 2006; Capozzi et al. 2012). In the case of
weak-lensing, the shear effect on background galaxies can only
be measured for the most massive clusters, making the accessi-
ble mass range very narrow and the mean mass of the sample
variable with redshift. The presence of this selection function
(Gelman et al. 2004; Heckman 1979) complicates the analysis.
It is not, however, a unique feature of cluster samples with weak-
lensing masses, since almost every other cluster sample has a
limiting, mean, or maximal mass that is redshift-dependent, i.e.
it includes clusters of a given mass more frequently at some red-
shifts than at others.

In this paper we perform a first robust assessment of the evo-
lution of the richness-mass relation of galaxy clusters using a
sample of 23 clusters with 0.15 < z < 0.55 with weak-lensing
aperture masses. Our sizeable sample with directly measured
masses highlights the importance of intrinsic scatter, of address-
ing selection effects in the cluster sample, and of collinearity1

between richness and redshift, none of which have been consid-
ered in any previous studies. Our analysis also emphasises the
importance of paying attention to the way clusters are selected
and of incorporating the selection function into the estimation.
Indeed, performing the astronomical measurements is the sim-
plest part of this work.

Throughout this paper, we assume ΩM = 0.3, ΩΛ = 0.7, and
H0 = 70 km s−1 Mpc−1. Magnitudes are in the AB system. We
use the 2003 version of Bruzual & Charlot (2003, BC03 here-
after) stellar population synthesis models with solar metallicity
and a Salpeter initial mass function (IMF). Results of stochas-
tic computations are given in the form x ± y where x and y are

1 Collinearity is the precise term used in statistics to refer to an exact
or approximate linear relationship between two explanatory variables,
often named “degeneracy” in astronomy. We illustrate the point in the
next section.

Fig. 1. Mass (upper panel) and richness (lower panel) of the studied
cluster sample. In the upper panel, the solid/dashed lines indicate the
adopted/alternative limiting mass of the selection function.

the posterior mean and standard deviation. The latter also corre-
sponds to 68% intervals, because we only summarized posteriors
close to Gaussian in that way.

2. Data and sample

2.1. The cluster sample

Our starting point is the Canadian Cluster Comparison Project
(CCCP) cluster catalogue (Hoekstra et al. 2012). Fundamentally,
the catalogue is a collection of clusters at 0.15 < z < 0.55
with homogeneously derived weak-lensing masses, but without
a known selection function. In particular, the catalogue offers the
advantageous projected aperture masses within a 0.5 Mpc radius.

We select the subsample observed with the CFHT Megacam
camera (Boulade et al. 2003) in two bands bracketing the (rest-
frame) 4000 Å break. This gives us a sample of 23 clusters, listed
in Table 1, with masses and redshift distributed as in Fig. 1.

In our sample (and in the parent CCCP sample), the mean
mass increases with increasing redshift. This is a selection bias,
because cluster mass decreases with increasing redshift in indi-
vidual systems as a result of the continous infall of matter (see
Sect. 2.3). The relation is also tight (with a spread of 0.06 dex)
because of the combined effect of the steep cluster mass function
(at the massive end) and, at the less massive end, the Hoekstra
et al. (2012) requirement of dealing with massive clusters only
because of the challenging weak-lensing measurements. If the
mass redshift trend were scatterless (i.e. these quantities were
perfectly collinear), then there would be a strong covariance
(degeneracy) between the mass-richness slope and the redshift
evolution of the intercept. For example, an unevolving mass-
richness scaling would be indistinguishable from a shallower
mass-richness scaling joint to an increasing mass with redshift.
The degeneracy is broken by the scatter in the M−z relationship,
or equivalently M|z, namely mass at a given redshift, i.e. by the
vertical width of the mass distribution at a given redshift.

2.2. The data and the derivation of cluster richness

The CFHT Megacam images used in this paper are reduced
with MegaPipe (Gwyn 2008). The images are 1 × 1 deg2 wide,
have a pixel size of 0.186 arcsec, are taken in sub-arcsec see-
ing conditions, and are several magnitudes deeper than we need.
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Table 1. Cluster id, redshift, and projected richness and mass within
0.5 Mpc.

Name z log10 n0.5 log10 M0.5/M�
Abell 2104 0.15 1.44 ± 0.08 14.53 ± 0.06
Abell 1914 0.17 1.72 ± 0.06 14.54 ± 0.05
MS0440.5+0204 0.19 1.29 ± 0.09 14.40 ± 0.09
Abell 520 0.20 1.42 ± 0.08 14.53 ± 0.06
Abell 2163 0.20 1.49 ± 0.07 14.62 ± 0.06
Abell 223N 0.21 1.43 ± 0.08 14.48 ± 0.07
Abell 223 0.21 1.42 ± 0.08 14.40 ± 0.08
Abell 222 0.21 1.50 ± 0.07 14.48 ± 0.07
Abell 1942 0.22 1.63 ± 0.06 14.49 ± 0.05
Abell 2111 0.23 1.62 ± 0.06 14.53 ± 0.06
Abell 1835 0.25 1.71 ± 0.06 14.66 ± 0.04
Abell 1758E 0.28 1.64 ± 0.06 14.62 ± 0.05
Abell 1758W 0.28 1.64 ± 0.06 14.61 ± 0.05
Abell 959 0.29 1.71 ± 0.06 14.67 ± 0.05
Abell 611 0.29 1.52 ± 0.08 14.52 ± 0.08
MS1008.1-1224 0.30 1.62 ± 0.07 14.54 ± 0.07
Abell 370 0.38 1.87 ± 0.05 14.76 ± 0.06
Abell 851 0.41 1.67 ± 0.06 14.71 ± 0.04
MS1621.5+2640 0.43 1.43 ± 0.08 14.62 ± 0.07
RXJ1347.5-1145 0.45 1.52 ± 0.08 14.68 ± 0.06
RXJ1524.6+0957 0.52 1.34 ± 0.09 14.45 ± 0.12
MS0015.9+1609 0.55 1.81 ± 0.05 14.82 ± 0.05
MS0451.6-0305 0.55 1.70 ± 0.06 14.56 ± 0.09

Notes. Masses are taken from Hoekstra et al. (2012). There is a typo in
the coordinates of RX J1524.6+0957 reported in Hoekstra et al. (2012):
the values adopted there and in our paper are 15:24:38.4 +09:57:43.

Specifically, we used g and r photometry for clusters at z < 0.31,
r and i for Abell 370 and RXJ1524.6+0957, i and z for Abell 851
and RX J1347.5-1145, and r and z for the remaining clusters.

For each cluster we derived photometry in the two bands us-
ing the SExtractor code (Bertin & Arnouts 1996). Total galaxy
magnitudes refer to “magauto”, while colours are based on a
fixed 3 arcsec aperture.

Basically, we aim to count red members within a specified
luminosity range and colour, and within a 0.5 Mpc radius, as
already done for other clusters (Andreon 2006, 2008; Andreon
et al. 2008; Andreon & Hurn 2010; Andreon & Bergé 2012).
We only consider red galaxies because these objects have al-
ready exhausted the baryonic reservoir needed to form new stars,
and therefore their luminosity evolution is better known. As in
Andreon & Hurn (2010), we take a passive evolving limiting
magnitude of MV = −20 mag, modelled with a simple stellar
population of solar metallicity, Salpeter IMF, from Bruzual &
Charlot (2003).

We only count red galaxies, where “red” is defined as in
several previous studies (e.g. Andreon et al. 2006; Raichoor &
Andreon 2012a,b): redder than an exponential declining τ =
3.7 model, and bluer than 0.1 to 0.2 mag redwards of the
colour−magnitude relation. The resulting sample turns out not to
depend on the details of the “red” definition because the adopted
colour boundaries fall (by design) in regions where no cluster
galaxies (in an amount large enough to be detected over the
background) are found at the bright magnitude of interest here.
Colours are not corrected for the colour−magnitude slope be-
cause this is a negligible correction (<∼0.1 mag) given the small
magnitude range explored and the large color range adopted.

Some of the galaxies counted in the cluster line of sight are
actually in the cluster fore/background. The contribution from
background galaxies is estimated, as usual, from a reference

direction (e.g. Zwicky 1957; Oemler 1974; Andreon et al. 2005).
The reference direction is taken outside a radius of 3 Mpc and
inside the same Megacam pointing in which the cluster is, hence
fully guaranteeing homogeneous data for cluster and control
field.

Since weak-lensing masses are computed within a cylin-
der of 0.5 Mpc radius2, we do the same for richness. The de-
rived (projected) richness values are listed in Table 1 and shown
in the bottom panel of Fig. 1. Table 1 shows that richness is
quite well measured, since it has on average an error of 17%,
very close to mass errors (15% on average). As detailed in
the Appendix, richness errors account for Poisson fluctuations
in background+cluster counts and the uncertainty on the mean
background counts.

2.3. Cosmological numerical simulations

The analysis of the real data requires simulated data for comput-
ing the mass function (prior), its evolution, and the mass evo-
lution of individual clusters. We use the MultiDark Run 1 dis-
sipationless simulation, described in Prada et al. (2012). This
simulation contains about 8.6 billion particles in a volume larger
than the Millennium simulation (Springel et al. 2005), and the
data are made available in CosmoSim (Riebe et al. 2013). The
large volume is useful for giving good statistics for massive clus-
ters like those of interest in this paper. The simulation gives
the mass profile of each bound-density-maxima (BDM, Klypin
& Holtzman 1997) halo, from which we derived M0.5 account-
ing for the sligthly different cosmology (WMAP5) adopted in
the simulations. After matching each BDM halo with its de-
scendant (via the friend-of-friend halo tree), we derived that
log M0.5 increases by ∼0.25 dex from z = 0.6 to z = 0. We
also derived the mass function (where mass is computed within
0.5 Mpc) to be used as mass prior in our fit. It is very steep at
log M0.5/M� >∼ 14.4, i.e. only a tiny range of log M0.5 is accessi-
ble, as directly shown by the (real) data in Fig. 1.

3. Results

Following previous works (Lin et al. 2006; Andreon et al. 2008;
Capuzzi et al. 2013, etc.) we fit the data with the function:

n0.5, z = n0.5, z= 0.25

(
1 + z
1.25

)γ
(M0.5/Mref )s (1)

where Mref = 1014.5 M�. In contrast to these previous studies,
we allow a possible log-normal scatter around the mean rela-
tion (the scatter is obvious in the Lin et al. 2004 sample), and
we prefer to zero-point quantities at z = 0.25 (the median red-
shift of our sample) instead of at z = 0. We also need to account
for the mass function and for the selection function because the
Malmquist-Eddington correction (the difference between latent
and observed value) depends on the shape of the product of these
two functions, see Andreon & Bergé (2012). We therefore take
the mass function and its evolution from the Multidark simula-
tion (Sect. 2.3).

As mentioned, the precise expression of cluster selection
function is unknown for our cluster sample, mainly because clus-
ters in Hoekstra et al. (2012) have been chosen by the authors
amongst a heterogenous and incomplete list of likely massive
clusters. We assume that the selection function is sharp (i.e. is

2 Sometime referred as “aperture” in Hoekstra et al. (2012).
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Fig. 2. Mass-richness scaling (left-hand panel) and residuals (observed minus expected) as a function of redshift (right-hand panel) accounting
for the mass and selection functions. The solid line marks the mean fitted regression line. The shaded region marks the 68% uncertainty (highest
posterior density interval) for the regression. In the left panel, measurements are corrected for evolution.

a 0/1 function), with a threshold mass, Mthr, linearly increasing
with redshift,

log Mthr = k (z − 0.25) + μ. (2)

To choose μ and k we note that the lower Mthr is the lower we ex-
pect to see data in Fig. 1, (i.e. Mthr cannot be too low), and that
Mthr cannot be much higher than the minimal observed mass.
We adopted k = 0.5, μ = 14.4 (Fig. 1). A second set of parame-
ters (Fig. 1) are also adopted for assessing sensitivity on this as-
sumption. We quantify the uncertainty induced by the unknown
selection function in the Appendix.

The mass-richness-redshift fit results are shown in Fig. 2. We
found that richness scales almost linearly with mass (with power
s = 1.3 ± 0.3), with negligible intrinsic scatter (log n0.5|M0.5 <
0.09 dex with 95% probability) and a statistically insignificant
evolution (γ = −0.7 ± 0.7). More precisely,

log n0.5,z = (1.3 ± 0.3)(log M0.5 − 14.5) + (1.48 ± 0.03)

+(−0.7 ± 0.7) (log(1 + z) − log(1.25)) (3)

with a strong covariance between s and γ, which inflates the er-
ror on γ, meaning that any analysis not accounting for collinear-
ity would derive an overly optimistic γ uncertainty. Instead, the
estimated intrinsic scatter is robust against model misfit, because
the bulk of the cluster sample has a very narrow distribution in
mass (i.e. almost a single value of mass) and a narrow range
in redshift, i.e. it does not require any richness-mass-redshift
modelling.

The virtual proportionality between richness and mass (slope
of their log 1.3 ± 0.3) should not be over-interpreted, as it refers
to a very small mass range: 14.4 � log M0.5/M� � 14.8 or
14.6 � log Mvir/M� � 15.5, and we do not know whether the
relation continues to be linear or bends at lower masses. Readers
having expectations about what the slope of this relation should
be, based on relations derived at other radii, should remember
that masses at unfixed metric radii, such as M500, are propor-
tional to Mζ0.5 with ζ � 1 and that there could be a (perhaps
small) radial gradient in N|M.

The γ parameter should not be misunderstood: it measures
the evolution of the mass-richness intercept at a given mass. We
find a negligible change of −0.09 ± 0.09 dex between z = 0.55
and z = 0.15. It is not a measure of galaxy’s merging rate, but
is instead the richness evolution of a fictitious cluster that does

not grow in mass. It measures evolution “at a fixed mass”. The
evolution of the richness of an individual cluster could be eas-
ily derived using Eq. (3) and the mass evolution computed from
the MultiDark simulation: 0.11 ± 0.16 dex between z = 0.6
and z = 0. Therefore, in the last 6 Gyr both cluster mass and
richness have changed little, if at all. Nevertheless, we empha-
sise that we would be more sure of our conclusion if we were
observing at lower redshift the likely descendants of our clusters
at higher redshift, which is surely not the case for current cluster
samples, and our sample is no exception.

As mentioned, the selection function is unknown. To assess
sensitivity, we adopt an alternative selection function (Fig. 1).
We find a relation consistent with Eq. (3). Moreover, the sample
selection function is likely to be stochastic: some clusters above
the mass threshold are probably missed, and some below the
threshold are included (see Andreon & Hurn 2013). To assess the
sensitivity of our results to such a possibility, we assumed that
the selection function is not a 0/1 function, but an error function
whose 55% probability is represented in Fig. 1 (solid line). We
found almost identical parameters, indicating that our results are
somewhat robust to uncertainties of the selection function. More
tests are given in the Appendix.

4. Discussion and conclusions

We analysed the richness-mass scaling of 23 massive clusters
at 0.15 < z < 0.55 with homogeneously derived weak-lensing
masses and richnesses within 0.5 Mpc. Our study benefits from:
a) weak-lensing masses, preferable to masses derived from a
proxy whose evolution is poorly known at best (as, e.g. the
X-ray temperature, see Andreon et al. 2011) thereby removing
the ambiguity between a real trend and one induced by an ac-
counted evolution of the used mass proxy; b) the use of projected
masses that simplify the statistical analysis thereby no longer re-
quiring consideration of the covariance induced by the cluster
orientation/triaxiality (not addressed in previous studies); c) a
proper accounting of the (Malmquist-like) effect of the cluster
mass function and of the selection function, which, if ignored,
induce biases comparable or larger than well-measured errors
and larger than common-estimated errors (e.g. of those analy-
ses ignoring the collinearity between mass and redshift); d) the
use of aperture masses, making clear that the mass change we
are talking about is not pseudo-evolution, i.e. a consequence
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of anchoring the cluster size to the changing density of the
Universe, but real evolution resulting from the matter infall; e)
the use of MultiDark simulation to quantify the mass growth.
Within 0.5 Mpc, it is 0.25 dex between z = 0.6 and z = 0
for very massive clusters. Such a detailed treatment is at best
only partially present in studies using popular tools to regress
quantities, such as χ2, maximum likelihood, BCES (Akritas &
Bershady 1996), FitEXY (Press et al. 1992), or the unpublished
Hogg et al. (2010). For example, our mass calibration approach
improves upon the Planck Collaboration XX (2014) method,
because we account for collinearity and use a directly mea-
sured mass instead of a mass proxy. Our approach also improves
upon methods used in studies using weak-lensing masses, such
as Mahdavi et al. (2013), Israel et al. (2014), von den Linder
et al. (2014), Ford et al. (2014), and Sereno et al. (2014), be-
cause we model the selection+mass function and account for
collinearity. Published works based on calibrations using pro-
jected weak-lensing masses are rare at best. Our approach im-
proves upon Hoekstra et al. (2012), because we account for
collinearity, Malmquist-bias, and mass+selection functions.

Based on this analysis we find that:
First, there is little, if any, intrinsic scatter between richness

and mass (<0.09 dex with 95% probability) when measured in
fixed apertures of 0.5 Mpc radius. This implies a tight link be-
tween infall/evolution of dark matter and galaxies in the cen-
tral region of clusters, because a differential infall/evolution of
>0.1 dex is detectable (at 95% probability).

We emphasize that the studied clusters have very different
morphologies and their evolutionary statuses are different: some
of them show a regular morphology and are approximatively
spherical, other ones are strongly bimodal (e.g. Abell 223 and
Abell 223N or Abell 1758 East and West), very elongated (e.g.
Abell 2163), or have complex morphologies. The centre of aper-
ture adopted in Hoekstra et al. (2012), and as a consequence in
our work, is put on the obvious cluster centre for regular clus-
ters, but at somewhat different locations for clusters with com-
plex morphologies: at the peak of each sub-cluster in some cases
(e.g. Abell 223 and Abell 1758), mid-way between the two peaks
in some other cases (e.g. Abell 520), or close to one extreme of
the galaxy distribution (e.g. the elongated Abell 2163). The ob-
served small scatter between mass and richness implies that the
number of galaxies per unit mass (at the 1.3 power) is indepen-
dent of morphology and roughly constant almost everywhere in
the central region of the cluster, regardless of precisely where
this region is taken, and when (i.e. at which evolutionary status)
the cluster is observed. Again, this can only occur if the evo-
lution of dark matter and galaxies are closely linked during the
cluster merging/accretion, otherwise scatter would be observed.

Second, the evolution of richness at a given mass is −0.15 ±
0.15 dex between z = 0 and z = 0.6. This result is the first
robust determination of the evolution of the mass-richness re-
lation. The latter is different from the evolution of the richness
of a given cluster because of the evolution of the cluster mass.
The change in richness of a given (individual) cluster turns out
to be 0.11± 0.16 dex in this redshift range. To sum up, there has
been little evolution, if any, during the last 6 Gyr, with the caveat
that conclusions are derived from a sample whose low redshifts
objects are not the descendants of high redshift clusters in the
sample, which is potentially risky (Andreon & Ettori 1999).

Third, to provide more precise results, observations of more
clusters would be useful, but more clusters with a different, and
known, selection function would be better. A wider range of
mass is needed to break the collinearity (degeneracy) between
mass and redshift (i.e. to decrease the error of evolution of the

mass-richness scaling). The fitting model to perform the analy-
sis is, on the other hand, largely set, because we already account
for the steep mass function, for the sample selection, for errors
on data, for noisiness of mass errors, and for the intrinsic scatter
between richness and mass.
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Appendix A: Fitting details and systematics

To fit the data, we used an updated version of the Bayesian es-
timation model in Andreon & Bergé (2012), which already ac-
counts for the presence of a redshift term γ (Eq. (1)), for the clus-
ter mass and selection function, and for the possible presence of
an intrinsic scatter. The Andreon & Bergé (2012) model adopts a
Gaussian likelihood for richnesses and perfectly measured errors
for masses. We therefore replace that part of the model by a more
appropriate model, introduced in Andreon & Hurn (2010), which
accounts for the non-Gaussian (Poisson) nature of galaxy counts,
for the background, and also for the noisiness of the mass errors.
We assume a 10% uncertainty on the mass error, see Andreon &
Hurn (2010) for details.

To check the fitting model, we generate simulated data for
300 clusters with masses taken from the Multidark simulation
and all the remaining quantities (mass errors, relation between
richness and mass, richness and mass errors, etc.) from the data.
We use a sample which is 15 times larger than the real one to
highlight small biases. Using our fitting model, all input parame-
ters are recovered at better than 1σ, i.e. no bias is appreciable for
a sample over 15 times larger than the one we are interested in.

If instead the slope were kept fixed during the fitting, as per
analyses which have been published so far, we found that the de-
rived γ is biased (as long as the the slope is fixed to a value dif-
ferent from the true slope, of course) and always with an overly
optimistic error.

If incorrect mass function and evolution were assumed in-
stead (for example we adopted a fitted mass function one dex
off, and evolving five times more slowly than the one used to
simulate the data), then the γ term would not be biased by an
appreciable amount (by 0.1 to be compared to the 0.7 error of
the true cluster sample). This occurs because the Malmquist-
Eddington correction depends on the slope of the mass prior
(function), not on the absolute value of the mass function (prior),
and at these masses the mass function is near to a power law (i.e.
a fixed slope function), with a slope nearly independent of red-
shift. Readers interested in a more details may consult Andreon
& Bergé (2012).

With regard to the modelling of the selection function, by
adopting μ = 0.7 and k = 14.3, a 0.4 bias in γ is introduced.
The latter value is sub-dominant compared to the error on γ of
the true sample (0.7). This is, likely, an extreme case because the
adopted limiting mass is manifestly too optimistic for the simu-
lated data. Therefore, our results are robust against uncertainties
of the selection function. Nevertheless, we emphasize that giv-
ing our lack of knowledge concerning the selection function of
the real sample, we cannot state this for sure.

Finally, if selection and mass functions are not incorporated
anywhere in the analysis, we find a bias (difference between in-
put and fit results) of 0.6 in s and γ. These are, respectively,
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twice and once the correctly estimated error for the real sam-
ple, and between two and six times larger than uncertainties
quoted in the analyses neglecting intrinsic scatter and redshift-
mass collinearity.

To summarize: firstly, our results are robust to uncertain-
ties of the fitting modelling, including the selection function.
Secondly, not addressing the well-known astronomical features
(the mass function and the selection function) introduces larger
biases than the non-systematic uncertainties for samples as small
as ours (23 clusters).
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