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ABSTRACT

This work measures the evolution of the iron content in galaxy clusters by a rigorous analysis of the data of 130 clusters at 0.1 < z <
1.3. This task is made difficult by a) the low signal-to-noise ratio of abundance measurements and the upper limits; b) possible selection
effects; c) boundaries in the parameter space; d) non-Gaussian errors; e) the intrinsic variety of the objects studied; and f) abundance
systematics. We introduce a Bayesian model to address all these issues at the same time, thus allowing cross-talk (covariance). On
simulated data, the Bayesian fit recovers the input enrichment history, unlike in standard analysis. After accounting for a possible
dependence on X-ray temperature, for metal abundance systematics, and for the intrinsic variety of studied objects, we found that
the present-day metal content is not reached either at high or at low redshifts, but gradually over time: iron abundance increases by
a factor 1.5 in the 7 Gyr sampled by the data. Therefore, feedback in metal abundance does not end at high redshift. Evolution is
established with a moderate amount of evidence, 19 to 1 odds against faster or slower metal enrichment histories. We quantify, for the
first time, the intrinsic spread in metal abundance, 18 ± 3%, after correcting for the effect of evolution, X-ray temperature, and metal
abundance systematics. Finally, we also present an analytic approximation of the X-ray temperature and metal abundance likelihood
functions, which are useful for other regression fitting involving these parameters. The data for the 130 clusters and code used for the
stochastic computation are provided with the paper.
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1. Introduction

The physics of galaxy clusters is complex because of the inter-
play of cosmology (structure growth), gas physics, star forma-
tion (and its feedback), and possibly AGN. We lack an ab initio
theory able to make predictions which are not falsified by data,
about how normal baryonic matter collects in dark matter grav-
itational potential wells and forms galaxies, which in turn influ-
ence the intracluster medium (e.g. Young et al. 2011, and ref-
erences therein). For example, star formation (galaxy feedback)
is a suspected source of non-gravitational entropy excess (Buote
et al. 2007; Pratt et al. 2006; Sun et al. 2009), yet the amount of
star formation required to reproduce the observed X-ray derived
quantities (e.g. baryon fraction in gas or mass-temperature scal-
ing relations) is at least ten times greater than the amount of stars
observed (Gonzalez et al. 2007; Kravtsov et al. 2009; Andreon
2010).

Owing to the complex behavior of the baryonic matter and
the lack of a satisfactory ab initio theory, we can only progress by
observational studies of the evolution of the intracluster medium.
Measuring the evolution of the gas metallicity is key information
for understanding when metals are produced and also at which
time the stellar feedback enriches the intracluster medium (e.g.
Ettori 2005). Gas metallicity is usually inferred from the fit of
the cluster X-ray spectrum, and the derived metal abundance
is, largely, the abundance in iron, because data of much higher

� Full Table 1 is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A6

quality than usually available are needed to constrain the abun-
dance of the other elements.

Determination of the evolution of intracluster medium metal
content (Fe, indeed) has been already addressed by previ-
ous works, e.g. Balestra et al. (2007), Maughan et al. (2008),
Anderson et al. (2009), and Baldi et al. (2011), to cite the most
recent ones. Key points to be addressed are related to the low-
quality determination of most measurements, the possible im-
pact of selection effects, the intrinsic variety of studied objects,
the presence of boundaries in the data and parameter space, and
metal abundance systematics. Therefore, a proper analysis of the
data is mandatory and should be guided by statistical consider-
ations. The main aim of this work is to introduce a statistical
approach that can account for all the complex features of the
astronomical data and to apply it to available metal abundance
measurements.

In Sect. 2 we first convince ourself about the need of revis-
iting the way abundance analyses are performed. We therefore
adopted a Bayesian method (briefly described in Sect. 3, and de-
tailed in Sect. 5) that, when applied to simulated data, is able
to recover the input enrichment history. With the new method,
we analyse real data (presented in Sect. 4) of 130 clusters ob-
served with Chandra or XMM-Newton. Results based on these
(real) data are presented in Sect. 6. Sect. 7 describes the advan-
tages of the Bayesian approach and the limitation of their current
implementation. Section 8 summarises the results. Finally, the
appendix provide the code needed for the revised fitting method.

We adopt Ωm = 0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1

when computing ages from redshifts.
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2. The standard analysis

Iron abundance determination is usually performed using
XSPEC (or other X-ray spectral fitting programs). XSPEC
(Arnaud 1996) is a code that returns the likelihood L of the pa-
rameters describing the object spectrum, given source and back-
ground data, by fitting model spectra of different metallicity and
temperature to the data. Users often report a likelihood sum-
mary, for example, Z Δ+

Δ− = 0.3+0.5
−0.3, where Z is the maximum

likelihood (mode) value, and Z + Δ+ and Z − Δ− are the points
where the likelihood is lower than its maximum by a given fac-
tor (e.g.Δχ2 = 2Δ logL = 1). XSPEC allows fitting, or freezing,
other parameters, such as the cluster redshift, temperature or the
Galactic absorption.

When the evolution of the iron abundance is of interest,
one should combine measurements of different clusters. Several
works (e.g. Balestra et al. 2007; Anderson et al. 2009) combine
the information contained in the whole data set in a two step
procedure. First, clusters are grouped by redshift. In each red-
shift bin, all cluster data are fitted simultaneously, with Galactic
absorption and redshift fixed at their measured values, both tem-
peratures and metal abundances are free parameters, but temper-
atures are fitted independently for each cluster, while the metal
abundances are tied (i.e. forced to be the same) across clusters.
In the second step, the derived iron abundances are fitted vs. red-
shift, and the parameters describing their evolution are found.

To check whether this standard methodology is able to re-
cover the true metal abundance history, we generate simulated
data with known input parameters. More precisely, we gener-
ate simulated Chandra spectra of the 114 clusters in Maughan
et al. (2012), i.e. having the same redshift, temperature, and lu-
minosity as the original clusters and the same exposure time
as the original data. Since clusters are well known to have a
spread of metal abundance (e.g. De Grandi & Molendi 2001),
the individual metal abundance of each cluster is taken to have
a scatter around the mean relation ZFe/ZFe,� = 0.46−0.33 z,
taken from Anderson et al. (2009). The adopted amplitude of
the scatter, 18%, is derived from the analysis of 130 real clus-
ter data described in following sections. The adopted back-
ground and Chandra response matrix are taken from observa-
tions (ObsID 10461 and 12003) used in Andreon et al. (2011)1.
The generated simulated cluster spectra are then fitted follow-
ing the standard practice (e.g. Balestra et al. 2007; Maughan
et al. 2008) described above. We took the same redshift bins as
adopted in Maughan et al. (2008) and Anderson et al. (2009).
The derived metal abundance are fitted vs. redshift using a χ2

procedure (e.g. Balestra et al. 2007; Anderson et al. 2009) to
determine the parameters describing the trend between metal
abundance and redshift.

This standard methodology returns as the best-fit relation:
ZFe/ZFe,� = (0.497 ± 0.015) − (0.463 ± 0.015)z. It is fairly dif-
ferent in slope from the input relation, ZFe/ZFe,� = 0.46−0.33z
because the two slopes differs by >8σ. Furthermore, the input
parameter values are at χ2 = χ2

min + 13, where χ2
min is the min-

imum χ2. Other difficulties with the standard analysis are ex-
plained in the following sections.

3. The Bayesian approach in a nutshell

Very often we know something about the parameter θ that
we want to study. For example, we may know its order of

1 Of course, to check the methodology, it would be acceptable to also
use the response matrix and background of any other telescope (e.g.
XMM).

magnitude. This knowledge may be crystallised in a mathemat-
ical expression, p(θ), stating that, for example, some values are
more probable than others according to a specific expression
p(θ) (e.g. p(θ) ∝ e−θ). This probability distribution is called the
prior. Observations return a value, obsθ and an error, or, to be
more precise, how likely observing obsθ is when the true value
is θ, p(obsθ|θ). This probability distribution is named the like-
lihood, i.e. a measure of how variable the output obsθ is when
the input value is θ. The likelihood (“instrument calibration”) is
certainly interesting, but we may perhaps want to know which
values of θ are more probable after having observed obsθ, i.e.
to derive the probability of θ given obsθ, p(θ|obsθ). The Bayes
theorem tell us that to obtain the latter, called the posterior prob-
ability distribution, we need to multiply the prior and the like-
lihood (times a constant of no interest in parameter estimation).
For a deeper understanding of Bayesian methods, one may con-
sult, for example, Gelman et al. (2003), and for astronomical
introductions, Trotta (2007), Andreon & Hurn (2010, 2011), and
Andreon (2010b, 2012), among others.

In this work, we adopt this Bayesian approach. When ap-
plied to the simulated data above, it returns ZFe/ZFe,� = 0.45 ±
0.02−(0.31± 0.04)z, well within 1σ from the input trend. As de-
tailed below, it improves upon previous analysis because it oper-
ates correctly on likelihoods. We therefore adopt it for analysing
the real data of 130 clusters, as described in the following sec-
tions in detail.

Readers not interested in the fitting details may skip Sects. 4
and 5, where we account for non-independent and non-Gaussian
data, for the existence of an intrinsic diversity in metal abun-
dances, for mass-dependent selection effects, and for system-
atic differences between Chandra-and XMM-derived metal
abundances.

4. The cluster sample and the new metal abundance
measurements

Our sample is composed of two subsamples: 114 galaxy clus-
ters at 0.1 < z < 1.2 observed with Chandra ACIS-I (Maughan
et al. 2008) and 29 galaxy clusters at 0.3 < z < 1.3 observed
with XMM (Anderson et al. 2009). For consistency with the
Anderson et al. (2009) analysis, the central region of the clus-
ters is not excised in Chandra measurements.

The samples we studied, as well as the two starting lists,
are heterogeneous collections without any known selection func-
tion being basically, what is available in the Chandra and XMM
archives. The lack of a known selection function is the major
limitation of current samples with available metal abundance
measurements, hence also of our work, although we control for
mass-dependent selection effects, as described in Sect. 5.4.

Maughan et al. (2008) present metal abundance and tem-
perature values for his sample using the CALDB version 3.2.3.
The data have been reprocessed (Maughan et al. 2012) with the
up-to-date Chandra calibration, mainly improving the Chandra
mirror effective area and the ACIS contamination model. In the
current work we also revisit the XSPEC settings appropriate for
metal abundance determination (Sect. 5.7). These newly derived
metal abundances are used here and are listed in Table 1.

Figure 1 compares old and new Chandra metal abundances
for the quartile with the smallest percentage error on metal
abundance (to limit crowding). From the analysis of the whole
sample, we found that metal abundances derived with up-to-date
calibrations tend to be 12±3% larger than old values. A χ2 anal-
ysis returns no evidence of a redshift-dependent correction, with
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Table 1. Id, redshift, metal abundances, temperatures, and their σ val-
ues, and data source (zero for Chandra, one for XMM).

Id zi modeZFe,i σZFe,i modeTi σT,i tidi

[ZFe,�] [ZFe,�] [keV]
MS1008.1-1224 0.301 0.41 0.11 5.00 0.06 0
CLJ1113.1-2615 0.725 0.51 0.41 3.80 0.18 0
RXJ1716.9+6708 0.813 0.55 0.22 6.30 0.14 0
A2111 0.229 0.23 0.13 6.40 0.09 0
A697 0.282 0.38 0.07 9.80 0.05 0

Notes. This table has 130 lines in its electronic version available at
the CDS.

Fig. 1. Old and new Chandra values of metal abundance for the quar-
tile with the smallest percentage errors on metal abundance. The line
indicates the one-to-one relation.

a 68% confidence interval of [−0.06, 0.03] on the the redshift-
dependent term.

Fe abundances are normalised to solar abundances in Anders
& Grevesse (1989). In particular, the solar abundance of iron
atoms relative to hydrogen is 4.68 × 10−5.

5. The fitted model

As emphasised by the simulation in Sect. 2, the key ingredient
for a trustful determination of the Fe abundance history with cur-
rent data lays in the statistical aspect of the analysis, and this
guides our presentation.

5.1. Duplicate clusters

Thirteen clusters appear in both the Maughan et al. (2012) and
Anderson et al. (2009) lists, which make the data dependent. The
lack of independence is quite dangerous if not accounted for, for
example, if one computes the width (intrinsic scatter, dispersion)
or the mean of a distribution (of abundances, for example) in
which some elements are listed twice.

We want independent data and, at the same time, want to
make full use of the available information. Therefore, we remove
duplicates from the list of fitted data (specifically, we keep the
data set that provides smaller errors on metal abundances), and
use the removed data in Sect. 5.5 to derive the prior on metal
abundance systematic.

The problem of duplicate clusters has already occurred in
previous analysis (e.g. Anderson et al. 2009; Balestra et al.
2007), but is first addressed here as far as we are aware.

5.2. Enrichment history

Metal abundance, ZFe, must be positive at all redshifts. Some
authors (e.g. Anderson et al. 2009) choose to fit the evolution of
the metal abundance with a linear relation, which may lead to
unphysical results. For example, the best-fit in Anderson et al.
(2009) crosses ZFe = 0 at z ∼ 1.2 i.e. within the range of the
data analysed by them. This is clearly unphysical, also consider-
ing that clusters at higher redshift exist (e.g. Stanford et al. 2005,
2009; Andreon et al. 2009, etc.), and for these the best-fit relation
predicts negative metal abundances. We chose to fit metal abun-
dance measurements by a function that can never cross the phys-
ical boundary ZFe = 0. It is also plausible that the Fe abundance
was zero at the time of the Big Bang. Therefore, we adopted an
exponential function for the enrichment history parametrised as

f (ti) =
ZFe,z=0.2

1 − e−11/τ

(
1 − e−ti/τ

)
(1)

where τ is the characteristic time (in Gyr) and ti is the Universe
age (in Gyr) at the redshift of the ith cluster. The denominator
in Eq. (1) was chosen to have ZFe,z=0.2 as second parameter, i.e.
the Fe abundance (in solar units) at z = 0.2, a redshift sampled
well by the data used. This choice simplifies the interpretation
of the results. The τ parameter regulates when enrichment oc-
curs: early in the Universe history (small τ’s) or gradually over
time (large τ’s). Two extreme enrichment histories are depicted
in the right hand panel in Fig. 4. Our choice of using an exponen-
tial function to describe the evolution of the metal abundance is
mathematically equivalent to assuming a linear function on the
log of the metal abundance: Z ∝ e−t/τ ≡ log Z ∝ −t/τ.

With this model, metal abundance is always positive. Our
modelling of the Fe enrichment assumes that the enrichment
starts at the Big Bang. While one may argue that enrichment
starts at a later age, this is irrelevant for our modelling as long
as the data do not sample very early enrichment phases (i.e.
t � 4 Gyr, or z � 1.5). In the future, when observations will
reach the epoch of first enrichment, we will need to replace
Eq. (1) with a more complex formula, for example one with two
characteristic times to account for an initial enrichment by core
collapse supernovae followed by a metal production spread on
longer time scales. This operation is very easy to implement, as
detailed in the appendix.

5.3. Intrinsic scatter

Galaxy clusters show a spread of Fe abundance at the very
least because cool-core and not cool-core clusters have differ-
ent metallicities (De Grandi & Molendi 2001). The scatter may
also be due to chemical inhomogeneities and abundance gradi-
ents within clusters, differences in cluster star formation histo-
ries, differences in cluster metallicities (which affect the chem-
ical enrichment in as much as the chemical “yields” depend
on metallicity e.g. Woosley & Weaver 1995), different ages of
the stellar populations in clusters, and different cluster masses.
Independently of the physical source of the spread, the presence
of an intrinsic scatter implies that the information content of a
single measurement is lower than indicated by the error, espe-
cially when the latter is comparable to, or is smaller than, the
intrinsic scatter. The intrinsic scatter acts as a floor: the infor-
mation content of a measurement is not better than the intrinsic
scatter, no matter how precise the measurement is. Therefore,
above some signal-to-noise ratio (S/N), the information content
of a single measurement no longer increase; in other words, two
measurements with error σ smaller than, or comparable to, the
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intrinsic scatter are better than one with error σ/
√

2. Therefore,
in the presence of intrinsic scatter, measurements cannot be com-
bined using errors as weight: the error derived from the simul-
taneous fit (as in the standard analysis) will be underestimated
because it ignores the metal abundance spread. Furthermore, the
task of simultaneously fitting spectra becomes prohibitive if the
intrinsic scatter is not known a priori because the weight to be
used is unknown, exactly as in Fe abundance measurements.
Furthermore, unless individual spectra all have the same S/N,
the best-fit metal abundance will be biased toward the metal
abundance of the spectrum with the highest S/N. Finally, if an
intrinsic scatter is not allowed, a redshift trend may be overly
driven by a single high S/N measurement, as noted by Baldi et al.
(2011), who note the dramatic effect of including, or removing,
a very low upper limit in a fit where the intrinsic scatter is not
allowed.

Instead of fitting spectra of clusters with a single value of
Fe abundance forced to be the same across clusters, as in the
standard analysis, we do a simultaneous analysis of all the in-
dividual spectra allowing Fe abundances to differ from cluster
to cluster and inferring the intrinsic scatter at the same time.
Because metal abundance may evolve and has a possible tem-
perature dependence, the intrinsic scatter should be fitted at the
same time as other parameters. We model the distribution of
Fe abundances as a log-normal process of unknown intrinsic
scatter,

ZFe,i ∼ logN
(
ln f (ti), σ2

intr

)
. (2)

Expressed in words, the Fe abundance of the ith clusters, ZFe,i
shows a log-normal intrinsic scatter σintr, around the median
value, f (ti). Of course, a Gaussian scatter in ZFe,i is precluded
by the positive nature of the Fe abundance. The tilde symbol
reads “is distributed as” throughout.

Our adoption of a log-normal scatter removes the major lim-
itation of previous analysis, namely the tension between data
(that require a spread) and the adopted fitting model (that as-
sumes a unique metal abundance value at a given redshift). The
statistical name for this tension is misspecification, and we quan-
tify its amplitude in Sect. 6.2. The choice of a log-normal scatter
in ZFe, i.e. a Gaussian scatter in log ZFe, is motivated by its being
the simplest solution to break the previously adopted assump-
tion of no scatter. With data of adequate quality, the shape of the
distribution itself may be inferred from the data; however, this is
precluded by the current samples. In Sect. 7.3 we test our log-
normal assumption by adopting instead a Student’s t distribution.

5.4. Controlling for temperature

The Fe abundance might depend on cluster mass (e.g. Balestra
et al. 2007; Baumgartner et al. 2005). If neglected, this de-
pendence induces a bias in determining the evolution of the
Fe abundance unless the studied sample is a random, redshift-
independent sampling of the cluster mass function. For exam-
ple, if the average mass of clusters in the sample increases with
redshift and the Fe abundance increases with temperature T , one
may observe a spurious Fe abundance tilt (increase) with red-
shift. Other combinations of dependences are potential sources
of a bias, such as a decreasing metal abundance with increas-
ing T . Among these combinations, we should also consider those
that include variations in the mass range sampled at a given red-
shift (e.g. lower redshifts sampling a wider cluster mass range).
To summarise, given the uncontrolled nature of the available
samples, one must at the very least control for T (i.e. a mass

proxy) in order to avoid the risk of mistaking a mass dependency
for an Fe abundance evolution. Even if data are unable to unam-
bigously determine a T trend, controlling for T allows a trend to
be there as much as allowed by the data and not to overstate the
statistical significance of a redshift trend.

We control for mass by allowing the Fe abundance, ZFe, to
depend on T . We adopt a power law relation, following Balestra
et al. (2007), between metal abundance and temperature, ZFe ∝
Tα. Since clusters are at different redshifts, and ZFe is possibly
evolving, we need to fit both the T dependency and evolution at
the same time.

5.5. Metal abundances systematics

Metal abundances may show some systematic differences when
derived by two different teams using data taken with two dif-
ferent X-ray telescopes (Chandra and XMM) analysed with
similar, but not identical, procedures. In particular, based on
13 common clusters, XMM abundances (derived by Anderson
et al. 2009) are 0.77 ± 0.065 times those measured (by us) with
Chandra.

We account for this systematics by allowing metal abun-
dances measured by different telescopes to differ by a multiplica-
tive factor as large as allowed by the data. Observationally, the
factor is constrained by measurements of both telescopes hav-
ing to agree after the multiplicative scaling. Of course, to not
mistake systematics with differences due to the intrinsic scat-
ter or evolution, dependence on all three parameters have to be
accounted for. Therefore, systematics have to be inferred at the
same time as the other parameters. Expressed mathematically,
we only need to introduce a quantity, tid, that takes the value of
zero for the Chandra data, and one for the XMM data (a conven-
tion, but one may choose to do the reverse), and multiply metal
abundances by the factor, 1+ f act∗tid, to bring all measurements
on a common scale (Chandra, with our convention):

ZFe,i,cor = ZFe,i ∗ (1 + f act ∗ tidi) ∗ Tα. (3)

The Tα term is there to control for T , i.e. to account for a possible
dependence of the Fe abundance on T (Sect. 5.4).

5.6. Temperature likelihood

X-ray temperature errors are often asymmetric; i.e., tempera-
tures are usually quoted in the form modeT+Δ

+

−Δ− , with Δ+ � Δ−.
As mentioned in the introduction, Δ± are the points where the
likelihood is lower than its maximum by a given factor (see Avni
1976; Press et al. 1986, or the Sherpa or XSPEC manual for the
numerical values to be used). A Gaussian function is, of course,
symmetric. Therefore, the temperature likelihood cannot be a
Gaussian. We adopt the symbol modeT to emphasise that the
quoted value is the maximum likelihood value (i.e. the mode).
A plot of the temperature likelihood of clusters (e.g. Fig. 12 in
Andreon et al. 2009) reveals the likelihood asymmetry and sug-
gests that it can be described with a log-normal shape. The log-
normal distribution has the welcome property of being bounded
in the positive part of the real axis, i.e. avoids negative T .

Our suggestion of a log-normal temperature likelihood can
be tested with our large sample. Figure 2 shows Δ+/modeT vs.
Δ−/modeT . For a log-normal function, the points should follow
the curved (green) line. If the likelihood were Gaussian, the lo-
cus (straight line) Δ+/modeT = Δ−/modeT should be followed.
Figure 2 shows that the log-normal likelihood captures the data
behaviour. Simple algebra, together with the knowledge of the
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Fig. 2. Determination of the shape of the likelihood function of temper-
ature. Measured values (points) and expectations for a normal (red solid
line) and a log-normal (green curve) likelihood.

definition of Δ+ and Δ− (see XSPEC or Sherpa manuals), allows
us to analytically compute the likelihood parameters. For a log-
normal model with location μ and scale σ, we find

σ± = ± ln(modeT ± Δ±) ∓ ln(modeT ).

Using real data, σ+ and σ− slightly differ because every mea-
surement, including Δ± values, is subject to errors and rounding.
We thus take the average of σ± as the value of σT,i.

To sum up, the whole section may be summarised by the
mathematical expression:

modeTi ∼ logN
(
ln Ti, σ

2
T,i

)
, (4)

which allows us to account for asymmetric temperature errors.
While our statement of the non-normal T likelihood is cer-
tainly not new, to our knowledge this is the first time the non-
normal T likelihood has been implemented in a regression fitting
involving T .

5.7. Fe abundance likelihood

Inspection of plots of the metal abundance likelihood (four ex-
amples are shown in Fig. 3, computed using XSPEC) shows, in
agreement with Leccardi & Molendi (2008), that the metal abun-
dance likelihood has a Gaussian shape. In formulae

modeZFe,i ∼ N
(
ZFe,i,cor, σ

2
ZFe,i

)
. (5)

This implies that a negative modeZFe,i can be found, most often
for low S/N measurements.

The parameters of the equation above are determined by fit-
ting the data with XSPEC. We emphasise, however, that the input
numbers of this equation, σZFe,i and modeZFe,i, are not, generally
speaking, the standard XSPEC output numbers because XSPEC
uses different definitions of the likelihood location and width.

The mode of the likelihood on the unrestricted range ZFe ∈
[−∞,∞] is modeZFe,i. We accept negative modeZFe,i values as
a way to describe the likelihood wing at ZFe,i > 0 when the
latter shows no maximum there (e.g. the leftmost likelihood in
Fig. 3). Negative modeZFe,i indicate that the measurement has
such a low S/N that the likelihood has no peak in the physi-
cal range (ZFe,i > 0), and the data only offer an upper limit to
the cluster metal abundance. We emphasise that in the Bayesian

Fig. 3. Abundance likelihood function of four clusters, chosen to illus-
trate the likelihood shape in various cases. The open circles show the
likelihoods derived with XSPEC, whereas the solid curves present a
Gaussian approximation of them.

approach inferences come from the posterior, not from the like-
lihood alone. Since the abundance posterior distribution is only
non-zero for ZFe > 0 (because of the prior, Eq. (6)) every point
estimate of the cluster abundance (e.g. posterior mean, median)
is always positively defined, as good sense requires, even when
modeZFe,i < 0. XSPEC’s max ZFe,i is the mode of the likelihood
in a restricted range (set at ZFe ≥ 0 by default). It differs from
modeZFe,i when the likelihood has no peak at ZFe,i > 0 (e.g. the
left-most likelihood in Fig. 3).

The usual width of the Gaussian is σZFe,i . For the author’s
opinion, it is the most straightforward estimate of the metallic-
ity uncertainty. XSPEC instead quantifies the likelihood width
by Δ± values, determined by the points where the likelihood is
lower than its maximum by a given factor. If the peak is far away
from the zero boundary (mathematically: if modeZFe,i − σZFe,i >
0), as in the two rightmost likelihoods in Fig. 3, the two esti-
mates of the likelihood width coincide. However, these estimates
may differ widely, as in the left-most likelihood in Fig. 3, where
modeZFe,i + σZFe,i ≈ 0. In such cases, Δ+ value is low, but the er-
ror σZFe,i is large (the data only offer an upper limit to the cluster
metal abundance). Therefore, one should not overlook the dif-
ference between Δ± and σZFe,i . If modeZFe,i − σZFe,i < 0, then Δ−
differs from Δ+, even for a Gaussian likelihood (e.g. for the two
leftmost likelihoods displayed in Fig. 3). This situation is quite
usual for cluster metal abundances, and in fact asymmetric Δ±
values are often quoted (e.g. 0.3+0.5

−0.3).
The two definition sets may be made identical by

removing the XSPEC default positivity constraint to abun-
dances. Alternatively, one may note thatσZFe,i = Δ

+, except when
max Ab = 0. We adopted this property for Anderson et al. (2009)
abundance measurements. When XSPEC (with the positivity
constrain set on) instead returns max Ab = 0 (e.g. CLJ0522-
3625), the XSPEC positivity constraint has to be removed, and
we accept negative modeZFe,i values. This choice allows us to
analyse samples, like the studied one that include both upper
limits and precisely determined values. In this way, including
upper limits is automatically accounted for in our determination
of the metal abundance history.

We verified that if one overlooks the difference between Δ±
and σZFe,i , the trend between metal abundance and redshift is
tilted because these noisy values occur only at high redshift.
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Fig. 4. Metal abundance, on the Chandra scale, vs. Universe age. Left panel: observed values of metal abundance and errors are corrected for the
T dependence and for the Chandra vs. XMM systematic as determined by a simultaneous fit of all parameters. Red (blue) circles refer to Chandra
(XMM) measurements. Points indicate the maximum a posteriori, whereas error bars represent the shortest 68% probability intervals. The solid
line marks the mean fitted relation between metal abundance and redshift, while the dashed line shows this mean plus or minus the intrinsic
scatter σscat. The shaded region marks the 68% highest posterior credible interval for the regression. The distances between the data and the mean
model are due in part to the measurement error and in part to the intrinsic scatter. Right panel: solid points are metal abundances, corrected as in
the left panel, but binning in 5 (solid points) or 10 (open points) redshift bins. The solid line and shading are as in the left panel. Two extreme
enrichment histories (red lines) and the Ettori (2005) model (green dashed line) are also plotted .

Table 1 lists the cluster ID, the redshift z, the temperature
modeTi, and its σT,i, the metal abundance modeAi and its σZFe,i ,
and indicates whether the data comes from Chandra or XMM
(tid). The table has 130 lines in its electronic version. About
70% of the listed temperature or metal abundance values and
errors have been newly derived (the remaining values are taken
from Maughan et al. 2012; or Anderson et al. 2009). We em-
phasise, as explained above, that negative values for modeZFe
in Table 1 are correct (whereas every posterior estimate of ZFe is
positive) and are meant to describe the Gaussian likelihood wing
at ZFe,i > 0. Forcing them to be positive would spuriously bend
the trend between metal abundance and redshift.

5.8. Priors

At this point, we have the data and we described the mathe-
matical link between the quantities that matter for our problem
(Eqs. (1) to (5)). To complete the analysis, we now specify what
else we know about the parameters. Except for metal abundance
systematics, we assume we know very little about the parame-
ters; i.e., we adopt for all quantities priors wide enough to cer-
tainly include the true value, but not so wide to include unphys-
ical values. For the systematics on metal abundance we adopt as
prior the result of our metal abundance comparison (Sect. 5.5)
for the 13 clusters in common between Chandra and XMM lists:
0.77 ± 0.065.

Specifically, the prior of the mean Fe abundance at z = 0.2,
ZFe,z=0.2 is taken as uniform between 0 and 1 ZFe,�; i.e., the
mean Fe abundance may take any value in this wide range with
no preferred value. Similarly, for the true value of the clus-
ter temperature, we took an uniform distribution over a wide
range 1 to 20 keV, which generously includes all plausible val-
ues for the true temperature of the studied clusters. Their ob-
served values range from 2.4 to 14.7 keV. Similarly, the prior
of the intrinsic scatter of Fe abundance, σintr is also taken as
uniform between 0 and 1, a range wide enough to certainly in-
clude the true value. The prior on τ is taken to be uniform be-
tween the wide range 1 and 100 Gyr. More extreme values give

enrichment histories that are indistinguishable from τ = 1 Gyr or
τ = 100 Gyr in the redshift range explored in this work. This is
the reason we adopted these values as boundaries of the explored
parameter space. If τ ≈ 1 Gyr, the Fe abundance is constant (see
right panel of Fig. 4) and if τ ≈ 100 Gyr, models change al-
most linearly (see right panel of Fig. 4) with age. The prior of
the power-law dependency of iron abundance on temperature is
a Student’s t (uniform on the angle a = arctanα), as in previ-
ous works dealing with a slope computation (e.g. Andreon et al.
2006; Andreon & Hurn 2010). In formulae the priors are

ZFe,z=0.2 ∼ U(0, 1) (6)

τ ∼ U(1, 100) (7)

α ∼ t1 (8)

f act ∼ N
(
0.77 − 1, 0.0652

)
I(−1, ) (9)

σintr ∼ U(0, 1) (10)

Ti ∼ U(1, 20) (11)

where the I(−1, ) operator truncates the likelihood at −1, to avoid
(1 + f act) taking negative (unphysical) values.

How much our conclusions depends on the chosen priors is
detailed below, but we can anticipate that the dependence is al-
most zero.

5.9. Stochastic computation

At this point, we have the data in the right format (i.e. with σ’s),
we have the description of the link between interesting param-
eters (Eqs. (1) to (5)), and we have specified what we know
about the parameters before seeing the data (Eqs. (6) to (11)).
We now need to use the Bayes theorem and to compute the poste-
rior probability distribution of the parameters. Just Another Gibb
Sampler (JAGS2) can return it in form of (Markov chain) Monte
Carlo samplings. From the Monte Carlo sampling one may di-
rectly derive mean values, standard deviations, and confidence

2 http://calvin.iarc.fr/~martyn/software/jags/
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Fig. 5. Probability distribution for the parameters of the metal abundance vs. redshift fit. The solid circles show the posterior probability distribution
as computed by MCMC, marginalised over the other parameters. The red curve (when present) shows a Gauss approximation of it. The dashed
curve displays the adopted prior. The shaded (yellow) range shows the 95% highest posterior credible interval.

regions of any parameter or any parameter-depending quantity.
For example, for a 90% interval on τ, it is sufficient to take the
interval that contain 90% of the τ samplings.

Readers who are less familiar with Bayesian methods may
just think that we use JAGS to correctly combine likelihoods
(data) in order to extract parameters values. The JAGS code is
given in appendix.

6. Results

6.1. Parameter estimation

The result of the fit of metal abundance and temperature values
for the sample of 130 clusters is summarised in Figs. 4 and 5.
The left-hand panel of Fig. 4 shows the data, corrected for the
T dependence and for the metal abundance systematics, as de-
termined by a simultaneous fit of all parameters, the mean fit-
ted relation between metal abundance and Universe age, this
mean plus or minus the intrinsic scatter σscat, that turns out to
be 0.18± 0.03, i.e. 18% of the Fe abundance value, and the 68%
highest posterior credible interval of the fit.

An useful approximation of the mean trend is given by

0.35
1 − e−11/6

(
1 − e−t/6

)
, (12)

with errors given by ±0.02 at ages greater than 7 Gyr, and ±0.04
at younger ages.

Figure 5 shows prior and posterior probability distributions
of the parameters. The figure highlights two key points: first,
the posterior distribution of all parameters is much more con-
centrated than the prior; i.e., data are highly informative about
these parameters. As a consequence, conclusions on these pa-
rameters do not depend on the adopted prior (see below for dis-
cussion about panel e). Second, the posterior probability distri-
bution of all parameters except τ is described well by a Gaussian
distribution.

The metal abundance at z = 0.2, ZFe,z=0.2 is fairly well de-
termined: 0.35 ± 0.01 ZFe,� (Fig. 5, panel a). The intrinsic scat-
ter in abundance values, after controlling for T , taking evolution
and systematics into account, is 0.18 ± 0.03 (Fig. 5, panel c).
The posterior distribution of the e-folding time τ avoids both
low (near 1 Gyr) and high (above 20 Gyr) values and peaks
on timescales of 4–6 Gyr. The (highest posterior) 68% proba-
bility interval is [1.4–8.6] Gyr. The flat shape of the right tail
of the posterior occurs because models with τ ≈ 20 Gyr show
very tiny differences, too small to be measurable with the cur-
rent sample. The key point to keep in mind is that the poste-
rior probability distribution peaks at τ ≈ 4−6 Gyr; i.e., enrich-
ment histories completed at high redshift or delayed at late times
are not favored by the data, a statement that we further quantify
in Sect. 6.2. While entropy feedback predates cluster formation

(Ponman et al. 1999), metal abundance enrichment is not ex-
hausted at high redshift. We emphasise that if metal abundance
upper limits were incorrectly dealt with (and everything else
dealt correctly), shorter e-folding time τ (more strongly evolv-
ing metal abundance histories) would be found with increased
(spurious) statistical significance.

The slope α of the metal abundance vs. temperature scaling
is certainly not steep, but, apart from that, is poorly determined:
−0.12 ± 0.09 (Fig. 5, panel d). As mentioned, by letting it be as
large as permitted by the data allows us not to mistake a T de-
pendency, joined to a non-random sample selection, with a metal
abundance evolution. It also allows us to remove a source of con-
cern, because we now know that mass-selected effects are min-
imal, if there are any, for cluster samples similar (in cardinality,
mass, and redshift range) to our one. The slope found by Balestra
et al. (2007), −0.47 is ∼3.8σ away from our determination, but it
has been derived using a three times smaller sample ignoring the
evolution of the iron abundance, the intrinsic scatter, and metal
abundance systematics.

Metal abundances measured with XMM turn out to be 0.78±
0.045 times those measured with Chandra (Fig. 5, panel e), in
agreement with (and improving upon) our estimate of Sect. 5.5
(prior), 0.77 ± 0.065. If an uniform prior were adopted for this
parameter, the posterior mean would be 0.80 ± 0.07. The agree-
ment between the amplitude of the systematic derived from the
130 clusters alone (0.80 ± 0.07) and the one independently de-
rived from the 13 clusters observed by both Chandra and XMM
(0.77 ± 0.065) indicates that the measurement of the abundance
systematics is robustly determined. The precision achieved by
comparing the metal abundance of 13 clusters with both XMM
and Chandra measurements (0.065) is similar to the one inferred
from a ten times larger sample that assumes no metallicity bias
between clusters observed by Chandra and by XMM (0.07).

The overall decline in the metal abundance that we observe,
also reported in the right-hand panel of Fig. 4, is slower than in
the phenomenological model of Ettori et al. (2005). The offset at
low redshift between Ettori et al. (2005) and current metal abun-
dance measurements is due to the change of the Chandra cali-
bration. In fact, by repeating our analysis using the older metal
abundances (from Maughan et al. 2008), we found better agree-
ment at low redshift with the Ettori et al. (2005) model.

Because of the youthfulness of theoretical (numerical or an-
alytic) models (see Fabjan et al. 2008, for a careful report about
the limitations of their own numerical modelling), our obser-
vational constraints on the metal abundance history cannot be
transformed in physical constraints on cluster parameters, so
we cannot interpret the observational results as due to clumps
of enriched gas falling in the cluster centre (e.g. Cora et al.
2008), a recent pollution by metals previously present in stars
(e.g. Calura et al. 2007), an enhanced star formation at low red-
shift, or any other proposed mechanisms. There are two reasons
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that prevent us from drawing firm conclusions: first, different
physical mechanisms implemented in models are able reproduce
this specific cluster observable, the metal abundance history, and
second, these models are generally not able to reproduce other
related observables (e.g. the LX − T scaling relation, the stel-
lar baryon fraction, the temperature profile, etc.). For example,
numerical simulations produce the right amount of metals, but
generate ten times too many stars (Andreon 2010).

6.2. Model missfit and evidence for evolution

After computing the model parameters that best describe the
data, we also checked whether the adopted model provides a
good description of the data, or whether it is misspecified, i.e.
in tension with the data. In the non-Bayesian paradigm, this
is often achieved by computing a p-value, i.e. the probabil-
ity of obtaining more discrepant data than those in hand, once
parameters are taken at the best-fit value (i.e. the number re-
turned by the Spearman, Kolmogorov-Smirnov,χ2, F, etc. tests).
The Bayesian version of the concept (e.g. Gelman et al. 2004;
Andreon 2012) acknowledges that parameters are not perfectly
known, and therefore one should also explore other values of
the parameters in addition to the best-fit value. To this end, we
generated simulated data extracted from the model (i.e. from
every set of parameters, each one occurring with a probabil-
ity given by the posterior probability distribution computed in
the previous section) and counted which fraction of them are
more discrepant than the real data. As a measure of discrepancy
we adopted the modified χ2, i.e. one having an estimate of the
total (error plus intrinsic scatter) variance at the denominator.
This simulation, too, is performed in JAGS as explained in the
appendix. The simulation accounts for all modelled sources of
uncertainties (intrinsic scatter, measurement errors, their non-
Gaussian nature, etc.). We performed 30 000 simulations, each
one generating 130 measurements of Fe abundance. We found
that 62% of the simulated data sets shows a larger χ2 than the
one of real data. Therefore, real data are quite common, given
the assumed model, and our model shows no evidence of mis-
specification. This agreement should not be taken for granted,
however. If we adopt the Anderson et al. (2009) modelling, a lin-
ear relation without any intrinsic scatter, then we find that their
best-fit model is rejected by their data with >99.99% probabil-
ity, because none of the 30 000 simulated datasets has a larger χ2.
Similarly, we found that the p-value of the best-fit model quoted
in Balestra et al. (2007), computed using their same unbinned
data used by these authors, is rejected with >99.9% probability.
Both p-values have been computed by performing a simulation,
as mentioned above. Therefore, the Balestra et al. (2007) and
Anderson et al. (2009) best-fits are poor fits of their data. Our
conclusions are robust with respect to the choice of a Bayesian,
or non-Bayesian, p-value.

In Fig. 6, we show the improvement of the fit to the ZFe − z
relation achieved in this paper with respect to previous works
(Balestra et al. 2007, chosen for illustration purposes). The plot-
ted χ2 values are computed using their data and best-fit. We ex-
pect that most of the points have χ2

i ≈ 1, that rarely χ2
i
>∼ 9, and

that the total χ2
tot is about the number of degree of freedom, ≈54,

(the usual χ2
tot/ν ≈ 1 definition of a good fit). Instead, the total χ2

is 94, and several points have a χ2 near 9. Reading from χ2 tables
(e.g. Bevington 1969), the best-fit can be rejected at 99.9% con-
fidence by their data. We do not need to rely on these tables, or
on the asymptotic behaviour assumed by these tables, but we can
use simulated data sets, whose first realisation is shown in the top

Fig. 6. Illustration of how the fitted data reject the best-fit in previous
works. The bottom-left panel shows the χ2 of the individual data points
(from Balestra et al. 2007, chosen for illustration) vs. redshift. The χ2

is computed using the Balestra et al. (2007) best-fit. The top left-hand
panel shows the same, but for data extracted from a realisation of the
Balestra et al. (2007) fitted model. Real data scatter much more than
simulated data, as quantified in the top right-hand panel: the total χ2 of
30 000 realisations of the Balestra et al. (2007) model is histogrammed,
together with the total χ2 of their sample (vertical line). Either using χ2

tables (or the usual rule χ2/ν, ν ≈ 54) or more sophisticated simulations,
the Balestra et al. (2007) data reject their best-fit at >99.9 confidence.

left-hand panel. We note that points with χ2 >∼ 5 do not occur
and that, on average, χ2

i values tend to be smaller than in bottom
panel. The top right-hand panel quantifies this visual impression
by comparing the total χ2 of the real sample to the the distribu-
tion of the total χ2 of 30 000 simulated data sets. The latter have,
as expected, a typical total χ2 of ≈54. The χ2 of the observed
data is larger than 99.9% of the simulated data. These plots il-
lustrate that the Balestra et al. (2007) data reject their best-fit at
99.9% confidence. This occurs because of greater variability of
the Balestra et al. (2007) data than allowed by their fitted model.
A similar plot can be constructed for Anderson et al. (2009).

The full, Bayesian, computation described above refines
this simple analysis by accounting for other terms, such as
the possible temperature dependency, allowing for metal abun-
dance systematics, accounting for uncertainties in fitted param-
eters, but not changing the conclusions: Balestra et al. (2007)
and Anderson et al. (2009) best-fits are poor fits of their data.
Figure 7 illustrates, in a simplified way, how well our model fit
the data: deviations from the mean trend visible in the bottom
left-hand panel (i.e. χ2 of a few) are now present in the simu-
lated data set, plotted in the top left-hand panel and drawn from
the fitted model. The χ2 of the real data (131) is similar to the
number of degree of freedom (≈130) and quite a typical value for
simulated data, indicating our fitting model is a good description
of the data.

In Sect. 6.1 we mentioned, without any quantification, that
data do not favour early or late enrichment histories. The sup-
port of the data to an intermediate (3 <∼ τ <∼ 8 Gyr) enrichment
history M0, over a late or early (τ >∼ 8 Gyr or τ <∼ 3 Gyr) his-
tory M1 is given by the ratio of the probabilities of the two mod-
els p(M0)/p(M1). This ratio can be easily computed in our case,
because it is given by the ratio between p(3 <∼ τ <∼ 8)/(1− p(3 <∼
τ <∼ 8)) and π(3 <∼ τ <∼ 8)/(1 − π(3 <∼ τ <∼ 8)) where p is
the posterior probability distribution and π the prior (Congdon
2006, p. 68). In practice, we just need to compute the ratio of
the integrals below the solid and dotted lines in the τ panel of
Fig. 5 at 3 <∼ τ <∼ 8 Gyr. We found that intermediate enrichment
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Fig. 7. As in Fig. 6, but for current data and fit, using Universe age
instead of redshift as abscissa. Whether using χ2 tables (ν ≈ 130) or
more sophisticated simulations, the current fit (χ2

tot = 131) is found to
be a good description of the data.

histories are favored with 19 to 1 odds, a moderate evidence
on the Jeffreys (1961) scale. The right-hand panel of Fig. 4,
which shows average metal abundances per redshift bins, may
also qualitatively hint at an intermediate metal abundance his-
tory. As discussed below, this evidence should not be read as
“at 95% confidence” because the evidence scale differs from the
statistical significance usually quoted in many works.

To claim an evolving Fe abundance, other authors (e.g.
Balestra et al. 2007; Anderson et al. 2009) have tested whether
their unbinned data are described by a non-evolving Fe abun-
dance by computing a p-value, the tail probability derived us-
ing the Spearman test. Since an extreme p-value is found, these
authors conclude that the model tested, a non-evolving one, is
ruled out. However, this conclusion is hasty, since the p-value
does not identify what is wrong with the model, but only indi-
cates that something is wrong. We can test whether the extreme
p-value is due to the non-evolving Fe abundance, as claimed by
these authors, or to some other misspecified model ingredients.
We do this by computing the the p-value of their best-fit model
(which is evolving) using the very same data as used by the au-
thors to reject the non-evolving metal abundance. As computed
above, both the Anderson et al. (2009) and Balestra et al. (2007)
unbinned data reject their best-fit model. This confirms the flaw
in the reasoning: the extreme p-value these authors find is mostly
driven by model misspecifications (e.g. neglecting the intrinsic
scatter), not by the evolution of the metal abundance value.

To summarise, one should not interpret model missfits (a tail
probability) as evidence of evolution (the odds, a ratio of two
probabilities). We also emphasise that it is easier to get larger
proofs for an evolving metal abundance history by paying less
attention to the statistical analysis. We verified, for example, that
an incorrect treatment of metal abundance upper limits spuri-
ously reinforces the evidence of the trend (Sect. 5.7). Similarly,
stacking spectra or fitting trends ignoring the intrinsic scatter
leads to underestimated error bars (Sect. 2), i.e. to overestimate
the evidence of evolution.

6.3. Binning by redshift

In this section we take a step towards an analysis more typical
of astronomical papers, but, to do this, we need to accept some
approximations.

Some authors may prefer not to impose the functional t de-
pendency in Eq. (1), and just inspect the enrichment history
found by binning cluster data in redshift bins. This can be done
easily, it is just a matter of removing Eq. (1) and allowing metal
abundances in different redshift bins to be independent of each
other. The logical link between intervening quantities becomes

ZFe,i ∼ logN
(
ln(meanZFe), σ2

intr

)
(13)

ZFe,i,cor = ZFe,i ∗ (1 + f act ∗ tidi) ∗ Tα (14)

modeZFe,i ∼ N(ZFe,i,cor, σ
2
ZFe,i

) (15)

modeTi ∼ logN(ln Ti, σ
2
T,i) (16)

Ti ∼ U(1, 20), (17)

to which we should add the prior for the newly introduced quan-
tity, the median metal abundance in the redshift bin, meanZFe,
taken to be a priori in a wide range with no preference of any
value over any other:

meanZFe ∼ U(0, 1). (18)

We adopt the posterior probability distributions determined in
the previous section as prior for the other parameters, which, as
shown in Sect. 6.1, are described well by Gaussian distributions:

α ∼ N
(
−0.12, 0.092

)
(19)

σintr ∼ N
(
0.18, 0.032

)
(20)

f act ∼ N
(
−0.22, 0.0452

)
I(−1, ). (21)

The stochastic computation, as for the previous one, is per-
formed by Monte Carlo methods, as explained in the appendix.

We emphasise that, strictly speaking, the analysis in this
sub-section is using the data twice: once to derive the posterior
probability distribution of α, σintr, and f act (used in Eqs. (19)
to (21)), and once to infer the meanZFe. This double use of the
data is conceptually wrong and, in general, returns underesti-
mated errors. Practically, the information on the α, σintr, and
f act, derived in Sect. 6.1, is almost independent on meanZFe
derived here, and therefore errors are very close to the correct
value. Readers unsatisfied by this approximation should only
rely on the analysis presented in Sect. 6.1, which does not make
double use of the data.

The right panel of Fig. 4 shows the result of this binning
exercise, after distributing clusters in 5 (solid dots) or 10 (open
dots) redshift bins of equal cardinality. The Fe abundance stays
constant for a long way, 4 Gyr or so, after which it decreases,
in agreement with the rigorous derivation of a 4–6 Gyr e-folding
time.

7. Discussion

7.1. Comparison with the standard analysis

In the standard analysis, data are partly combined (likelihoods
are multiplied) inside XSPEC (when clusters are grouped by
redshift and fitted with tied metal abundances) and partly during
the metal abundance vs redshift fitting using χ2-like techniques.
Neither of the steps allows metal abundances to differ from clus-
ter to cluster, i.e. neither of them operates correctly with likeli-
hoods. Therefore it is not a surprise that the standard analysis
does not recover the input value in our simulation of Sect. 2.

In the Bayesian analysis, we only used XSPEC to estimate
the individual spectrum parameters (metal abundance and tem-
perature) and we move the combination of the likelihoods en-
tirely outside XSPEC, because XSPEC cannot deal with the
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complex task that our analysis requires. We also avoided the
usual χ2-like techniques, because of their inability to handle
cases of high complexity. Our approach has greater flexibility,
and it respects the product axiom of probability (i.e. likelihood
are correctly operated). It recovers the input enrichment history,
unlike the standard analysis.

The standard analysis, even if modified, presents other dif-
ficulties: literature best-fit values of real datasets are rejected
by the very same fitted dataset (Sect. 6.2); literature analyses
performed thus far assume independent data, while real clus-
ter samples have some clusters listed twice (Sect. 5.1). We em-
phasise that the standard two-step analysis has no robust way
of addressing the complex features of astronomical data, such
as instrument-dependent iron abundances and T -dependent se-
lection effects, or at the very least, none of previous works has
attempted to propagate the uncertainty related to the instrument-
dependent systematics or T -dependent selection effects in the fi-
nal result. The greater flexibility of the Bayesian analysis allows
us, instead, to address them.

It should be noted that Anderson et al. (2009) have already
hint at the difficulties related to the commonly used approaches
to data handling.

7.2. A more complex enrichment history?

The binned history of metal enrichment as the sum of step func-
tions (our redshift binning) offers a flexible approach to the
determination of the cluster metal abundance history, allowing
more complex histories than assumed in Eq. (1). Visual inspec-
tion of the points in the right panel of Fig. 4 suggests that the
metal abundance history may be constant up to z ∼ 0.4 (age
∼9 Gyr), and that it then decreases at larger redshifts. We are,
however, unable to firmly establish (or rule out) the presence
of a break at z ∼ 0.4, because the additional model parame-
ters introduced to allow this feature are not completely deter-
mined by the data alone. Nevertheless, we note that this more
complex metal abundance history is qualitatively different from
the Balestra et al. (2007) interpretation of their results based on
(a problematic) analysis of a three times smaller sample: their
metal abundance history is said to be flat at z > 0.4, where
our analysis suggests a change, and is claimed to be changing
at z < 0.4, where our measurements return a constant value.

7.3. A flexible fitting model

As briefly mentioned in Sect. 5.3, we adopted a log-normal scat-
ter in metallicity, i.e. a Gaussian scatter in log ZFe for simplicity,
because the Gaussian function is the simplest solution to break-
ing the previously adopted assumption of no scatter. To illustrate
the flexibility of our fitting model and to test the robustness of
our assumption of a Gaussian scatter, we replaced the Gaussian
distribution with a Student’s t-distribution with ten degrees of
freedom and the unknown scale s. Our fitting model, provided in
the appendix, easily allows this. We found s = 0.16 ± 0.03 and
identical values and errors for parameters in common between
the old and new model (ZFe,z=0.2, τ, α, f act). The standard devi-
ation of a Student’s t-distribution with ten degree of freedom is
given by

√
10/8s = 0.18± 0.04, to be compared with the (indis-

tinguishable) result of the original analysis assuming a Gaussian
scatter in log ZFe, σintr = 0.18 ± 0.03. The agreement between
the two estimates of the metallicity spread at a given tempera-
ture, 18%, shows that our analysis is robust to the precise shape

(Gaussian or Student’s t) of the assumed probability distribution
of the scatter.

7.4. Limitations and improvements

The fitted model can be improved. It is very simple to allow more
complex metal abundance systematics, for example by introduc-
ing a dependency on the metal metal abundance itself, or allow-
ing more complex enrichment histories. However, more and bet-
ter data are needed to constrain additional parameters.

In our analysis, we did our best to account for mass-related
trends using the temperature T . However, this does not exhaust
all possible selection effects that may be present in available
uncontrolled collections of clusters, such as current samples
are (and our work is not an exception). In particular, mass-
independent selection effects might exist, and might bias the re-
sults. For example, we know that cool core clusters have a higher
metallicity than non-cool core clusters in the local universe (e.g.
Allen & Fabian 1998; De Grandi & Molendi 2001). If the same
holds at all redshifts and the fraction of cool core clusters in the
sample decreases with increasing redshift (regardless of the rea-
son for this: either because we miss them or just because cool
core clusters are intrinsically less abundant at higher redshift),
then this selection effect produces a decrease in the mean metal
abundance as function of redshift.

It is unclear whether the above scenario could be tested us-
ing core-excised metallicities, because the cluster sample com-
position would not be changed by flagging the cluster centre.
Metallicity is an X-ray-measured quantity, because it comes
from a spectral fit to X-ray data. Therefore, the most promising
way to collect a metallicity-unbiased sample is by selecting the
objects independently of their X-ray properties. This requires to
avoid X-ray selected samples, and to consider samples for which
the probability of including a cluster in the sample is indepen-
dent of its X-ray properties at a given mass. Optically selected
cluster samples satisfy this request and are therefore well suited
to studying the cluster enrichment history, as well other X-ray-
related quantities, such as the LX-richness (Andreon & Moretti
2011), the evolution of the LX−T relation (Andreon et al. 2011),
and the fraction of cool-core clusters (Andreon et al., in prep.).

8. Summary

This paper aims to derive the metal abundance history of galaxy
clusters. Its determination requires, however, a proper statistical
analysis, given that a) the standard analysis is unable to recover
the input metal abundance history (on simulated data); b) pre-
viously found best-fit histories are rejected by the fitted data;
and c) treating upper limits as in previous works returns steeper
metal abundance histories.

We derived the shape of temperature and metal abundance
likelihood functions (a log-normal and a normal, respectively).
For metal abundances, this requires removing the positivity con-
straint, which is a default in XSPEC for very low S/N deter-
minations. For temperatures, this is the first time to our knowl-
edge that the non-normal T likelihood has been implemented
in a regression fitting involving T . To account for possible
mass-dependent selection effects, we allowed metal abundance
to depend on T , our mass proxy. Since we know that clus-
ters have a spread of metal abundances, we allowed clusters to
have different metal abundances, even at a fixed mass and red-
shift. Prompted by the possible existence of systematics between
Chandra- and XMM-derived metal abundances, we added an ad-
ditional parameter in our model to account for systematics. We
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adopted a history of metal abundance that is defined positively at
all times (Eq. (1)). We fit all the parameters at the same time in a
Bayesian framework, thus allowing each parameter to “feel” the
effect of the other (to show co-variance). Our analysis notices
the lack of independence of the data used (because some clus-
ters are listed twice in the analysed sample) and addresses, for
the first time in this field, the difficulty of properly using non-
independent data without sacrificing the information present in
the data of the duplicate clusters.

The code for performing the fitting is provided with the pa-
per (in the appendix). It is very flexible and can be easily adapted
it to its own needs, for example, to explore other possible mod-
ellings. For example, changing the metal abundance scatter from
log-normal to a Student’s t-distribution requires typing less than
ten characters.

We analysed metal abundances and temperatures of
130 clusters observed with Chandra or XMM. Values derived
for the 130 clusters are listed in Table 1. About 70% of them
have been re-evaluated in this work.

By fitting the data with our code, we found that clusters reach
the present-day metal content by a moderate increase in met-
als with time (see lines in Fig. 4), by a factor 1.5 in the 7 Gyr
sampled by the data. The metal content we see today in clus-
ters is, therefore, neither set early in the Universe history, nor
produced entirely at late times. While entropy feedback predates
cluster formation (Ponman et al. 1999), metal abundance feed-
back does not exhausted at high redshift. We also find that the
T (mass) dependence is very small, if there is any, and that clus-
ters show an intrinsic 18 ± 3% spread in iron abundance. As far
as we know, this is the first determination of the intrinsic scat-
ter of cluster metal abundances. Metal abundances derived with
XMM-Newton turns are 0.78 ± 0.045 times metal abundances
derived from Chandra data.

Finally, we conclude with a word of caution. While our anal-
ysis accounts for possible mass-dependent selection effects, we
emphasise that mass-independent selection effects may exist and
that the studied sample has an unknown selection function. If the
selection function were known, it would be very easy to extend
our analysis to account for it.
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Appendix A: JAGS implementation of the models
The implementation of Eqs. (1) to (11) in JAGS reads as

model {
for (i in 1:length(modeT)) {
ft[i] <- Abz02*(1-exp(-t[i]/tau))/(1-exp(-11/tau))
Ab[i] ~ dlnorm(log(ft[i]), pow(intrscat,-2))
Abcor[i] <-Ab[i]*pow(T[i]/5,alpha)*(1+factor*tid[i])
modeAb[i] ~ dnorm(Abcor[i],pow(sigmaAb[i],-2))
T[i] ~ dunif(1,20)
modeT[i] ~ dlnorm(log(T[i]),pow(sigmaT[i],-2))
# for \mbox{$p$-value} computation
Ab.rep[i] ~ dlnorm(log(ft[i]), pow(intrscat,-2))
Abcor.rep[i] <-Ab.rep[i]*pow(T[i]/5,alpha)*(1+factor*tid[i])
modeAb.rep[i] ~ dnorm(Abcor.rep[i],pow(sigmaAb[i],-2))
}
Abz02~dunif(0,1)
tau ~ dunif(1,100)
alpha ~dt(0,1,1)

intrscat ~ dunif(0,1)
factor~dnorm(0.77-1,pow(0.065,-2))I(-1,)}

Comparison of equations and the code shows that Normal,
log-Normal, Student t, and Uniform distributions become
dnorm, dlnorm, dt, and dunif, respectively, and that we use
Ab to denote abundances. Following BUGS (Spiegelhalter et al.
1996), JAGS uses precisions, prec = 1/σ2 = pow(σ,−2), in
place of variances σ2. The arrow symbol sygnifies “take the
value of”. X-ray temperatures are zero-pointed to a round num-
ber near the temperature average, 5 keV, for numerical reasons
(e.g. speed up convergence) and to simplify the interpretation of
the found posterior.

To adopt a Student’s t-distribution with ten degrees of
freedom, dt, it suffices to replace the line starting by Ab[i] with

lgAb[i] ~ dt(log(ft[i]), pow(intrscat,-2),10)
Ab[i] <-exp(lgAb[i])

To adopt a more complex enrichment history (Sect. 5.2), the line
starting by ft[i] should be edited by putting the mathematical
expression there for the desired enrichment history. The user
should also define a prior for each new parameter.

The implementation of the binned model, Eqs. (13) to (21),
in JAGS reads

model {
for (i in 1:length(modeT)) {
modeAb[i] ~ dnorm(Abcor[i],pow(sigmaAb[i],-2))
modeT[i] ~ dlnorm(log(T[i]),pow(sigmaT[i],-2))
Ab[i] ~ dlnorm(log(meanAb), pow(intrscat,-2))
Abcor[i] <- Ab[i]*pow(T[i]/5,alpha)*(1+factor*tid[i])
T[i] ~ dunif(1,20)
}
meanAb ~ dunif(0.,1)
alpha ~dnorm(-0.12,pow(0.09,-2))
intrscat ~ dnorm(0.18,pow(0.03,-2))
factor~dnorm(-0.22,pow(0.045,-2))I(-1,)
}
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