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ABSTRACT

This work attains a threefold objective: first, we derived the richness-mass scaling in the local Universe from data of 53 clusters with
individual measurements of mass. We found a 0.46 ± 0.12 slope and a 0.25 ± 0.03 dex scatter measuring richness with a previously
developed method. Second, we showed on a real sample of 250 0.06 < z < 0.9 clusters, most of which are at z < 0.3, with
spectroscopic redshift that the colour of the red sequence allows us to measure the clusters’ redshift to better than Δz = 0.02. Third,
we computed the predicted prior of the richness-mass scaling to forecast the capabilities of future wide-field-area surveys of galaxy
clusters to constrain cosmological parameters. To this aim, we generated a simulated universe obeying the richness-mass scaling that
we found. We observed it with a PanStarrs 1+Euclid-like survey, allowing for intrinsic scatter between mass and richness, for errors
on mass, on richness, and for photometric redshift errors. We fitted the observations with an evolving five-parameter richness-mass
scaling with parameters to be determined. Input parameters were recovered, but only if the cluster mass function and the weak-lensing
redshift-dependent selection function were accounted for in the fitting of the mass-richness scaling. This emphasizes the limitations
of often adopted simplifying assumptions, such as having a mass-complete redshift-independent sample. We derived the uncertainty
and the covariance matrix of the (evolving) richness-mass scaling, which are the input ingredients of cosmological forecasts using
cluster counts. We find that the richness-mass scaling parameters can be determined 105 times better than estimated in previous works
that did not use weak-lensing mass estimates, although we emphasize that this high factor was derived with scaling relations with
different parameterizations. The better knowledge of the scaling parameters likely has a strong impact on the relative importance of
the different probes used to constrain cosmological parameters. The fitting code used for computing the predicted prior, including the
treatment of the mass function and of the weak-lensing selection function, is provided in Appendix A. It can be re-used, for example,
to derive the predicted prior of other observable-mass scalings, such as the LX-mass relation.
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1. Introduction

If one has a sample of N clusters with measured properties,
obsni, zi (where i = 1, 2, ...,N), for example in a Euclid-like
survey, their constraints on the cosmological parameters θ =
(ΩM,ΩΛ, σ8, w, ...) can be derived by applying Bayes’s theo-
rem to obtain the posterior distribution of the cosmological
parameters,

p(θ|obsni, zi) ∝ p(obsni, zi|θ)p(θ), (1)

where p(θ) is the prior on cosmological parameters (e.g. from
other surveys) and p(obsni, zi|θ) is the likelihood of measuring N
clusters with measured properties obsni, zi. If the mass M were
observable, the cosmological parameters θ would be constrained
by fitting p(M, z|θ) to the observed distribution. However, this
direct fit is not possible with survey data, because one needs to
rely on an observable (mass proxy), such as richness or YX, and
fit the distribution of the observable, O with p(O, z|M). To esti-
mate the cosmological parameters, one needs to assume a model
for the scaling between the mass and the observable (usually a
power law) and some knowledge about how precisely the pa-
rameters describing this relation are known (the mass-observable
prior): the knowledge may range from very precise (a delta func-
tion prior) to very uncertain (e.g. an improper uniform prior).

� Appendix A is available in electronic form at
http://www.aanda.org

Of course, cosmological estimates benefit from better known
scaling parameters, i.e. priors that enclose a narrow volume of
the parameter space that describes the mass-observable scaling.

Most previous forecasts dealing with counts of galaxy clus-
ters (e.g. Lima & Hu 2005; Sartoris et al. 2010; Carbone et al.
2012) assumed the precision with which the parameters of the
mass-observable scaling will be known instead of measuring it.
One of the purposes of this work is to quantify this part of the
inference step: we aim to compute the uncertainties of the mass-
observable scaling, i.e. the volume of the mass-richness scal-
ing parameter space enclosed by the posterior probability dis-
tribution. We consider, specifically, cluster richness as the mass
proxy. This analysis gives us the input prior of cosmological
forecasts using cluster counts.

The paper is organized as follow: in Sect. 2 we measure the
mass-observable relation in the local Universe from real data, we
determine how well the cluster redshift can be inferred from the
colour of the red sequence, and we compute in which part of the
universe the observable can be measured with current data. In
Sect. 3 we assume a fiducial model where the relation between
mass and proxy does not evolve. We populate an (simulated)
observable universe, we measure the parameter uncertainties by
fitting an evolving mass-observable relation to all data (real and
simulated), and we test our ability to recover an evolving mass-
observable relation. Finally, in Sect. 4 we discuss our results
and compare the measured uncertainties of the mass-observable

Article published by EDP Sciences A117, page 1 of 12

http://dx.doi.org/10.1051/0004-6361/201220115
http://www.aanda.org
http://www.aanda.org
http://www.edpsciences.org


A&A 547, A117 (2012)

Fig. 1. Computed selection function (histogram) and its adopted
Gaussian approximation (curve).

scaling with what has been thus far assumed in cosmological
forecasts. Section 5 summarizes the results of this work.

Throughout this paper we assume ΩM = 0.3, ΩΛ = 0.7,
H0 = 70 km s−1 Mpc−1, σ8 = 0.8. Magnitudes are quoted in
their native system (quasi-AB for SDSS magnitudes). All loga-
rithms in this work are on base ten, unless otherwise indicated.
All quantities are measured at the r200c radius, whose enclosed
averaged mass density is 200 times the critical density. The
richness-mass calibration in this paper refers to richnesses mea-
sured following the Andreon & Hurn (2010) prescriptions, and
therefore cannot be used for other types of richnesses, e.g. Abell
(1958) richnesses. We adopt the standard statistical notation: the
∼ symbol reads “is drawn from” or “is distributed as” and the←
symbol reads “take the value of”.

2. Calibration of the mass-proxy from current data

2.1. Local calibration of the richness-mass relation based
on real data

In this section, we are interested in the scaling between richness
and mass in the local Universe taking into account the noise in
their measurement and selection effects.

We re-analysed the very same data that were used in Andreon
& Hurn (2010), adopting the modelling appropriate for the task
of current interest. In short, the data consist of cluster richnesses,
n200, based on red galaxies measured on specified luminosity
and colour ranges within a fiducial radius, and masses derived
from the caustic technique computed using 208 galaxies on av-
erage per cluster for 53 galaxy clusters at 0.03 < z < 0.1. As de-
tailed in Andreon & Hurn (2010), the parameters describing the
mass-richness relation do not change if we use instead velocity-
dispersion-based masses. We emphasize that we used the values
denoted with a hat in Andreon & Hurn (2010) because they are
derived without knowledge of the mass-related quantities (r200),
precisely like in real survey data. For notation simplicity, we here
suppress the hat notation adopted there.

Because it is an X-ray selected sample, the considered clus-
ter sample is controlled, not random; therefore, bright clusters
are over-represented. In general, a non-random selection causes
biases in the recovered regression parameters if the selection is
neglected (Gelman et al. 2003; Stanek et al. 2006; Pacaud et al.
2007; Andreon, Trinchieri & Pizzolato 2011; Andreon & Moretti
2011; Andreon & Hurn 2012; and see also Sect. 3.2 where we
discuss this problem at length for a sample for which the non-
random selection cannot be ignored). To be precise, the studied

Fig. 2. Distribution of the expected obslgM200 fake data (histogram)
and distribution of real data (points). Errorbars mark count standard
deviation (i.e. are

√
n), not the error.

cluster sample is a random sampling (as detailed in Andreon
& Hurn 2010) of an X-ray selected sample. Its controlled na-
ture allows us to compute the mass selection function, which
is essential, in general, to correct for non-random mass selec-
tion leading to biases in the recovered regression parameters. We
computed the mass selection function (mass prior) as follows:
we assumed that the local cluster mass function is described by
a Jenkins et al. (2001) mass function at the masses of interest
(log M > 13.5 M�). Our results are independent of the cho-
sen parametrization (e.g. if Press & Schecther 1974, would be
adopted). We then followed Stanek et al. (2006): the mean rela-
tion between the X-ray luminosity and the mass has a slope equal
to 1.59, intercept equal to ln Lx15 = 1.34 (in a system employing
different Hubble constant conventions for luminosity and mass),
intrinsic scatter of 0.59, and the distribution of the (neperian ln)
X-ray luminosity at a given mass is Gaussian, i.e.

ln LX,i ∼ N
(
1.59 (lg M200i − 15) + 1.34, 0.592

)
. (2)

This1 allows us to populate a simulated local universe, 0.03 <
z < 0.1, with clusters of X-ray luminosity ln LX,i. The flux of
these (simulated) clusters is computed and the objects are kept
in the sample if fX > 3 × 10−12 erg s−1 cm−2, which is the flux
threshold adopted by Rines & Diaferio (2006), the parent sample
from which Andreon & Hurn (2010) studied a random subsam-
ple. Figure 1 shows the result of this simulation, and the adopted
analytic (Gaussian) parametrization:

lg M200 ∼ N
(
14.5, 0.332

)
. (3)

Assuming Eq. (3), we computed the expected distribution of the
observed values of lgM200, obslgM200 of our simulated sur-
vey, assuming a common error for the mass error, 0.14 dex,
the average value of the studied sample. We compared this to
the actual observed distribution (i.e. real data) in Fig. 2. The
agreement is impressive (there are no free parameters to tune),
showing that our modelling of the selection function captures
the data behaviour and gives us p(lg M200) i.e. the probability
that a cluster has mass lg M200 and is included in the sample
(i.e. the mass prior). The derived p(lg M200) allows us to avoid

1 The tilde symbol indicates a similarity subject to stochasticity, either
because of noise or because of intrinsic differences among members. In
other words, the tilde symbol indicates that we account for uncertainty
or non-homogeneity (variety).
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the biases coming from the non-random mass distribution of our
sample.

We proceed by specifying the assumed mathematical depen-
dence between the quantities involved in our problem. We need
to acknowledge the uncertainty in all measurements and there-
fore, because of errors, observed and true values are not iden-
tically equal. The variables n200i and nbkgi represent the true
richness and the true background galaxy counts in the studied
solid angles. We measured the number of galaxies in both clus-
ter and control field regions, obstoti and obsbkgi respectively,
for each of our 53 clusters (i.e. for i = 1, . . . , 53). We allowed
Poisson errors for both and we assumed that all measurements
are conditionally independent. The ratio between the cluster and
control field solid angles, Ci, is known exactly. In formulae:

obsbkgi ∼ P(nbkgi) (4)

obstoti ∼ P(nbkgi/Ci + n200i). (5)

For each cluster, we have a cluster mass measurement and a
measurement of the error associated with this mass, obslgM200i
and obserrlgM200i respectively. We allowed Gaussian errors on
mass:

obslgM200i ∼ N
(
lgM200i, obserrlgM2002

i

)
. (6)

We assume a power law relation between mass and n200 with
intercept α + 1.5, slope β and intrinsic scatter σscat:

lgn200i ∼ N
(
α + 1.5 + β

(
log(M200i) − 14.5

)
, σ2

scat

)
. (7)

The quantity log(M200) is centred at an average value of 14.5
and α is centred at 1.5, for computational advantages in the
MCMC algorithm used to fit the model (it speeds up conver-
gence, improves chain mixing, etc.) and to reduce the covariance
between parameters. The relation is between true values, not be-
tween observed values, which may be biased.

The priors on the slope and the intercept of the regression
line in Eq. (7) were taken to be quite flat, a zero mean Gaussian
with very strong variance for α and a Students-t distribution with
one degree of freedom for β. The latter choice was made to avoid
that properties of galaxy clusters depend on astronomer rules of
measuring angles (from the x or from the y axis). This agrees
with the model choices in Andreon (2006 and later works). Our
t distribution on β is mathematically equivalent to a uniform
prior on the angle b. In formulae:

α ∼ N
(
0.0, 104

)
(8)

β ∼ t1. (9)

For the true values of the background, we chose to impose no
strong a-priori values, only enforcing positivity, by adopting an
improper uniform prior,

nbkgi ∼ U(0,∞). (10)

Fitting our sample of 53 clusters with the model above, we
found

lgn200 = (0.47 ± 0.12) (lgM200 − 14.5) + 1.58 ± 0.04. (11)

Unless otherwise stated, the results of the statistical computa-
tions are quoted in the form x ± y where x is the posterior
mean and y is the posterior standard deviation. All statistical
computations were performed using JAGS (Plummer 2010), see
Appendix A for an example.

Fig. 3. Richness-mass scaling. The solid line marks the mean fitted re-
gression line of log(n200) on lgM200, while the dashed lines show this
mean plus or minus the intrinsic scatter σscat. The shaded region marks
the 68% highest posterior interval for the regression. Error bars on the
data points represent observed errors for both variables. The distances
between the data and the regression line is due in part to the measure-
ment error and in part to the intrinsic scatter.

Figure 3 shows the scaling between richness and mass, the
observed data, the mean scaling (solid line), and its 68% un-
certainty (shaded yellow region), and the mean intrinsic scatter
(dashed lines) around the mean relation. The ±1 intrinsic scat-
ter band contains 60% of the data points and is not expected to
contain 68% of them, because of the measurement errors.

Figure 4 shows the posterior marginals for the key parame-
ters, i.e. for the intercept, slope, and intrinsic scatter σscat. These
marginals are reasonably well approximated by Gaussians. The
intrinsic mass scatter at a given richness, σscat = σlgM200| log n200,
is small, 0.25 ± 0.03 dex. These posterior probability distribu-
tions are dominated by the data (their widths are much smaller
than the prior widths), i.e. our results are independent of the as-
sumed prior to all practical effects. Parameters show no appre-
ciable covariance (figure not shown) because of our choice of
zero-pointing masses near the data average (Eq. (7)). This al-
lows a simpler summary of the posterior, which we use in our
next inference step (Eqs. (17) to (19)).

We note that these results are almost indistinguishable from
results we might obtain without modelling the selection func-
tion, basically because the prior is broad compared to lgM200
errors.

2.1.1. Side comments

Cosmological forecasts dealing with cluster counts in the opti-
cal sometimes use the scatter between observable and mass from
Rykoff et al. (2012) or Rozo et al. (2009). It is worth empha-
sizing that to measure the scatter between two quantities, it is
strongly preferable to have both. Neither of these two works have
individual values of cluster masses.

It is worth remembering that the slope of the direct relation is
not the inverse of the slope of the inverse relation, i.e. if O ∝ Mγ,
then usually M 	∝ O1/γ (e.g. Isobe et al. 1990; Andreon & Hurn
2010). Therefore, it is not surprising that the slope between mass
and richness is not the reciprocal of the slope determined in
Andreon & Hurn (2010) for the inverse relation using the very

A117, page 3 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220115&pdf_id=3


A&A 547, A117 (2012)

Fig. 4. Posterior probability distribution for the parameters of the richness-mass scaling computed from the real data. The black jagged histogram
shows the posterior as computed by MCMC, marginalised over the other parameters. The red curve is a Gaussian approximation of it. The shaded
(yellow) range shows the 95% highest posterior credible interval.

same data. Furthermore, the slope depicted in Fig. 3 is not “too
shallow” compared to the data, a steeper slope would systemat-
ically over- or underestimate the cluster richness (see Andreon
& Hurn 2010, 2012 for a brief astronomical introduction on re-
gression fitting).

2.2. In which part of the Universe is richness measurable
with current data?

The cluster richness was derived using g − r colour and lumi-
nosities of galaxies brighter than an evolving limiting magnitude
Me

V < −20.
Figure 5 illustrates how depth and colour constraints change

with redshift. The top panel illustrates the apparent luminosity
of a red Me

V = −20 mag galaxy, modelled as a z f = 5 sin-
gle stellar population using the 2007 version of the Bruzual &
Charlot (2003) synthesis population model for different filters:
g, r, i, and z for the 3π Steradian PanStarrs 1 survey (PS1, here-
after) and riz, Y, J, and H for Euclid2 (Laureijs et al. 2011)
with the corresponding∼10σ depth (horizontal ticks). For the 3π
PanStarrs 1, we took the current depth, i.e. that already achieved
after the first two years of observation (Kaiser, priv. comm.). The
PS1 has a Y-like filter, not plotted because it is shallower than the
Euclid Y. The Dark Energy Survey (Abbott et al. 2005) is deeper
than PS1, but covers a smaller solid angle. The Euclid consor-
tium plan to have ground based griz data deeper than our need
over the whole 15 000 deg2 survey area (Laureijs et al. 2011).

The bottom panel illustrates the wavelength range sampled
by these filters. Only redshift bins where galaxies are brighter
than the 10σ depth are plotted. The shaded yellow is the λ range
sampled by g − r at z < 0.08. As the figure shows, we always
have at least two filters in the shaded region, i.e. up to z = 1 at
least these data have appropriate depth and wavelength coverage
to count galaxies. Indeed, the Me

V < −20 mag cut was chosen to
precisely perform this measurement on ten-year old MOSAIC-II
CTIO images up to z = 0.82 (e.g. those in Andreon et al. 2004a).
These depths are routinely achieved in current surveys, such as
the CFHTLS (Cuillandre & Bertin 2006).

To summarize, incoming (and also current) surveys have the
depth and filter coverage adequate to compute the number of red
galaxies needed to derive n200. Furthermore, Andreon (2012)
showed that the galaxy background (nbkgi/Ci in Eq. (5)) is neg-
ligible even at magnitudes fainter than those adopted in this
work, and not detrimental at all for the derivation of the clus-
ter richness.

2 http://www.euclid-ec.org

Fig. 5. Depth and wavelength coverage of the two-year PS1 and Euclid
surveys. Upper panel: g, r, i, and z (from left to right) filters are indi-
cated with dashed (blue, green, red, and black) lines. riz, y, J, and H
(from left to right) Euclid filters are indicated with thick solid (blue,
green, red, and black) lines. The horizontal tick indicates the ∼10σ
depth, most of them are at z > 1 and thus not visible in the plot. Bottom
panel: wavelength coverage of the filters for redshift bins where galax-
ies are brighter than the ∼10σ depth. The shaded (yellow) region marks
the wavelength sampling of g − r at z ∼ 0.

2.3. Which precision for photometric redshift?

Surveys such as those performed by PanStarrs 1, DES, or Euclid
will detect thousands of clusters and it is unreasonable to expect
that all of them will have a spectroscopic redshift. How precise
will their redshift estimate be? We can set a conservative esti-
mate by considering current shallower surveys that sample sim-
ilar redshifts.

We considered spectroscopic and photometric redshifts of
the sample of 228 clusters at 0.06 < z < 0.3 in Andreon
(2003a,b) and the 16 0.3 < z < 0.9 clusters in Andreon
et al. (2004a, 2004b). They are all colour-detected with the red-
sequence method of Andreon (2003a), which is an adaptation
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Fig. 6. Red sequence photometric redshift performance. Spectroscopic
redshift vs. photometric redshift from the colour of the red sequence in
g − r (small open points, error bars are not plotted to avoid crowding,
there are 228 plotted points, sometime one on top of the other) or R− z′
(solid points with error bars). The zphot = zspec line and the zphot = zspec ±
0.02 loci are indicated with solid lines.

of the Gladders & Yee (2000) original method (see Andreon
2003a for details) in either the SDSS early-data release area or
in the XMM-LSS field. These clusters tend to be of low rich-
ness and therefore to have a less prominent red sequence than
that of the massive clusters that we consider below. For both
samples, the colour of the red sequence was determined us-
ing two-band photometry only, g − r (at z < 0.3) or R − z′
(at z > 0.3). The photometric redshift was derived from the
colour of the red sequence adopting a relation between redshift
and colour (an empirical template at z < 0.3, an old galaxy
template at higher redshift, as detailed in Andreon 2003a and
Andreon et al. 2004a, respectively). Figure 6 shows zphot vs. zspec
for the 244 clusters, the (straight line) zphot = zspec line and the
zphot = zspec ± 0.02 loci. Twenty-five percent of the points have
|zphot− zspec| > 0.02, while >32% are expected if the photometric
error is 0.02. Even restricting the attention to z > 0.3, 6 clusters

show |zphot − zspec| >
√

0.022 + err2
zphot

vs. 5.1 expected cases if

the redshift derived from the red sequence has an intrinsic scat-
ter of 0.02. This implies that we can already achieve a Δz = 0.02
precision using the colour of the red sequence using two bands.
Similar results were found by Puddu et al. (2001) for a small,
but X-ray selected (and therefore more massive) cluster sample,
and by High et al. (2010) for a small, but mostly at z > 0.3, clus-
ter sample. In both cases the estimate of the clusters’ redshift is
based on the colour of the red sequence.

The extremely good performance of the red sequence colour
as a redshift indicator is hardly surprising because of the implicit
selection of one single type of galaxies with a distinctive 4000 Å
break (spectrophotometric bright early-type galaxies) and of the
colour homogeneity of the early-type galaxy class (e.g. Stanford
et al. 1998; Kodama et al. 1998; Andreon 2003a,b; Andreon et al.
2004a).

In summary, we can safely assume for future clusters a (con-
servative) 0.02 error on cluster (photometric) redshifts, because
this performance is already achieved today using the colour of
the red sequence.

3. Calibration with future surveys

3.1. Generation of mock-calibration Euclid data

We generated a Monte-Carlo simulated universe obeying to the
mass-richness scaling we just computed and observed it with a
PanStarrs 1+Euclid-like survey. Our fiducial universe has un-
evolving parameters that describe the mass-richness scaling. A
Euclid-like survey is needed to measure cluster masses, whereas
for the computation of cluster richness one needs shallower, but
multicolour data, such as already acquired by the PanStarrs 1
survey.

We followed Bergé et al. (2010) to compute the number (the
probability times the volume) of clusters in the Euclid-wide sur-
vey at redshift z, with mass lgM200, which produces a weak-
lensing signal with a given signal-to-noise ratio (S/N). We used
the halo model with an NFW (Navarro et al. 1997) profile, a
Jenkins (2001) mass function, and a modified Sheth et al. (2001)
bias (see the Bergé et al. 2010, Appendix for a detailed de-
scription). We assumed a galaxy shape noise σint = 0.3, and
a galaxy number density ng = 30 arcmin−2. We also assumed
that all halos are spherical and therefore did not account for the
shape bias described by Hamana et al. (2012). Projection ef-
fects are, in these observational conditions and for clusters as
massive as those of interest in our paper, largely sub-dominant
(Marian & Bernstein 2006), and were neglected for this rea-
son. For the Euclid survey, we adopted the updated sky coverage
(15 000 deg2). The iso-density contours in Fig. 6 indicate lines
where we expect 1, 10, and 100 clusters with an S/N > 5 per bin
of 0.1 dex in mass and 0.0275 in redshift in the Euclid survey.
The minimal S/N = 5 mass, lgM200trunc, is well described by

lgM200truc = 13.9891+ 1.04936z+ 0.488881z2. (12)

We exploited these masses to calibrate the richness-mass relation
and its evolution.

First of all, we generated a Monte-Carlo realization of the
Bergé et al. (2010) distributions. Then, we selected S/N > 5
detections only, because we did not want to deal with too
noisy measurements (Hamana et al. 2012; Pace et al. 2007).
Furthermore, we removed clusters at z < 0.03 to avoid very
nearby clusters with bright and large galaxies whose photom-
etry will likely be corrupted3. This left us about 11 000 clusters
with available zi, lgM200i, and (S/N)i.

The cluster masses were then observed, i.e. mass errors were
taken to be Gaussian and equal to errlgM200i =

1
S/N /ln(10),

where the latter term is due to our choice of measuring errors
using decimal logarithms:

obslgM200i ∼ N
(
lg M200i, errlgM2002

i

)
. (13)

Cluster richnesses were assigned to simulated clusters assuming
the model measured in the local Universe, i.e. (Sect. 2.1)

lgn200i ∼ N
(
0.47 (lgM200i − 14.5) + 1.58, 0.252

)
. (14)

We emphasize, once more, that we allowed for an intrinsic scat-
ter, i.e. we allowed clusters of a given mass to have a variety of
richnesses. Richnesses were then observed: richness, as all mea-
surements in this paper, have errors, which were assumed to be
Poissonian,

obslgn200i ∼ P(lgn200i). (15)

3 For example in the SDSS, which is much shallower and therefore less
tailored for faint galaxies, photometry of galaxies at z < 0.02 suffers
from shredding problems.
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Fig. 7. Contours: number of clusters for which weak-lensing mass esti-
mates can be obtained by a Euclid-like survey. From outer to inner con-
tours the lines represent isocontours of S/N > 5 weak-lensing detection
of 1, 10, and 100 clusters as a function of redshift and mass. Points: a
Poisson realization of the above, with errors on mass and redshift (these
move points outside the N = 1 contour).

Finally, we also allowed Gaussian photometric errors, taken to
be 0.02 at all redshifts (see Sect. 2.3):

obszi ∼ N
(
z, 0.022

)
. (16)

This procedure yielded 10714 clusters with measured
obslgn200i, obslgM200i, errlgM200i, and obszi, that we
used to determine the relation between richness and mass and its
evolution. Figure 7 depicts them individually (points). Because
of mass errors, there are points below the minimal S/N = 5
mass (the diagonal slightly bent line). The average richness
(obsn200) of the simulated sample is 46 galaxies, while the
median is 38 galaxies. Two thirds of them are at z < 0.3, where
the scatter between redshift and photometric redshift is better
sampled by our real data (Sect. 2.3). The generated sample
does not contain any cluster with a weak-lensing detection at
S/N > 5 at z > 0.62 (Fig. 7).

3.2. Determining the richness-mass predicted priors

We now combined the real data from the local Universe with the
simulated data (depicted in Fig. 7), to compute how well we are
able to measure the richness-mass scaling at all redshifts. In this
section we will not use true values because these are unknown
for the real data. Furthermore, we cannot assume to know how
the parameters of the richness-mass scaling evolve, because this
is precisely what we want to infer from the data.

The information encoded in the local Universe (Sect. 2.1) is
the current prior:

σintrscat ∼ N
(
0.25, 0.032

)
(17)

α ∼ N
(
0.08, 0.042

)
(18)

β ∼ N
(
0.47, 0.122

)
. (19)

We assumed that the scatter and the intercept may both change
with redshift:

lgn200mi ← α + 1.5 + β(lgM200i − 14.5) + γ ln(1 + zi) (20)

lgn200i ∼ N(lgn200mi, σ
2
intrscat(zi)) (21)

σ2
intrscat(zi) ← σ2

intrscat − 1 + (1 + zi)2ζ. (22)

While the adopted modelling of the evolution is common in pre-
vious works (e.g. Sartoris et al. 2010; Carbone et al. 2012), we
emphasize that a different modelling is possible and legitimate.
We also emphasize that, as in previous works, we assumed to
perfectly known the analytic expression of the distribution func-
tion of the intrinsic scatter term (a Gaussian), when its shape
should be left more flexible, or at very least, checked with data,
because this uncertainty may be dominant (Shaw et al. 2010).
Equation (21) and the fitting code (given in Appendix A) may
be easily modified replacing the adopted Gaussian with a more
flexible distribution, e.g. by a mixture of two Gaussians, which
guarantee a valid (positive) probability distribution, unlike the
Edgeworth series expansion proposed in Shaw et al. (2010).

We adopted weak priors for the newly introduced parame-
ters: as prior for the γ and ζ slopes we adopted a Students t
distribution centred on zero with one degree of freedom, as for
the slope β in Sect. 2.1, to make our choice independent of as-
tronomer rules of measuring angles. In formulae:

γ ∼ t1 (23)

ζ ∼ t1. (24)

As in previous sections, richness has Poisson errors:

obsn200i ∼ P(n200i), (25)

whereas masses and photometric redshifts have Gaussian errors:

obslgM200i ∼ N
(
lgM200i, errlgM2002

i

)
(26)

obszi ∼ N
(
z, 0.022

)
. (27)

To complete the model description, we need to specify the mass
prior. We cannot ignore that the mass function is steep and that
the weak-lensing S/N > 5 cut introduces an abrupt disconti-
nuity: ignoring them would lead to a biased fit (the recovered
slope would be much shallower than the input one) due to a
Malmquist-like bias. Indeed, mass errors tend to make the dis-
tribution in mass broader, especially at low-mass values, be-
cause of the sharp S/N = 5 weak-lensing detection require-
ment, but also at high-mass values because of the steepness of
the mass function. Since high-mass values are overestimated and
low-mass values are underestimated, any quantity that is fitted
against these (biased) values neglecting the selection function
would return a shallower relation (see also Andreon & Hurn
2010, for the similarly biased mass-richness relation of Johnston
et al. 2007). For mathematical simplicity and given the small
mass range explored, we modelled the Jenkins et al. (2001) mass
distribution at a given redshift as a Schechter (1976) function
with slope −1 and characteristic mass given by

lgM200∗ = 12.6 − (z − 0.3) (28)

truncated at lgM200truc, given by Eq. (12). The parameters of
Eq. (28) were determined by fitting the Jenkins et al. (2001) mass
function.

On the other hand, we do not need to model the optical clus-
ter selection function, because the large cluster richness and the
photometric depth allow all clusters that produce a detectable
weak-lensing signal to be easily detectable as overdensities of
red galaxy because they have, on average, 38 galaxies projected
on a background of (nearly) zero galaxies.

We do not need, either, to accurately model the redshift
prior, because photometric redshifts are well-determined. We
can therefore assume an uniform distribution for it

zi ∼ U(0, 1). (29)
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Fig. 8. Marginal (panels on the diagonal) and joint (other panels) probability distributions of the mass-richness scaling derived from real and
simulated data for a PS1+Euclid-like survey. Red jagged contours and histograms refer to probabilities computed from the MCMC sampling,
while the blue smooth contours/lines refer to a Gaussian approximation of the numerically found posterior. Contours are at 68% probability
level. Vertical (cyan) lines and crosses indicate the values used to generate the data, while the dashed (green) lines show the current low-redshift
calibration of the richness-mass scaling.

although we emphasize that for large photometric redshift errors
one should account for gradients in n(z).

We emphasize that modelling the mass- and selection func-
tion is compulsory; not accounting for it would lead to a fitted
slope� 5σ different from the input one. Therefore, results based
on methods that do not allow one to account for the mass- and
selection function, e.g. the usual linear regression analysis based
on BCES (Akritas & Bershady 1996), or simplistic forecast anal-
yses lacking any treatment of the selection function (as is typical
of Fisher analyses), should be used with great caution. On the
other hand, one should not be overly anxious about modelling
the mass- and selection function: what matters is their general
shape, which drives the correction of the bias, not their precise
shape, i.e. whether the mass function is a Tinker et al. (2008) or
Jenkins et al. (2001) mass function, for instance. The uncertainty
on the precise shape of the mass function, neglected in this work
because of the small considered mass range, is an uncertainty
of secondary importance compared to the large uncertainy in-
volved through the mass errors. The main point to keep in mind
is that the mass function is certainly not uniform, it is evolving

with redshift, the clusters entering in the sample are not a ran-
dom sampling of the mass function (all those with low mass are
excluded, and the limiting mass is changing with redshift) and
we account for that (not accounting leads to parameters off by
�5σ, as mentioned), while other observable-mass fitting models
(sometime implicitely) assume a uniform prior on cluster mass
and mass-random selection, unless differently specified.

The software implementation of this fitting model is given in
Appendix A.

Fitting the simulated+real data with this model returns pa-
rameters whose (posterior) probability distributions are depicted
in Fig. 8. Figure 8 and its summary in Table 1 are one of the main
results of this work, since they are the priors (starting points)
needed to forecast cosmological parameters with cluster data.

Marginal probabilities are shown on the diagonal, while the
other panels show the joint probability distributions, i.e. the co-
variance between pairs of parameters. Each panel reports two
closely packed lines: the red one is the Laplace (Gaussian) ap-
proximation of the posterior, while the histogram/jagged contour
is the straight outcome of the numerical computation (somewhat
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Table 1. Predicted richness-mass prior parameters for a PS1+Euclid-
like survey: covariance matrix σi, j.

α β σ γ ζ
α 5.9 × 10−5

β 5.4 × 10−5 2.1 × 10−4

σ −2.1 × 10−6 5.9 × 10−7 2.6 × 10−5

γ −2.0 × 10−4 −2.4 × 10−4 7.5 × 10−6 1.0 × 10−3

ζ 1.7 × 10−6 −1.8 × 10−7 −2.5 × 10−5 −7.2 × 10−6 2.9 × 10−5

noisy because of the finite length of the MCMC chain). The
Laplace (Gaussian) approximation captures the probability dis-
tributions well.

The diagonal panels also show the input values (vertical
lines). They are all within 1.5 posterior standard deviations from
the recovered value4. By fitting the observed data, we recover
the five parameters that describe the mass-richness scaling with
good accuracy and without bias.

In addition to input values, the diagonal panels show the
current low-redshift calibration of the richness-mass scaling
(dashed green line). Euclid masses significantly improve the cur-
rent low-redshift calibration of the richness-mass scaling: the in-
tercept α, currently known to within 10% (0.04 dex, Sect. 2.1),
will be known with a per cent accuracy, the slope β, currently
known with a sizeable uncertainty (0.47 ± 0.12, Sect. 2.1) will
have its uncertainty reduced by a factor 10. The intrinsic scat-
ter, currently known with a ∼10% accuracy (Sect. 2.1), will be
known with a per cent accuracy. The evolution of the intrinsic
scatter and of the intercept will be known with a 0.03 and 0.005
uncertainty, respectively. The computed posterior is ∼103 times
narrower (in the α−β−σ space) than the current calibration of the
richness-mass scaling, a significant improvement over the cur-
rent low-redshift calibration. This capability makes the Euclid
mission unique and independent of the success of observations
other than the already acquired PanStarrs 1 multicolour data.
Instead, the calibration of the mass-proxy relation of the XXLS
cluster survey (Pierre et al. 2011) must rely on the success of an
expensive XMM calibration program (Pierre et al. 2011), which
is not yet implemented. Similarly, the SPT survey requires an
external calibration. Although the current clusters sample con-
sists only of 100 clusters (Reichardt et al. 2012), the currently
available calibration, not the sample size, is the main source of
uncertainty in cosmological estimates.

There is a strong covariance between the evolution and the
z = 0 value of the intercept (γ − α panel of Fig. 8). It can be
easily understood by noting that z = 0 is outside the range of
sampled redshifts. The covariance between intrinsic scatter and
its evolution (ζ − σintrscat panel of Fig. 8) has a similar origin:
the intrinsic scatter is defined at an un-observed redshift, z = 0,
instead of a redshift where it is well observed.

Figure 9 compares the model fit (solid line) to the true in-
put relation in stacks of 201 clusters per point. The model fit
on noisy data and the (unobserved and unused in the analysis)
noise-less data agree well, indicating that the fit to the noisy data
captures the real trend of the noise-less true data well.

In summary, by fitting observed data we recover with good
accuracy and without bias the five parameters describing the
mass-richness scaling. In particular, we assumed no evolution
(i.e. γ = 0 and ζ = 0) and recovered it, even allowing evolution
on both scatter and intercept. We will be able to measure the

4 There is only a 10% probability that in a five parameter fit all fitted
values are found within 1σ from the input values, and a 50% probability
that they are all within 1.5σ.

Fig. 9. Richness-mass scaling for the simulated PS1+Euclid-like data.
The solid line marks the regression line fitted on observed data. The
shaded region marks the 68% highest posterior credible interval for the
regression. The red dashed line indicates the input relation. The data
points are stacks of true data in bins of 201 clusters each, true data were
never used in the fitting.

mass-richness scaling with an error (posterior parameter stan-
dard deviation) of 0.007, 0.014, 0.005, 0.033, and 0.005 in α, β,
intrinsic scatter, γ, and ζ, respectively. These are the predicted
prior widths of cosmological forecasts. Table 1 lists the covari-
ance matrix.

Strictly speaking, conclusions of this sub-section only hold
if our modelling of the richness-mass scaling is a reasonable ap-
proximation of the scaling in the real Universe. Therefore it does
not hold if, for example, the richness-mass scaling suddenly dis-
appears in the real Universe at z = 0.3, for instance.

3.3. What happens if σintrscat doubles by z = 0.6?

To understand how the predicted prior is sensitive to a possi-
ble evolving mass-proxy scaling, we generated new data with
ζ = 0.18, i.e. generated from a relation whose intrinsic scatter is
twice as large at z = 0.6 as at z = 0. To this aim, we replaced
equation 14 by

lgn200i ∼ N
(
0.47 (lgM200i − 14.5) + 1.58, σ2

intrscat(zi)
)

(30)

σ2
intrscat(zi)← 0.252 − 1 + (1 + zi)2ζ (31)

ζ ← 0.18 (32)

and re-generated the new (simulated) data. We fitted
real+simulated data with no change whatsoever, and, as
for a non-evolving intrinsic scatter, we recovered the input
parameters, finding ζ = 0.16 ± 0.01 (vs. input ζ = 0.18). The
other four parameters were all recovered to better than their
uncertainty. More precisely, we found an error of 0.01, 0.02,
0.008, 0.046, and 0.010 in α, β, intrinsic scatter, γ, and ζ,
respectively. These are larger (1.5 times, on average) than before
because with the larger scatter (at high redshift) more data are
needed to measure the mean relation with the same precision.
Nevertheless, the parameter volume they encompass is only
a factor nine larger than for a non-evolving intrinsic scatter,
a negligible factor (a mere 0.01 per cent) compared to what
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we discuss below. Marginal and joint probability distributions
(i.e. the covariance matrix and Fig 8 revised for these data) are
qualitatively similar, apart from the obvious ≈1.5 factor.

In summary, an increasing intrinsic scatter, if present, would
be easily recovered from the data, with only a mild degradation
of the overall performances (a factor 9 for a five dimensional
volume), and no bias.

4. Discussion

Our computation of the predicted prior of the mass-richness scal-
ing while not accounting for sub-dominant sources of error, such
as uncertainties related to projection and redshift-dependent er-
rors on the cluster photometric redshift, can easily take them into
account, it is just a matter of replacing the assumed likelihoods
distributions (Eqs. (25) to (27)) with the updated distributions
accounting for additional error terms one may wish to consider.
For example, we can change the normal intrinsic scatter (ques-
tioned by Shaw et al. 2010) into a Student-t distribution by typ-
ing less than ten characters (see Appendix for details). However,
more complex simulated data (e.g. based on an N-body simula-
tion) are needed to generate the data to be fitted and more and
better real data are needed to characterize the real additional de-
pendencies (e.g. how to model the intrinsic scatter).

The starting point of literature forecasts is the end point of
this paper: they assume what our paper computes, their prior
widths are our posterior parameter uncertainties. The predicted
prior is computable and thus does not need to be assumed.
Parameters show covariance, sometimes a strong one, while
none is assumed in literature forecasts (that we are aware of).

We note that the previous literature (starting perhaps with
Lima & Hu 2005) chose not to model the slope between mass
and proxy, i.e. implicitly assumed to know it perfectly. This
assumption seems optimistic because the slope is presently
known with 25% accuracy (Sect. 2.1, summarized in Eq. (19)).
Section 2.3 shows that it will be known after PS1+Euclid with a
per cent accuracy. If a perfect knowledge of the slope is assumed,
then uncertainties on the other scaling parameters (scatter, inter-
cept, and their evolution) will be underestimated. Furthermore,
while the quality of a mass proxy is lower at the ends of the cal-
ibration range because of the slope uncertainty, the choice per-
formed in previous literature works makes it a constant quality
at all masses, including those outside the range of the calibration
sample.

As mentioned above, most previous works (e.g. Lima & Hu
2005; Cunha & Evrard 2010; Thomas & Contaldi 2011; Carbone
et al. 2012, etc.) adopted priors for the mass-observable scal-
ing largely by guessing how well the relation is (or will be)
known, instead of computing the prior width. Sometimes, the
prior width on some key parameters, like the scatter, was taken
to be zero. Some works (e.g. Cunha & Evrard 2010; Oguri
& Takada 2011) explored the sensitivity of cosmological con-
straints on the adopted priors for the mass-observable scaling,
sometimes calling this sensitivity “systematics”, quantifying the
(obvious) fact that poorly calibrated scaling relations give poor
cosmological constraints. For example, Cunha & Evrard (2010)
showed that cosmological constraints easily deteriorate by a fac-
tor from

√
2 to 2 by changing the prior width from zero to ∼1%.

Even more important, previous forecasts did not use the in-
formation content in the weak-lensing masses to calibrate the
mass-observable scaling. For comparison, we consider the pri-
ors assumed in Carbone et al. (2012), who also considered the
mass-richness scaling of a Euclid-like survey, but made no use

of the Euclid weak-lensing masses to calibrate the mass-richness
scaling. Before proceeding in this comparison, we emphasize a
technical difference: the two modellings are identical after swap-
ping observable and mass variables. For example, we modelled
the scatter in proxy at a given mass as Gaussian, while Carbone
et al. (2012) modelled the scatter in mass at a given proxy as
Gaussian. Since the Carbone et al. (2012) model has no slope
parameter, for the purpose of this comparison only, we removed
the slope from the modelling (freezing it at the true value).

Figure 10 compares the prior adopted in Carbone et al. (we
emphasize once more the variable swapping) with our predicted
prior. A major point emerges: the parameter volume encom-
passed by the Carbone et al. prior, which does not use weak-
lensing to calibrate the mass-richness scaling, is 105 times larger
(in the α − σ − γ − ζ space) than the one we derive using Euclid
weak-lensing masses. Similarly, the Euclid imaging consortium
science book (EICSB, Refregier et al. 2010) does not use the
Euclid weak-lensing masses to calibrate the mass-richness scal-
ing and assumes a 25%, or 0.25, prior uncertainty on each pa-
rameter of an observable-mass relation modelled with a third,
different, parametrization. At face value, given that our preci-
sions are typically one order of magnitude better per parameter,
using weak-lensing masses may allow us to improve the knowl-
edge of the observable-mass scaling by a similarly large (≈105)
amount. If the mass-proxy scaling can be computed 105 times
better, stronger cosmological constraints can probably be in-
ferred and this may alter the balance between the cosmological
constraints achievable using cluster counts, BAOs, SNae, and
weak-lensing tomography. Indeed, Carbone et al. (2012) esti-
mated that if the regression parameters were perfectly known,
then cosmological constraints tighten (technically: the volume
of cosmological parameter space enclosed by the posterior prob-
ability distribution decreases) by a factor ≈100 compared to the
case where one marginalises over their (extremely wide) prior
(see their Table 2). The gain on the constraints on dark energy
parameters alone is instead only mild: a factor 2. The precise
computation of the gains in our specific case is, however, out-
side the aim of this work.

5. Summary

The aim of this work was threefold: first, using 53 clusters with
individual measurements of mass, we derived the richness-mass
scaling in the local Universe. We found a 0.46±0.12 slope and a
0.25± 0.03 dex scatter in (log) richness at a given mass measur-
ing the richness following the Andreon & Hurn (2010) prescrip-
tions. The fit accounts for the fact that the cluster sample is X-ray
selected and massive clusters are over-represented, although we
found that the sample selection is a minor source of concern for
this sample. Because the scatter around the regression is derived
from measurements of the individual masses and richnesses, our
measurement of the scatter is preferable to others derived with-
out knowledge of individual cluster masses, such as those of the
maxBCG team (e.g. Rykoff et al. 2011).

Second, using 250 0.06 < z < 0.9 clusters with spectroscopic
redshift, mostly at z < 0.3, we found that the cluster redshift
can be derived with an accuracy better than Δz = 0.02 from the
colour of the red sequence.

Third, we computed the predicted prior between mass and
richness, i.e. one of the input ingredients to judge how strongly
future surveys using clusters may constrain cosmological param-
eters, and to which extent clusters can compete with other cos-
mological probes.
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Fig. 10. Example of mismatch between predicted prior of the richness-mass scaling, as derived by us (in blue) and as adopted in other works (in
red, from Carbone et al. 2012). This comparison should be seen as indicative only, because of differences between the two mass-proxy modellings.

To this aim, we generated a simulated universe obeying
the derived richness-mass scaling, observed it with a mock
PanStarrs 1+Euclid-like survey, allowing for intrinsic scatter be-
tween regressed quantities, allowing for mass and richness er-
rors, and also allowing for cluster photometric redshift errors.
The generated sample does not contain any cluster with an
S/N > 5 weak-lensing detection at z > 0.62 (Fig. 7).

We fitted the observations with an evolving richness-mass
scaling with five parameters to be determined. We allowed an
evolution in the intercept (sometime called bias) and intrinsic
scatter. We allowed an uncertainty on the intrinsic scatter and on
the intercept, as previous works, but in contrast to all previous
approaches, we did not sidestep the modelling of the slope.

Our fitting model recovers the input parameters, but only
if the cluster mass function and the redshift-dependent S/N >
5 weak-lensing survey selection function are accounted for.
Neglecting them causes fit values to deviate by >5σ from the
input values, as a result of the neglected Malmquist-like bias.
This result emphasizes the limitations of often adopted simpli-
fying assumptions, such as mass-complete redshift-independent
samples. Including the optical selection function is unnecessary
because all clusters with a weak-lensing signature are so mas-
sive and rich that detecting their red galaxy overdensity is trivial.
Already available imaging data from PanStarrs 1 are of sufficient
quality to detect these galaxies, whereas mass estimates await
the Euclid mission.

We derived the uncertainty and the covariance matrix of the
(evolving) richness-mass scaling, which are the input ingredi-
ents of every cosmological forecast using cluster counts. These

five parameters will be known with percent precision thanks to
masses estimated from Euclid data. There are non-negligible co-
variance terms between the five regression parameters. These
numbers, listed in Table 1, are the third main result of this work.
Their determination does not require the success, or acquisition,
of other data presently not available, which is requested for other
cluster surveys, such as the XXLS and SPT survey.

We found that the richness-mass scaling parameters can be
determined 105 better (the volume enclosed by the posterior is
105 times smaller) than estimated before without using weak-
lensing mass estimates, although we emphasize that this number
was derived using scaling relations with different parametriza-
tions. A better knowledge of the scaling parameters likely has a
strong impact on the relative importance of the different probes
used to constrain cosmological parameters.

Finally, we checked that if the intrinsic scatter between mass
and richness increases by a factor two by z = 0.6, we are nev-
ertheless able to recover the mass-richness scaling without bias,
with only a factor 9 (about 1.5 per parameter) degradation in the
quality with which we are able to recover the scaling parameters.

The fitting code, including of the treatment of the mass
function and the weak-lensing selection function, is provided in
the appendix. It can also be re-used, for example, to derive the
predicted prior of other observable-mass scalings, such as the
LX-mass relation.
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of clarifying our presentation concerning the impact of selection effects in the
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Appendix A: Model for computing the predicted prior of the mass-richness scaling including
the weak-lensing selection function

Equations (12) and (17) to (29) are almost literally translated into JAGS (Plummer 2008), Poisson, normal, and uniform distributions
become dpois, dnorm, dunif, respectively. JAGS5, following BUGS (Spiegelhalter et al. 1995), uses precisions, prec = 1/σ2,
in place of variancesσ2. The only complication comes from sampling from a distribution unavailable in JAGS, a truncated Schechter
function. This is achieved by exploiting the property that a Poisson(φ) observation of zero has a likelihood e−φ. Conseguently, if our
observed data are a set of 0’s, and φ[i] is set to − logL[i], we obtain the correct likelihood contribution. The quantity λ[i] should
always be greater than 0, because it is a Poisson mean, and we may accordingly need to add a suitable constant, C, to ensure that it
is positive. The quantity lg10tot.norm normalises the integral of the obslgM200 likelihood to one. The model (set of equations)
reads in JAGS:

data
{
preclgM200 <- 1./(errlgM200^2)
# normaliz
lg10tot.norm <-0.386165-3.92996*obsz-0.247050*obsz^2-2.55814*obsz^3-5.26633*obsz^4
# dummy variable for zero-trick, to sample from a distribution not available in JAGS
for (i in 1:length(obslgM200)) {
dummy[i] <-0
}
C<-2
}
model
{
intrscat ~ dnorm(0.25,1/0.03/0.03)
prec.intrscat <- 1/intrscat^2
alpha ~ dnorm(0.08,1/0.04/0.04)
beta ~ dnorm(0.47,1/0.12/0.12)
gamma ~dt(0,1,1)
csi ~dt(0,1,1)
for (i in 1:length(obsn200)) {
# modelling lgM200
# dummy prior, requested by JAGS, to be modified later
lgM200[i] ~ dunif(13.9891+1.04936*obsz[i]+0.488881*obsz[i]^2,16)
# modelling a truncated schechter
lnnumerator[i] <- -(10^(0.4*(lgM200[i]-12.6+(obsz[i]-0.3))))
# its integral, from the starting point of the integration (S/N=5)
loglike[i] <- -lnnumerator[i]+lg10tot.norm[i]*log(10)+C
# sampling from an unavailable distribution
dummy[i] ~ dpois(loglike[i])
obslgM200[i] ~ dnorm(lgM200[i],preclgM200[i])
# modelling n200, z and relations
obsn200[i] ~ dpois(pow(10, lgn200[i]))
obsz[i] ~ dnorm(z[i],pow(0.02,-2))
z[i]~dnorm(0,1)
# modelling mass -n200 relation allowing for evolution
lgn200m[i] <- alpha+1.5 +beta*(lgM200[i]-14.5)+ gamma*(log(1+z[i]))
lgn200[i] ~ dnorm(lgn200m[i], prec.intrscat.z[i])
prec.intrscat.z[i] <- 1/( 1/prec.intrscat-1+(1+z[i])^(2*csi))
}

}

To adopt a Student t–distribution with ten degrees of freedom dt to model the intrinsic scatter (Sect. 4), it suffices to replace the
line starting by lgn200[i]with

lgn200[i] ~ dt(lgn200m[i], prec.intrscat.z[i],10)

5 http://calvin.iarc.fr/ martyn/software/jags/
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