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1 INTRODUCTION

ABSTRACT

The analysis of a sample of 52 clusters with precise and hypothesis-parsimonious measure-
ments of mass, derived from caustics based on about 208 member velocities per cluster on
average, shows that low-mass clusters and groups are not simple scaled-down versions of their
massive cousins in terms of stellar content: lighter clusters have more stars per unit cluster
mass. The same analysis also shows that the stellar content of clusters and groups displays an
intrinsic spread at a given cluster mass, i.e. clusters are not similar to each other in the amount
of stars they contain, not even at a fixed cluster mass. The stellar mass fraction depends on
halo mass with (logarithmic) slope —0.55 £ 0.08 and with 0.15 % 0.02 dex of intrinsic scatter
at a fixed cluster mass. These results are confirmed by adopting masses derived from velocity
dispersion. The intrinsic scatter at a fixed cluster mass we determine for gas mass fractions
taken from literature is smaller, 0.06 £ 0.01 dex. The intrinsic scatter in both the stellar and
gas mass fractions is a distinctive signature that individual regions from which clusters and
groups collected matter, a few tens of Mpc wide, are not yet representative of the mean gas
and baryon content of the Universe. The observed stellar mass fraction values are in marked
disagreement with gasdynamics simulations with cooling and star formation of clusters and
groups. Instead, the amplitude and cluster mass dependency of observed stellar mass fractions
are those required not to need any active galactic nuclei (AGN) feedback to describe gas and
stellar mass fractions and X-ray scale relations in simple semi-analytic cluster models. By
adding stellar and gas masses and accounting for the intrinsic variance of both quantities, we
found that the baryon fraction is fairly constant for clusters and groups with masses between
107 and 10'>° M and it is offset from the WMAP-derived value by about 60. The offset
is unlikely to be due to an underestimate of the stellar mass fraction, and could be related to
the possible non-universality of the baryon fraction, pointed out by our measurements of the
intrinsic scatter. Our analysis is the first that does not assume that clusters are identically equal
at a given halo mass and it is also more accurate in many aspects. The data and code used for
the stochastic computation are distributed with the paper.

Key words: methods: statistical — galaxies: clusters: general — galaxies: luminosity function,
mass function — galaxies: stellar content —cosmology: observations — X-rays: galaxies: clusters.

of 2y, for example from primordial nucleosynthesis arguments or
from CMB anisotropies, gives Q, = 2y fp (€.g. White et al. 1993;

Knowledge of the baryon content of clusters and groups is a key
ingredient in our understanding of the physics of these objects and
in their use as cosmological probes. In fact, clusters have accreted
matter from a region of some tens of Mpc, large enough that their
content should be representative of the mean matter content of the
Universe (White et al. 1993). If this is the case, by measuring the
baryon fraction in clusters, fi, and coupling it with an estimate
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Evrard 1997). Secondly, the study of how baryons are distributed in
gas and stars and the way this splitting depends on halo (cluster or
group) mass should provide clues to the role played by the various
physical mechanisms potentially active in clusters and groups.
However, the baryon fraction is far from being fully under-
stood: the WMAP-derived value of the baryon fraction is larger
than all values obtained in X-ray analysis (i.e. Vikhlinin et al. 2006)
even accounting for baryons in stars (e.g. Gonzalez, Zaritsky &
Zabludoff 2007), and gas depletion (e.g. Nagai, Kravtsov &
Vikhlinin 2007). X-ray scaling relations (e.g. halo mass versus
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temperature or X-ray luminosity) predicted on the assumption that
the thermal energy of the gas comes solely from the gravitational
collapse are notoriously in disagreement with observed scalings
(e.g. Vikhlinin et al. 2006). Observed and predicted scalings may
be brought into agreement by allowing star formation and eventually
a further feedback (e.g. Kravtsov, Nagai & Vikhlinin 2005; Nagai
et al. 2007; Bode, Ostriker & Vikhlinin 2009; Fabjan et al. 2010). In
particular, whether a further feedback, i.e. in addition to the stellar
one, is needed is largely unknown because of the uncertainty of the
observed stellar mass content of clusters (e.g. Bode et al. 2009).
More generally, recent works on the subject manage to reproduce
X-ray derived quantities (e.g. baryon fraction or mass—temperature
scaling relations) by basically adding to the cluster model a further
degree of freedom associated with star formation (e.g. Nagai et al.
2007; Bode et al. 2009; Fabjan et al. 2010), without adding the
corresponding observational constraint, i.e. requiring that the stel-
lar mass produced in the model fit the data. We emphasize that gas
properties strongly depend on the amount of stellar mass allowed in
the model (e.g. Kravtsov et al. 2005; Nagai & Kravtsov 2005; Nagai
et al. 2007) and a constraint on the stellar component has a direct
and important consequence on the gas component of the model.

Several observational determinations of the stellar mass fraction
have important limitations: published works studied clusters with
unmeasured, or very poorly measured, masses and unmeasured
reference radii, while these quantities need to be known for the
determination of the stellar mass fraction, as discussed in later
sections. It is clear, therefore, that an observational measurement
of the stellar mass fraction of clusters with known masses and
reference radii is valuable.

The caustic method (Diaferio & Geller 1997; Diaferio 1999)
offers a robust path to estimating cluster mass and reference radii. It
relies on the identification in projected phase space (i.e. in the plane
of line-of-sight velocities and projected cluster-centric radii, v, R) of
the envelope defining sharp density contrasts (i.e. caustics) between
the cluster and the field region. The amplitude of such an envelope
is a measure of the mass inside R. As opposed to masses derived
in other ways (e.g. from X-rays, from velocity dispersion, from the
virial theorem, from the Jeans method, etc.), caustic masses do not
require that the cluster is in dynamical equilibrium (see Rines &
Diaferio 2006 for a discussion). There is a good agreement between
caustic and lensing masses for the very few clusters where both
measurements are available (Diaferio, Geller & Rines 2005). On
larger cluster samples, caustic masses also show a good agreement
with virial masses (e.g. Rines & Diaferio 2006; Andreon & Hurn
2010) and with the extrapolation to larger radii of dynamical masses
derived through a Jeans analysis (Biviano & Girardi 2003). Both
virial and Jeans masses require, however, the assumption that the
cluster is in dynamical equilibrium.

This paper addresses: (a) the determination of the stellar mass
fraction in a sample of clusters and groups with well-determined
masses and reference radii derived by the caustic method, using, on
average, 208 members per cluster; and (b) the determination of the
average baryon content of clusters and groups.

Throughout this paper we assume 2y = 0.3,2, = 0.7 and
Hy = 70 km s~! Mpc~!. Magnitudes are quoted in their native
system (quasi-AB for SDSS magnitudes).

2 DATA AND SAMPLE

The final cluster (halo) sample consists of the 52 clusters and groups
with accurate caustic masses (Rines & Diaferio 2006) fully included
in the Sloan Digital Sky Survey (SDSS hereafter) 6th data release

(Adelman-McCarthy et al. 2008). Fundamentally, clusters/groups
are (a) X-ray flux-selected and (b) with an upper cut at redshift
z = 0.1 (to allow a good caustic measurement). From the original
Rines & Diaferio (2006) larger sample, we removed (in Andreon &
Hurn 2010) only clusters at z < 0.03 to avoid shredding problems
(large galaxies are split into many smaller sources), two cluster
pairs (requiring a deblending algorithm), and one further cluster, the
NGC 4325 group, because it is of very low richness. In the present
paper, one more group, MKW11, has been removed because the
star/galaxy classification of SDSS is poor at this cluster location,
as verified by visual inspection (see Section 3.2). It turned out also
that MKW11 is the halo with smallest mass in our sample.

We emphasize that only two cluster pairs have been removed
from the original sample because of their morphology; all the other
excluded clusters have been removed because they are not fully
enclosed in the sky area observed by SDSS, or have bad SDSS data,
or have suspect masses because the algorithm used to compute the
caustic mass converged on a secondary galaxy clump.

The basic data used in our analysis are g and r photometry from
SDSS, down to r = 19 mag. The latter value is the value where the
star/galaxy separation becomes uncertain (e.g. Lupton et al. 2002)
and is much brighter than the SDSS completeness limit (e.g. Ivezi¢
et al. 2002). Specifically, we use Petrosian magnitudes for ‘total’
magnitudes, and ‘dered’ magnitudes for colours.

3 ANALYSIS OF THE INDIVIDUAL CLUSTERS

We want to measure the stellar mass fraction and its dependence
on cluster mass. To do this, we must (a) measure cluster masses
and determine reference radii, (b) determine the total luminosity in
galaxies, (c) estimate the luminosity of other components (e.g. the
brightest cluster galaxy and intracluster light) and (d) convert the
stellar luminosity into stellar mass. In addition to the above, when
the total baryon content is of interest, we also need the gas mass
fraction.

About point (a), we adopted virial masses, M200, and virial radii,
200, from the caustic analysis of Rines & Diaferio (2006). For
the sake of precision, r is the radius within which the enclosed
average mass density is 200 times the critical density. Let’s consider
the remaining points in turn.

3.1 Luminosity function and its integral

In order to measure the stellar mass of galaxies, we restrict our
attention to red galaxies only: blue galaxies would increase little
the stellar mass (e.g. Fukugita, Hogan & Peebles 1998). In fact: (a)
blue galaxies have lower mass at a given luminosity in observations
(e.g. Hoekstra et al. 2005) and in stellar population synthesis models
(e.g. Bruzual & Charlot 2003); and (b) blue galaxies are, on average,
fainter than red galaxies and less abundant in clusters. Therefore,
their contribution to the total mass is negligible (e.g. Fukugita et al.
1998; Girardi et al. 2000) and thus neglected. Nevertheless, confir-
mation of the small role played by blue galaxies in the total stellar
mass budget, perhaps derived from a better mass tracer such as near-
infrared photometry, would be valuable especially for less massive
clusters where their contribution is potentially higher in percentage.

In this paper we define red galaxies as those within 0.1 redward
and 0.2 blueward in g — r of the colour—magnitude relation, pre-
cisely as in Andreon & Hurn (2010), and in agreement with works
mentioned therein. For the colour centre, we took the peak of the
colour distribution. For the slope, we adopted the best-fitting value
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derived for the richest clusters. This definition of ‘red’ is quite sim-
ple because for our cluster sample results hardly depend on the
details of the ‘red’ definition: the determination of the precise lo-
cation of the colour—-magnitude relation is irrelevant because the
latter is much narrower than the adopted 0.3-mag width and be-
cause practically all galaxies brighter than the adopted luminosity
cut are red. Colours are corrected for the colour—magnitude slope,
but the precise slope determination is not critical given the reduced
magnitude range explored (less than =3 mag) and the shallow slope
of the colour—-magnitude relation.

The luminosity function is computed in two different ways: for
display purposes we only bin galaxies in magnitude bins and we
account for the background (galaxies in the cluster line of sight)
computing the difference of counts in the cluster and a reference
line of sight (e.g. Zwicky 1957; Oemler 1974, and many papers since
these), the latter taken outside the cluster turnaround radius or near
to it for clusters near the SDSS sky boundaries. For display purposes
only, errors are computed with the usual quadrature sum rule. For
our formal analysis, instead, we take a Bayesian approach as done
for other clusters (e.g. Andreon 2006; Andreon et al. 2006, 2008b,
etc.): we use the likelihood given in Andreon, Punzi & Grado (2005),
which is the extension of the Sandage, Tammann & Yahil (1979)
likelihood to the case when a background is present. We fit each
cluster independently on the other ones and without binning data in
magnitude bins. We adopt uniform priors for all parameters, and we
note that any other weak prior would have returned a similar result
because parameters are well determined by the data. For the same
reason, a maximum likelihood analysis, such as the one advocated in
Andreon et al. (2005), would have returned identical values for the
parameters (but with different meanings). However, the Bayesian
approach has a number of advantages, amongst which is that it
makes it trivial to compute uncertainties on derived parameters, as
the error on the integral of the luminosity function (that we need
in order to estimate the stellar mass fraction), fully accounting for
the covariance of all error terms and with just one line of code
(by typing the about 20 characters in equation 1 below). As usual,
all magnitudes are internally zero-pointed to a number near to the
average, because this has a number of numerical advantages.

Fig. 1 exemplifies our analysis for two clusters, chosen as those
having the third best and worst determination of the stellar mass:
top panels show galaxy counts in the cluster (solid dots) and refer-
ence (open dots) line of sight. The cluster contribution is the excess
over the reference line of sight. The background is modelled with
a second-degree power law, the cluster with a Schechter (1976)
function with the usual parameters ¢« (faint-end slope), ¢* (nor-
malization) and M* (characteristic magnitude). The lines show the
fitted model on unbinned data. The bottom panel shows the cluster
LF as classically derived (points with the mentioned heuristic error
bars) and its Bayesian derivation (mean model with 68 per cent
confidence bounds on it, shaded in yellow).

The analysis is repeated for all 52 (plus one, later discarded)
studied clusters.

The total luminosity is given by the integral of the luminosity
function that, for a Schechter (1976) function, is given by

L =¢"L'T'(a +2). &)

Figs 2 and 3 show the M’ versus o and M, versus o of the cluster
Abell 954. These figures clarify a number of technical aspects. First,
there is a covariance between these quantities. Secondly, as shown
for Abell 954 from the comparison of Figs 2 and 3, the error on M
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Figure 1. LF determination. The figure shows galaxy counts in the cluster
direction (upper panel, solid dots), in a reference line of sight (upper panel,
open dots), and the cluster luminosity function (bottom panel). Curves mark
the fitted model to unbinned data. Approximated errors (computed with the
usual sum in quadrature) are marked with bars, precisely computed errors
are shaded. The bottom panel also reports the integral of the luminosity
function (M) and one-fifth of it (Mo(/5), useful to note the presence of a
bright galaxy or a misclassified star. The left/right panel refers to the cluster
with the third best/worst stellar mass determination (Zw1215.1+0400/Abell
954).
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Figure 2. Characteristic magnitude M} versus faint end slope o of Abell
954. There is a clear covariance between these two Schechter parameters.
68 and 95 per cent credible contours are plotted.
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Figure 3. Integral of the LF, My versus « of Abell 954. 68 and 95 per cent
credible contours are plotted.
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is smaller than the quadrature sum of its parts, and also than the
M error alone, owing to the covariance between variables. For our
sample of 52 clusters, the average M error is 0.45 mag and the
average M error is 0.21 mag. Thirdly, if, following almost all pre-
vious literature works (e.g. Lin, Mohr & Stanford 2003; Gonzalez,
Zaritsky & Zabludoff 2007; Giodini et al. 2009, etc.), a single value
of « is instead taken (justifying the above by stating that « is un-
determined from the available data), then the derived error would
underestimate the true error on M, (and even more so the one on
M*). In fact, what literature works measure is the vertical thickness
at a given «, instead of the overall width, obtained by projecting the
likelihood (posterior) on the y-axis (i.e. marginalizing on «).

The luminosity we derived thus far is the one emitted from cluster
galaxies in a cylinder of radius 0. To compute the stellar mass
faction we need instead the luminosity within a sphere, the lat-
ter derived from the luminosity in a cylinder assuming a Navarro,
Frenk & White (1997) distribution with concentration equal to 3.
If, instead, the true value of the concentration would be 5, then we
would be underestimating stellar masses by 0.02 dex, a negligible
quantity compared to the final stellar mass uncertainty (0.08 dex,
on average, Section 3.4).

3.2 The bright and faint ends

The lower panel of Fig. 1 is very useful in detecting the presence
of galaxies that might give a large contribution to the total clus-
ter flux, like the brightest cluster galaxy (BCG hereafter) but also
bright galaxies unrelated with the cluster or misclassified bright
stars. Every galaxy near to, or brighter than, one-fifth of the total
cluster flux has been carefully checked. Furthermore, several fainter
galaxies, down to the magnitude where the (preliminary computed)
LF predicts less than one galaxy, were also checked. First of all,
we inspected the SDSS image, and we sometimes found that the
checked galaxy is instead a misclassified and saturated star. In such
a case, the object is removed from the sample. In such a check,
we noted that the SDSS star/galaxy classification is poor at the lo-
cation of the cluster MKW11 (there are many stars misclassified
as galaxies), which has been removed from the sample. Then, we
checked if the candidate BCG is a cluster member or a foreground
galaxy by searching its redshift in the SDSS and NED archives
and comparing it to the cluster redshift. We found that the checked
galaxy has either a fairly different redshift (Av > 4000 km s™!)
and, in that case, we removed it from the sample, or very near to
it (less than a few hundreds km s~') and we kept it in the sample.
At this point we have six BCGs much brighter than the LF, all
spectroscopically confirmed as cluster members. We now consider
the possibility that BGCs are not drawn from the Schechter (1976)
function, in the light of several literature claims that BCGs may
be drawn from a different distribution (e.g. Tremaine & Richstone
1977). In order to guard against the risk of missing this source of
stellar mass, we (temporarily) remove the object from the sample,
or better, we remove a magnitude range largely including the BCG,
and we recompute the LF rigorously accounting for missing lumi-
nosity range (censored and truncated observations, e.g. in Andreon
et al. 2005). We re-integrate the model LF over the full luminosity
range, and we add back the temporarily removed BCG flux. We find
that the median flux of the six BCGs is 16 per cent of the cluster
flux.

It is well known that shallow photometric data miss the flux com-
ing from the galaxy outer regions (e.g. Andreon 2002) or, equiv-
alently, that Petrosian magnitudes listed in the SDSS catalogue
underestimate the total galaxy flux (e.g. Blanton et al. 2001). For de

Vaucouleurs (1948) profiles, typical of red galaxies of interest here,
Petrosian magnitudes underestimate the total flux by about 15 per
cent (Blanton et al. 2001) for galaxies with the size of those studied
in this paper. Our total flux is corrected for this missed flux.

There is one more component to be accounted for, the intracluster
light (ICL). Of course, it should be counted only once in our mea-
surement of the total flux. Therefore, its value should not include the
light coming from the galaxy outer haloes, from the BCG, and from
faint galaxies (e.g. too faint to be individually detected) because
we already accounted for these three terms. Zibetti et al. (2005)
measure it by accounting for the three mentioned terms on a stack
of clusters and found a small (10 per cent within 500 kpc, about
r200/2 for their clusters) and decreasing fraction with clustercentric
radii. At the radius of interest, r,(, it is a minor term, and therefore
it is neglected. The small spatial extent of the ICL is confirmed by
the Gonzalez et al. (2007) analysis: 80 per cent of the BCG+ICL
total light is contained in the inner 300 kpc.

We can independently confirm the smallness of the ICL luminos-
ity using measurements from Gonzalez et al. (2007), after account-
ing for different definitions of ICL among works. These authors
measured the intracluster+BCG light and found that 30 per cent
of the total light is in the intracluster+BCG light at r,09. These au-
thors studied clusters that contain a dominant BCG. We estimate the
contribution of the BCG light in the Gonzalez et al. (2007) sample
as similar to the one in clusters dominated by a BCG in our own
sample, about 16 per cent. Gonzalez et al. (2007) quote that a few
more per cent of the faint galaxy flux, which we counted with the
LF, ends up in their BCG+ICL measurement, and we comment that
a few more per cent of the flux from the galaxy halo also likely ends
up in their BCG+ICL measurement. In summary, the ICL, defined
as in our own paper, measured by Gonzalez et al. (2007) is 10 per
cent with large errors, because of the indirect path used to infer it.
This estimate confirms the measurement performed by Zibetti et al.
(2005): the ICL (as defined in our own and Zibetti et al.’s paper)
contribution is negligible at r,p0. We emphasize that some other
papers use the term ‘cD halo’ to indicate the flux that is counted
with/as ‘intracluster light’.

3.3 The luminosity to stellar mass conversion

For the luminosity to stellar mass conversion, we adopt the M/L
value derived by Cappellari et al. (2006). As in previous works, we
assume that in the galaxy regions studied by Cappellari et al. (2006)
the contribution of non-stellar matter is negligible.

The data of Cappellari et al. (2006) are also consistent with up
to 30 per cent non-stellar matter. If it is 15 per cent on average,
then stellar masses would be 0.07 dex lower. If stellar masses were
instead derived assuming an old single stellar population of solar
metallicity and Chabrier initial mass function, we would find only
0.1 dex lower values.

3.4 Results

Table 1 gives the stellar masses found within r,p9 and their errors.
Stellar mass errors are small in absolute terms, 0.08 dex on average,
and also smaller than halo mass errors (i.e. errors from caustics,
0.14 dex on average).

Fig. 4 plots the stellar mass, derived in the present paper, against
the cluster richness 7,9, i.€. the number of red galaxies brighter than
My = —20.0 mag, derived for the very same sample by Andreon &
Hurn (2010). There is a good agreement between the two quantities,
which are basically two ways to summarize the luminosity content
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Table 1. Stellar masses and errors.

Stellar mass fraction and baryon content

id log M, id log M,
Mp] Mp]
A0160 12.41 £0.10 A1728 12.52 + 0.09
A0602 12.49 £ 0.09 RXJ1326.24-0013 12.27 £0.13
A0671 12.74 £ 0.08 A1750 12.84 £ 0.07
A0779 12.32 £ 0.09 A1767 12.87 £ 0.06
A0957 12.46 £ 0.09 A1773 12.78 £ 0.07
A0954 12.56 £0.13 RXCJ1351.74-4622 12.32 £ 0.14
A0971 12.75 £ 0.07 A1809 12.80 £ 0.08
RXCJ1022.0+3830 12.46 £0.10 A1885 1247 £ 0.12
A1066 12.82 £ 0.06 MKWS8 12.23 £0.12
RXJ1053.745450 12.64 £ 0.07 A2064 12.34 + 0.08
Al1142 12.48 £ 0.10 A2061 12.96 £ 0.06
Al1173 12.34 £0.11 A2067 12.44 + 0.09
A1190 12.70 £ 0.06 A2110 12.53 £0.09
A1205 12.64 £ 0.09 A2124 12.80 £ 0.06
RXCJ1115.54+5426 12.60 £ 0.07 A2142 13.13 £ 0.04
SHK352 12.58 £0.11 NGC 6107 12.48 £0.08
Al314 12.53 £0.16 A2175 12.78 £ 0.07
A1377 12.66 £ 0.08 A2197 12.53 + 0.08
Al424 12.74 £ 0.07 A2199 12.84 £ 0.05
A1436 12.71 £ 0.07 A2245 12.96 + 0.06
MKW4 12.47 £ 0.14 A2244 13.03 £ 0.07
RXCJ1210.3+0523 12.45 £ 0.09 A2255 13.22 £0.04
Zw1215.140400 12.85 £ 0.05 NGC 6338 12.39 £ 0.11
A1552 12.90 £ 0.07 A2399 12.69 £ 0.07
A1663 12.77 £ 0.07 A2428 12.43 £ 0.11
MS1306 12.28 £0.10 A2670 12.96 £ 0.05
135 —/r1 background galaxy counts), and more (i.e. also fainter) data than the
- derivation of nygy in Andreon & Hurn (2010). The proportionality
I of stellar mass and richness is in agreement with the very small, if
B any, dependency of the faint end slope of the luminosity function
— 13 B with richness (e.g. Garilli, Maccagni & Andreon 1999; Paolillo
S@ | et al. 2001; Andreon 2004), and with the direct determination of
— L Rines et al. (2004) from a small sample of nine clusters. These
z* - authors consider, however, lgM, and log nyg integrated down the
20 - same limiting magnitude, differently from our choice.
S 125 —
B 3.5 Comparison with literature
- Our stellar mass determination fundamentally differs from previ-
12 —— ously published works from three major points of view: (a) in the
0.5 1 1.5 2 2.5

log n200

Figure 4. Richness versus stellar mass. There is a tight relation between
the number of bright red galaxies, nagp, and the total stellar mass, M,, in
clusters. The line marks a relation with slope one.

of clusters (by counting galaxies or photons):
IgM, = (log nyo — 2) + 13.04 £ 0.03.

The slope of the regression is fixed to 1.0 (it is not a fit to the data)
and the quoted error is just the formal error. For our sample, the two
quantities, /gM, and log n,go are known with the same amount of
precision (0.08 dex).

The good agreement between the two summaries of the cluster
luminosity content is a confirmation of the correctness of the two
derivations. We note, in fact, that the present derivation uses a more
constrained model (a shape for the luminosity function and for
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way we choose the clusters to be studied; (b) in the adopted refer-
ence radius; and (c) in the performed analysis.

(a) First and foremost, if a precise stellar mass within a reference
radius of clusters has to be derived, it is strongly preferable (not to
say essential) that the following hold.

(i) The studied clusters are truly existing objects. Our clusters
and groups are truly existing objects, with an extended X-ray
emission and, on average, 208 spectroscopically confirmed mem-
bers. Most of the Giodini et al. (2009) systems are noisy X-ray
detections which are ambiguous in terms of both detection and
extent, ‘cleaned’ by asking a spatial matching with an overden-
sity of galaxies to decrease contamination by point sources and
blends of point sources misclassified as extended X-ray sources
(Finoguenov et al. 2007). Only half of the ‘surviving’ detec-
tions have three or more concordant redshifts (Giodini et al.
2009), and only a minority are currently spectroscopically con-
firmed, according to Gal et al. (2008), which shows that three
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concordant redshifts occur frequently by chance in real redshift
surveys (a further example is given in section 3.6 of Andreon et al.
2009 using the VVDS survey).

(i) The reference radius in which stellar masses have to be mea-
sured is known and individually measured. All our clusters have
individually measured radii (by Rines & Diaferio 2006). Clusters in
Gonzalez et al. (2007) and Giodini et al. (2009) have radii inferred
from X-ray scaling relations assuming that these are scatter-free,
contrary to observations (e.g. Stanek et al. 2006; Vikhlinin et al.
2009; Andreon & Hurn 2010). In other terms, these works assume
that the radius appropriate for the studied clusters is that of an aver-
age cluster having the same observable (e.g. X-ray flux), ignoring
that clusters have a variety of radius values, even restricting at-
tention to those with a given value of the observable (say, X-ray
luminosity, it is just enough to consider cool-core and not-cool-core
clusters). In passing, the scaling adopted by Gonzalez et al. (2007)
is said to be in agreement with Hansen et al. (2005), which is now
known to return radii wrong by a factor of 2 (Rykoff et al. 2008;
Sheldon et al. 2009).

(iii) The studied clusters are located in a narrow range of redshift,
in order not to be obliged to assume an evolution on cluster scaling
relation (e.g. how the Lx-mass scaling evolves) or on M/L. All our
clusters are in the local Universe (z < 0.1), saving us from making
a hypothesis on how to relate parameters (masses, virial radii, etc.)
measured at widely different redshifts. Other works (e.g. Giodini
et al. 2009) consider objects in a large redshift range (e.g. 0.1 < z
< 1) and neglect the uncertainty on evolution.

(b) We believe our adopted radius, g, is a better choice for the
determination of stellar masses than the radius adopted by other
authors, rsg9. First, rso is small enough that the stellar mass within
500 depends on the precise definition of ‘centre’ (barycentre, BCG
location, X-ray peak, etc). If the centre is measured with a finite
degree of accuracy (which is often the case), a small radius leads
to a systematic underestimation of the stellar mass because of cen-
troiding errors. If instead one pretends that the cluster centre is
coincident with the BCG location, then a systematic overestimate
is introduced, because the observationally derived value will be
boosted by the presence of the BCG. Systematics are strongly re-
duced if ryg is used, as it encloses most of the cluster. The rsy
radius also makes an underoptimal use of the optical data; stellar
masses have smaller error if 7,09 is used in place of rsq, as is fairly
obvious (rsg is only a few times the BCG size), and as we verified
for our sample. Furthermore, the choice of a larger radius makes the
BCG and intracluster light contribution small in percentage, thus
making their precise contributions largely irrelevant for the aim of
determining the total amount of mass in stars (and in baryons). A
larger than rsqo radius is also what is needed to compare with the-
ory, because the latter has big difficulties in predicting the stellar
mass fraction on such a small scale. On the other hand, the use of
a radius larger than rsoy makes the computation of the total baryon
mass fraction more complicated, the gas mass fraction usually being
measured at smaller radii.

(c) Concerning the analysis, the way we derived the integral of
the luminosity function is rigorous: the use of the likelihood func-
tion for unbinned data is a significant improvement (Cash 1976;
Sandage et al. 1979; Andreon et al. 2005; Humphrey, Liu & Buote
2009) over previous approaches that bin data, and even a bigger
improvement over those that use simplified schemes, as quadra-
ture sums, to combine errors (see Andreon, Punzi & Grado 2005,
for details). Furthermore, differently from previous works, we do
not identify the luminosity function, which is a positively defined

quantity, with the difference of two galaxy counts, which may be
negative. Our choice of marginalizing over the LF parameters is in
agreement with axioms of probability and logic. Keeping some of
them, e.g. «, fixed as in most literature papers, contradicts them.
Finally, and differently from all other works, we allow each cluster
to have its own faint end slope and characteristic magnitude, given
that the luminosity function differs from cluster to cluster (e.g. Virgo
and Coma clusters: Binggeli, Sandage & Tammann 1988).

4 COLLECTIVE ANALYSIS OF THE WHOLE
SAMPLE

4.1 Stellar mass versus halo mass

In order to fit the trend between stellar and total mass we use
the statistical model (fit) detailed in the Appendix. Essentially, our
model assumes that the true stellar mass and true halo mass are
linearly related with some intrinsic scatter but rather than having
these true values we have noisy measurements of both stellar mass
and halo mass, with noise amplitude different from point to point.
In the statistics literature, such a model is known as an ‘errors-
in-variables regression’ (Dellaportas & Stephens 1995) and has
been widely used before, including more complex situations (e.g.
Andreon 2006, 2008; Andreon et al. 2006, 2008a,b; Kelly 2007;
Andreon & Hurn 2010, etc.). The model is fully specified, and the
code listed, in the Appendix.

Using the (fitting) model above, we found, for our sample of 52
clusters,

IgM, = (0.45 £0.08) (log M200 — 14.5) 4+ 12.68 £ 0.03. )

(Unless otherwise stated, results of the statistical computations are
quoted in the form of x & y, where x is the posterior mean and y is
the posterior standard deviation.)

The left panel of Fig. 5 shows the relation between stellar mass
and halo mass, observed data, the mean scaling (solid line) and
its 68 per cent uncertainty (shaded yellow region) and the mean
intrinsic scatter (dashed lines) around the mean relation. The +1
intrinsic scatter band is not expected to contain 68 per cent of the
data points, because of the presence of measurement errors.

Fig. 6 shows the posterior marginals for the parameters: slope,
intercept and intrinsic scatter o,. These marginals are well ap-
proximated by Gaussians.

The slope is very different from one, i.e. low-mass clusters are
not simple scaled-down version of high-mass clusters: they have
more stars per unit halo mass than their more massive cousins, in
agreement with Girardi et al. (2000), and other works. Equivalently,
the stellar mass fraction decreases with increasing stellar mass, as
better shown in Section 4.3.

The intrinsic stellar mass scatter at a given halo mass, oy =
O, jigm200, 18 0.15 &= 0.02 dex. This is the intrinsic scatter, i.e. the
term left after accounting for measurement errors. It is clearly non-
zero (see right panel of Fig. 6). This is a sort of ‘cosmic variance’: at
a given halo mass, clusters are not all equal in terms of the amount of
stars they have, but show a spread of stellar masses. Alternatively,
the intrinsic scatter is a manifestation of an underestimation of
the errors. This is unlikely to be the case, because an intrinsic
scatter is seen also in gas masses and in numerical simulations
of star and gas masses (discussed later), and therefore we need
that errors on four different observables (observed gas and stellar
masses, gas and stellar masses predicted in numerical simulations)
are underestimated, which is unlikely. The next section addresses in
detail a further hypothetical possibility, whether the intrinsic scatter
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Figure 5. Stellar mass versus cluster mass scaling. The solid line marks the mean relation between stellar mass and halo mass. Its 68 per cent uncertainty is
shaded (in yellow). The dashed lines show the mean relation plus or minus the intrinsic scatter o s, Error bars on the data points represent observed errors for
both variables. The distances between the data and the regression line are due in part to the observational error on the data and in part to the intrinsic scatter.
The left panel uses caustic masses; the right panel uses velocity-dispersion based masses fixed by numerical simulations.
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Figure 6. Posterior probability distribution for the parameters of the halo mass—stellar mass scaling. The black jagged histogram shows the posterior as
computed by MCMC, marginalized over the other parameters. The red curve is a Gauss approximation of it. The shaded (yellow) range shows the 95 per cent

highest posterior credible interval.

of stellar masses is due to underestimated errors on caustic masses
(an underestimate that, even if present, does not explain anyway
why a scatter is also seen in numerical simulations). No matter
which is the source of the intrinsic scatter, its presence has a few
consequences: first, larger cluster samples are needed to measure
the average stellar mass fraction with a given precision. Secondly,
and conversely, the existence of a non-zero intrinsic scatter is a
technical complication to be accounted for in the determination of
the trend of stellar mass (or stellar mass fraction) versus cluster
mass. The intrinsic scatter is, as mentioned, rigorously accounted
for in our fitting model.

4.2 Checking caustic masses

Because of the relative novelty of caustic masses, and the hypothet-
ical possibility that the intrinsic scatter on stellar masses might be
due to an underestimation of caustic mass errors, we now replace
caustic mass by a mass, M, derived from velocity dispersion using
a relation calibrated with numerical simulations in Biviano et al.
(2006). As shown in Andreon & Hurn (2010), the mass derived
using the calibration in Evrard (1997) gives almost indistinguish-
able numbers, because the two calibrations are almost identical for
our clusters. Velocity dispersions are taken from Rines & Diaferio
(2006).
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To use the masses M, in place of the caustic ones, we need to
only write their values (and their errors) in the data file and run
our fitting model, listed in the Appendix. Mass errors are derived
by combining in quadrature velocity dispersion errors (converted in
mass) and the intrinsic noisiness of M (12 per cent, from Biviano
et al. 2006). We found:

IgM, = (0.53 +£0.08) (log M, — 14.5) + 12.69 £ 0.03 3)

with an intrinsic scatter of 0.13 £ 0.03. By changing the source of
halo masses, regression parameters (slope, intercept and intrinsic
scatter) do not change. Therefore, the observed intrinsic scatter
cannot be due to (unknown) systematics of caustic masses. Data
and fit for velocity dispersion derived masses are shown in the right
panel of Fig. 5.

The insensitivity of our results to which mass is used is expected,
because in Andreon & Hurn (2010) we show the absence of a gross
offset or tilt between caustic and velocity-dispersion based masses,
and that the error quoted for the caustic mass is as precise as (or as
wrong as) the error quoted for the velocity-dispersion based mass.

To summarize, the scatter on the amount of stars that clusters
contain at a given halo mass is not due to an unaccounted systematic
of the halo mass.
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Figure 7. Stellar mass fraction. Symbols as in Fig. 5. The fit is performed
in the stellar versus total mass plane. The distances between the data and
the regression line are due in part to the observational error on the data and
in part to the intrinsic scatter. The WMAP 5-yr value and errors (Dunkley
et al. 2009) are marked.

4.3 Stellar mass fraction

Fig. 7 plots the stellar mass fraction versus the cluster mass. The
fraction is computed following its definition: it is the logarithmic
difference between the stellar mass, M,, and the halo mass, M200.
The fit has been performed in the stellar mass versus halo mass
plane, and so derived errors are shaded in Fig. 7. In addition to
the exact analysis (marked with lines and shadings), we also report
approximated errors, marked as error bars, based on just the error
on stellar mass, for simplicity. Our fit to the data accounts for the
intrinsic scatter, and also simply solves a further problem that affects
previous analysis: the fit in the fraction versus halo mass plane
performed by other authors (e.g. Gonzalez et al. 2007; Giodini et al.
2009) has the halo mass both on the abscissa and in the ordinate
(it is at the denominator of the fraction). As a consequence, the
values fitted by other works have correlated errors. However, past
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works used fitting methods that assume errors to be uncorrelated.
Our solution, fitting in the stellar mass versus halo mass, where
measurement errors are uncorrelated, solves this problem too.

The decrease in the stellar mass fraction is stunning, with a slope
equal to —1 + 0.45 £ 0.08 = —0.55 £ 0.08. The quality of this
result can be better appreciated by noting that the trend above was
considered not constrained by data in recent papers: Allen et al.
(2008) assume a stellar mass fraction proportional to the gas fraction
(when instead the two fractions have opposite dependencies with
halo mass, as shown in Fig. 8 and discussed in Section 4.4), whereas
Ettori et al. (2009) considered a number of recipes, because of lack
of conclusive data. Bode et al. (2009) consider the slope as a free
(i.e. not constrained by any stellar fraction observation) parameter.

The value of the slope is robust to systematic errors affecting
the conversion factor from luminosity to stellar mass. In fact, to
bias the found slope, we need that the M, /L value of the galaxies
depends on the mass of the cluster. It is difficult to imagine why the
initial stellar mass function (which largely regulates the M, /L value)
should be different in galaxies that are in clusters of different masses.
Furthermore, the M/L values in Cappellari et al. (2006) come from
galaxies lying in haloes of different masses. Finally, the fundamental
plane shows no halo-mass or environmental dependency (Pahre,
de Carvalho & Djorgovski 1998).

The left panel of Fig. 8 shows the fraction of mass in stars, but
after stacking clusters in bins of five clusters each, with the exception
of the highest-mass bin, consisting of two clusters only. The figure
reports both the rigorous computation of errors (shading), computed
in the stellar versus total mass plane, and approximated errors (error
bars). For the latter, we only consider the largest source of error,
the intrinsic scatter, and we neglect other sources of errors, such
as the uncertainty of the intrinsic scatter or the observational error,
accounted for in our rigorous computation (which also accounts for
the covariance of all sources of errors).

After binning, the decrease in the stellar mass fraction becomes
clearer, due to the smaller error bars of our cluster stacks.

The horizontal lines in Figs 7 and 8 mark the Universe baryon
fraction from the five-year WMAP results in Dunkley et al. (2009).
68 per cent credible intervals are shaded. This has to be taken as
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Figure 8. Stellar and gas mass fraction. Left panel: closed (large, blue) circles mark the stellar mass fraction in stacks of five clusters each, with the exception
of the most massive point, consisting of just two clusters. Error bars mark approximate errors. The solid line and shaded region mark the mean model and its
(rigorous) 68 per cent confidence error, fitted on individual data points in the stellar versus total mass plane. Right panel: open/solid triangles mark the gas
mass fraction from Sun et al. (2009) and Vikhlinin et al. (2006), respectively. The solid line and shaded region mark the mean model and its (rigorous) 68 per
cent confidence error, derived by us using their data. The WMAP 5-yr value and errors (Dunkley et al. 2009) are marked in both panels.
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Table 2. Stellar and gas fractions.

log M log fistars log fgas

(< 200) (< rs00)
13.1 —1.18%%% .
133 —1.15%9%.
13.5 —1.12%9%,
13.7 —1.38%06 —1.09%%2,
13.9 —1.49%9% —1.06%91,
14.1 —1.60%%%, —1.03%94,
143 -1.7198, —1.00%9%,
14.5 —1.82003 . -0.97%%2,
14.7 —1.93%% . —0.94%02
14.9 —2.04%04, —-0.91%%%,
15.1 —0.87%%%,

The masses indicated in the first column are measured within the
aperture specified in the fraction definition.

an upper limit to the stellar mass fraction, because there are other
baryons in clusters. Stars account for only about one-third at most
of all baryons.

Table 2 lists derived stellar mass fractions and their errors.

4.4 Gas mass fractions

Vikhlinin et al. (2006) and Sun et al. (2009) data on the fraction of
matter in the hot intergalactic gas are plotted in the right panel of
Fig. 8, after converting them for minor differences in the adopted
cosmological parameters.

Masses and gas mass fractions are measured within rsgy. Be-
cause of asymmetrical errors on fz,, we assume Gaussian errors on
logf s so that our previous fitting model can be applied without
any change (apart for reading ‘gas fraction” where ‘stellar mass’ is
written). We found

log feas = (0.15 £ 0.03) (log M500 — 14.5) — 0.97 £ 0.02 4)

with an intrinsic scatter of 0.06 & 0.01 dex. The right panel of Fig. 8
shows the derived mean f'g, versus halo mass fit (slanted solid line)
and its 68 per cent uncertainty (shaded yellow region) and the mean
intrinsic scatter (dashed lines) around the mean relation.

Intercept and slope posteriors are Gaussian shaped, whereas the
intrinsic scatter posterior is a bit skewed, as a Gamma function
(figure not shown). Our mean relation is similar to Sun et al.’s
(2009) best fit. Their work, however, uses a similar, but not identical,
cluster sample and a different fitting model. Our intrinsic scatter
value cannot be compared with theirs, because these authors, even
though they note a scatter, do not report its value, if measured at all.

Similarly to stellar masses and stellar mass fractions, gas fractions
display an intrinsic variance, i.e. intrinsic differences from cluster
to cluster. The scatter is not bounded to low-mass systems, but is
apparent to all masses (see Fig. 8, and Vikhlinin et al. 2006, fig. 21),
differently from some past claims of a spread at group (low) mass
only. We emphasize that Vikhlinin et al. (2006) and Sun et al. (2009)
selected and studied a sample of clusters and groups that, from
X-ray images, appeared relaxed. Therefore, the observed spread of
gas fractions at a given cluster mass is not due to the presence in
the sample of clusters manifestly out of equilibrium (e.g. merging).

Table 2 lists derived gas mass fractions and their errors.
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Given the importance of our claim that intrinsic scatter is not
restricted to low-mass systems only, let’s look for an independent,
although not equally precise, measurement.

The existence of an intrinsic scatter at high masses is confirmed
by our analysis of gas fractions in Ettori et al. (2009). We took their
feas values and errors, quoted at 68.3 per cent level of confidence,
from their table 1. Their quoted errors are symmetric, and Gaus-
sian distributed, because equation (7) in Ettori et al. (2009) only
holds in this case. A Gaussian likelihood for f,s is mathematically
impossible, because a Gaussian is strictly positive everywhere on
all the real axes, including impossible values for a fraction, those
outside the [0, 1] range. It is therefore unsurprising that several of
their quoted 68.3 per cent confidence intervals include unphysical
(negative) values for a fraction. In order to select, from among their
measurements, those for which the Gaussian approximation is an
acceptable approximation, we select from their sample only the best
measurements, defined as those having an f,,; determination with
an S/N (= f 4, /err) larger than 3. This operation removes 31 out of
the 52 of their clusters. We then carry out the gas fraction versus
cluster temperature (the mass proxy listed in their paper) fits for the
remaining 21 clusters, accounting for errors on both variables and a
possible intrinsic scatter. Here, we reuse the fitting model given in
the Appendix; we only need to read f,,s and kT, where log stellar
mass and log halo mass is written. We find

feas = (0.000 = 0.004) (kT — 8) + 0.14 4+ 0.01 5)

with an intrinsic scatter of 0.03 £ 0.01 on f,. Fig. 9 shows the
derived mean fg,s versus cluster temperature fit (solid line) and its
68 per cent uncertainty (shaded yellow region) and the mean intrin-
sic scatter (dashed lines) around the mean relation. All clusters have
kT > 5 keV, i.e. are very massive. Yet the intrinsic scatter is not
zero, confirming that the intrinsic scatter in the gas mass fraction is
not reserved to low-mass clusters only. The large majority (17 out of
21) of the fitted clusters have an observational error smaller than the
intrinsic scatter. Therefore, by far the largest source of uncertainty
in the determination of the average gas mass fraction of clusters
(and of the baryon fraction of the universe, derived from these mea-
surements) is the intrinsic scatter, and not the measurement error.
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Figure 9. The gas mass fractions. Symbols are as in Fig 5. Error bars on
the data points (from Ettori et al. 2009) represent observed errors for both
variables. The distances between the data and the regression line are due in
part to the observational error on the data and in part to the intrinsic scatter.
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Figure 10. Comparison between observed and theoretical stellar (left panel) and gas (right panel) fractions. Solid lines and shaded regions mark our
observational constraints on the stellar and gas mass fractions. Open and closed points mark theoretical gas and stellar mass fractions, respectively, observed
in gasdynamical simulations with cooling and star formation of Kravtsov et al. (2005) and Nagai et al. (2007). The dotted red lines are the predictions of the

model by Bode et al. (2009).

The value of the intrinsic scatter determined for the Ettori et al.
(2009) subsample cannot be easily compared with the one derived
for Vikhlinin et al. (2006) and Sun et al. (2009) for three reasons at
least: first, the intrinsic scatter is the part of the scatter not due to
observational errors. Therefore, its amplitude relies on the assump-
tion that observational errors are precisely measured. As mentioned,
the errors reported by Ettori et al. (2009) are noisy estimates of the
true errors (see Andreon & Hurn 2010 for how to deal with noisy
errors). Secondly, the scatter derived for the Ettori et al. (2009) sam-
ple is measured on a linear gas fraction scale, whereas the one for
Vikhlinin et al. (2006) and Sun et al. (2009) is on a logarithmic scale
(compare the left-hand sides of equations 4 and 5), and a Gaussian
scatter on one scale cannot be translated to a Gaussian scatter on
another scale. Finally, the scatter measured with the Ettori et al.
(2009) data is for a given temperature, not for a given mass, as the
ones measured with Vikhlinin et al. (2006) and Sun et al. (2009)
data. If the above caveats are ignored, then one finds a good qual-
itative agreement between the two determinations of the intrinsic
scatter after an approximate conversion to a common scale.

The existence of an intrinsic scatter in fg, (both at a given mass
and at a given temperature) must surprise all those who believe that,
having clusters from material collected from a large region, their
content should be representative of the mean matter content of the
Universe (White et al. 1993). The measured intrinsic scatter implies
that individual regions from which clusters and groups collected
matter, a few tens of Mpc wide, are not yet representative of the
mean gas and baryon content (at large masses f,, is the largest
baryon contributor) of the Universe, i.e. each region has a gas, and
thus baryon, content that differs from the average by more than
the observational error. The existence of an intrinsic scatter on f g
does not preclude the use of the gas or baryon mass fraction as
determined in clusters for cosmological tests; it only decreases its
efficiency (a larger sample is required to achieve the same preci-
sion), and obliges us to address selection effects, i.e. to enquire if
studied clusters are representative, in terms of f,, of the popula-
tion present in the Universe, or are a biased subsample. Therefore,
cosmological constraints derived from fg, ignoring intrinsic scatter
and f 4, selection function (e.g. Ettori et al. 2009) are optimistically
estimated, and, perhaps, biased.

4.5 Stellar and gas mass fractions

A comparison of the right and left panels of Fig. 8 shows that the
halo mass at which stars and gas contribute equally to the total halo
baryonic content is nearly 10'*> M) (roughly, M200 ~ 1.5 M500).

Fig. 10 compares our observational constraints and theoretical
predictions on the stellar (left panel) and gas (right panel) mass
fraction. We consider gasdynamic simulations of Kravtsov et al.
(2005) and Nagai et al. (2007). These simulations were performed
in a (simulated) universe with a too low (compared to WMAPS)
baryon fraction (0.14 versus 0.17). Therefore, we revise upward
fractions derived in simulations by 0.17/0.14. Stellar mass fractions
(Kravtsov 2009, private communication) are measured at rpy in
the simulations, as for data. Gas mass fractions for the very same
simulations are taken from Nagai, Kravtsov & Vikhlinin (2007), and
are measured within rsq, as for data. Gas fractions have been revised
upward by 0.17/0.14, for the same reason as stellar fractions. The
predicted fraction of matter in gas (open points, right panel) is near
to the observed gas mass fraction, as commented in Kravtsov et al.
(2009) and Nagai et al. (2007). Note in particular that simulated
clusters also display a spread of gas and stellar mass fractions at a
given halo mass, as real clusters.

As remarked by Kravtsov et al. (2009) and Gonzalez et al. (2007),
the predicted stellar mass fraction (closed points, left panel) is off
from the observed one (slanted solid line), and more evidently so
in our paper than in previous works, given our more precise ob-
servational determination. Both the slope and the intercept of the
simulations are in flagrant disagreement with the observed values.
The gasdynamic simulations with star formation of Fabjan et al.
(2010) show a very similar behaviour to the Kravtsov et al. (2009)
and Nagai et al. (2007) simulations: the temperature—mass scaling
and the gas mass fraction can only be reproduced if star formation
is allowed, but in such a case the predicted stellar mass fraction
(similar in the two sets of simulations) is off.

The mismatch between predicted and observed stellar mass frac-
tions is not of secondary importance in the cluster model because of
the strict interplay of the stellar and gas components. First, if fewer
stars need to be formed, then more gas is left, and thus the current
agreement between predicted and observed gas mass fractions is
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corrupted. Secondly, the gas component responds to the feedback
of the stellar component (e.g. Nagai et al. 2007; Fabjan et al. 2010).
If the stellar part of the model has to be altered, changes in the gas
predictions (e.g. X-ray scaling relations) occur. Unfortunately, the
agreement between gas-related quantities, at the temperature—mass
scaling, holds in current models for wrong stellar content predic-
tions. Therefore, observations on the stellar mass fraction presented
in this paper give a challenging constraint to theories of cluster
formation.

Bode et al. (2009) presented a semi-analytical cluster model, i.e.
they inserted a number of recipes in an N-body simulation.! They
concluded that if the stellar mass fraction has a logarithmic slope
of —0.49, then there is no need of a supplementary feedback, i.e. in
addition to the stellar one, to match the gas mass fraction and X-ray
scale relations (temperature—mass, Y,—mass). Our observed stellar
mass fraction has a logarithmic slope of —0.55 4 0.08, which is
consistent with the slope required to avoid supplementary feedback
in the Bode et al. (2009) model.

In the Bode et al. (2009) model, this is a real model prediction; it
has not been adjusted to match previous observational data on the
stellar mass fraction slope. In contrast, the remaining model param-
eters commented on below have been adjusted to fit observations,
diminishing the significance of the agreement between ‘predicted’
and observed values. The intercept of the model stellar mass frac-
tion versus mass, kept fixed by Bode et al. (2009) to the Lin et al.
(2003) value, also agrees with our observational determination: the
Bode et al. (2009) model stellar mass fraction (dotted red line, left
panel) is fully enclosed in the 68 per cent confidence band of our
observational determination, i.e. it is in remarkable agreement. Sim-
ilarly, the Bode et al. (2009) model gas mass fraction (dotted red
line, right panel) is in reasonable agreement with our summary of
observational data. If the simple Bode et al. (2009) cluster model is
not an oversimplified description of true existing clusters, then the
slope of the stellar mass fraction versus halo mass we determine in
this paper implies that active galactic nuclei (AGN) feedback is not
needed, at least not to reproduce X-ray scaling relations and stellar
and gas mass fractions.

A couple of technical points are worth mentioning: in the Bode
et al. (2009) model, the stellar mass fraction is determined within
the virial radius, as our observational determination is, but is
parametrized as a function of M(< rsy), which we converted to
M?200 = M(< ryy), assuming an NFW profile and a concentration
of 3. Instead, gas mass fractions are computed within rsoy both for
the model and for the data.

4.6 Stellar + gas mass fraction

In order to add the stellar and gas mass fractions to get the total
fraction of baryons, we need to address some issues.

First, stellar and gas mass fractions are measured inside different
reference radii (ry0 and rsp). Simulations show that the region
inside rsy is depleted, if any, by a small and poorly determined
amount of the order of 2—10 per cent (Ettori et al. 2006; Kravtsov
et al. 2005). We adopt a 5 per cent correction with a 3o error of
6 per cent.

Secondly, we need to convert the fit in equation (3) from a fit ver-
sus M500 to a fit versus M200. The mass conversion is performed
assuming an NFW of concentration 3. Any scatter of the concentra-
tion at a given mass or any change of the mean concentration with

! A number of recipes are also inserted into gasdynamic simulations.
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Figure 11. Baryon fraction. The solid curve and shaded region mark the
mean of the observationally measured fars + fgas and its (rigorous) 68
per cent confidence error. The WMAP 5-yr baryon fraction value and error
(Dunkley et al. 2009) are also marked.

mass has little effect on this conversion, because equation (3) is the
mean relation, and it is linear and shallow.

Thirdly, the gas and stellar masses measurements are assumed to
be independent (which is true), and the intrinsic scatters of gas and
stellar mass fractions around the mean are assumed to be unrelated
to each other (which is unknown given the available data).

Fig. 11 displays the total fraction in baryons, fars+gas> as a func-
tion of cluster mass, in the range where both fy. and fg, are
constrained by the data, 13.7 < log M200 < 15.0 Mg . These val-
ues and errors come from the fit on individual data points in the
stellar versus total mass plane and in gas mass fraction versus total
mass, with the mentioned (minor) corrections. The variety of cluster
properties at a given mass is fully accounted for by our derivation
0ffsla.rs+gas-

Two points are striking in Fig. 11: (a) we observe an almost
constant baryon fraction in the studied mass range, the increase
of the gas mass fraction being approximatively compensated by the
decrease of the stellar mass fraction; and (b) WMAP-derived baryon
fraction differs from our estimate by about 6.

Readers interested in inferring the values of cosmological pa-
rameters from our measured baryon fraction should remember that
our own determination of the baryon fraction has been derived for
an assumed set of cosmological parameters (listed at the end of
Section 1), instead of being marginalized over the uncertainty of
cosmological parameters. The latter operation matters for estimates
of cosmological parameters, which is, however, beyond the scope
of the present paper.

How can one reconcile the observed value of the baryon fraction
in clusters with the larger value derived from WMAP?

We explore a few possibilities in turn.

First, might a large bias on f .. be present? It is hard to accom-
modate, because in order to boost the stellar mass fraction one needs
the following:

(a) that Ly is largely underestimated. This is only possible below
the observed range of galaxy luminosities (we reach —19.3 < M, <
—15.7 mag, depending on redshift) and requires that the luminosity
function keeps a diverging slope (i.e. « < — 2) for a large magnitude
range below the one considered in this work. However, clusters
with very deep observations do not display such a feature, down to
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My ~ —11 (e.g. Sandage, Binggeli & Tammann 1985; Andreon &
Cuillandre 2002; Andreon et al. 2006; Boué et al. 2008, etc.); or

(b) that the observed (and adopted) M/L conversion is biased;

(c) that the intracluster light (which we emphasize not to include
the light from galaxy outer haloes, from the BCG and from unde-
tected galaxies; see Section 3.2) is about 5 mag arcsec™2 brighter
than the value measured in Zibetti et al. (2005). This number has
been derived basically by reversing the performed operations to de-
rive stellar masses: we first compute the missing baryon fraction
(WMAP fraryon Value minus faretgas); We multiply it by the cluster
mass within 7,5 to derive missing stellar masses. We then con-
vert the latter into luminosities with the assumed M/L value, and
project them in the plane of sky (i.e. converting back from val-
ues within spheres to within cylinders). Finally, mean brightness is
derived from the luminosity value, accounting for the cluster size
(i.e. adding 2.5 log 773, with radii in arcsec). The missing mass
implies a mean (within 7599 and averaged over the sample of 52
clusters) surface brightness of i1, ~ 26.5 mag arcsec 2. The latter
value is, as mentioned, much too bright to match the observational
value.

Even if a large bias on f, is there (which is implausible) for
a still unidentified reason, this leaves untouched the disagreement
with the WMAP-derived value at high cluster masses, where the
stellar contribution is minor.

Secondly, f, estimates might be systematically low. System-
atic biases, in addition to depletion already accounted for, of the
gas mass fraction are discussed in Ettori et al. (2009), Allen et al.
(2008) and references therein. Our reading of these papers is that
the gas mass fraction is free from important unknown systemat-
ics, otherwise these authors would not have attempted to constrain
cosmological parameters using it. Therefore, we are tempted to ex-
clude systematics on f,,, although, of course, direct measurements
of fas Within 1599 would be preferable. We only know of a single
feas Measurement at ryg, by George et al. (2009). They found a
fraction 0.02 % 0.02 higher at rygo than at rso, in agreement with
our assumed correction.

Thirdly, we might miss some other sources of baryons. Fukugita
et al. (1998) explored this issue, and concluded that stars and the
hot intergalactic gas contain the large majority of baryons.

Therefore, we are obliged to consider the possibility that the
WMAP baryon fraction is wrong in some sense. The value derived
by WMAP is the value of the baryon content assuming that it is
universal, i.e. equal to a unique value everywhere without any scatter
or dependency with anything (say halo mass). This paper has clearly
shown that f s and f 4, are both not-universal: these fractions have
a mass dependency. Furthermore, there is also a spread of both
the stellar and gas mass fraction at a given mass. In the absence
of a fine tuning between the two fractions (a stellar mass excess
being compensated by a gas deficit, which is hard to obtain given
their widely different contributions at the two ends of the halo mass
function), fuaryons = fstars + feas Should display an intrinsic scatter.
The hypothesis of a possible not-universal baryon fraction, although
surprising, is not totally new and has already been proposed by
Holder, Nollett & van Engelen (2009). It would be interesting to
known what would be the CMB-derived constraint on the baryon
fraction if it was allowed to display a variance.

Itis also possible that the baryon fraction is larger than the WMAP
value at locations that we have not sampled, haloes with masses
lower than 10'* M, and outskirts of clusters. For the latter, there is
some evidence (e.g. Rines et al. 2004). A larger-than-WMAP baryon
fraction at these locations might compensate the lower-than-WMAP
value in the studied (portion of) clusters and groups. This possibility

assumes a non-universality of the baryon fraction. In such a case,
a WMAP-derived baryon fraction might require a new derivation,
under this less restrictive hypothesis.

Finally, McCarthy, Bower & Balogh (2007) suggested that the
problem may be lying in an underestimation of the denominator of
the WMAP baryon fraction, i.e. in Q.

Although we have not solved the baryon discrepancy, we can
rule out almost for sure that the stellar fraction is responsible for
the difference between cluster and global baryon fraction and we
identify possible points that require investigation.

4.7 Comparison with previous works

Our results are in qualitative agreement with previous results
(Gonzalez et al. 2007; Giodini et al. 2009), displaying an offset
between the measured total baryon fraction and the WMAP value,
and a decreasing stellar mass fraction with increasing mass. Some
specific results might instead differ from some published results; for
example, we do not confirm the claim of Giodini et al. (2009) that
the baryonic fraction increases with mass. However, our statements
are fundamentally different from those published in other works.

We have already discussed, in Section 3.5, the advantages of an
accurate analysis of the data, of studying a sample of truly existing
clusters located in a narrow range of redshift and having individu-
ally measured, and large, reference radii. We continue on the same
line by noting that the cluster mass enters in the stellar mass frac-
tion (it is at the denominator of the fraction), and thus is certainly
an advantage to studying clusters with known and precisely mea-
sured masses, instead of those with noisy or unknown masses. Our
sample has accurate cluster masses derived, under a parsimonious
hypothesis that does not require the cluster to be in dynamical
or hydrostatic equilibrium, from the caustic analysis of Rines &
Diaferio (2006) of about 208 galaxy members per cluster, on av-
erage. Instead, Gonzalez et al. (2007) masses are derived from
velocity dispersion computed on small samples and with Beers,
Flynn & Gebhardt (1990) estimators. These velocity dispersions
(and masses) have low reliability (Andreon et al. 2008a; Andreon
2009; Gal et al. 2008). Giodini et al. (2009) assume that mass is pro-
portional to a poorly estimated X-ray luminosity without any scatter;
when instead the two quantities display a large scatter (e.g. Stanek
et al. 2006; Vikhlinin et al. 2009; Andreon & Hurn 2010), it is just
enough to remember the existence of cool-core clusters.

A second key difference between our and others’ works lies in
performing an analysis that does not contradict the expected and ob-
served spread in cluster properties at a given mass. Galaxy groups
and clusters are the result of the assembly history of dark matter
haloes, and also shaped by star formation processes affecting the
gas. These physical processes (and possibly others) lead to multi-
variate outcomes and produce an intrinsic spread in the distribution
of the observed properties of groups and clusters, a spread that is
readily apparent in any stellar or gas mass fraction versus cluster
mass plot, such as our Fig. 7 or Fig. 8. The spread manifests itself
also as a variance of concentrations (and thus r,p) at a given clus-
ter mass. Therefore, it is of paramount importance to account for
the variance of cluster properties at a given cluster mass. Previous
analyses failed to account for the above, with all of them assuming
instead that clusters are identically equal at a fixed mass (or mass
proxy). For example, Giodini et al. (2009) assume that all clusters
of a given X-ray luminosity have the same size. Our analysis allows
a variance in the cluster properties at a given halo mass. Finally,
we have already noted that our analysis avoids the use of fitting
methods in conditions where they must not be used.
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In spite of our accounting for a larger number of error terms,
we are able to reject the WMAP value at ‘much more sigmas’ than
previous works, 6 versus 3.2 (Gonzalez et al. 2007) or ~5 (Giodini
et al. 2009). This is the result of a different choice of the data
and cluster sample: we choose clusters with accurate masses, good
photometry and low galaxy background contribution, i.e. nearby
clusters with caustic masses.

5 SUMMARY

We analysed a sample of 52 clusters with precise and hypothesis-
parsimonious measurements of mass, derived from caustics based
on about 208 member velocities per cluster on average, and with
measured 7,0 values. We found that low-mass clusters and groups
are not simple scaled-down versions of their massive cousins in
terms of stellar content: lighter clusters have more stars per unit
cluster mass. The same analysis also shows that the stellar content
of clusters displays an intrinsic spread at a given cluster mass, i.e.
clusters are not similar to each other in the amount of stars they
contain, not even at a fixed cluster mass. The amplitude of the
spread in stellar mass, at a fixed cluster mass, is 0.15 & 0.02 dex.
The stellar mass fraction depends on halo mass with (logarithmic)
slope —0.55 £ 0.08. These results are confirmed by adopting masses
derived from velocity dispersion.

The intrinsic scatter at a fixed cluster mass that we determine for
gas mass fractions taken from literature is smaller, 0.06 &£ 0.01 dex.
The intrinsic spread is not restricted to low-mass systems only, but
extends to massive systems. Since the studied systems look relaxed
in X-ray images, the observed spread is not due to the presence in
the sample of clusters manifestly out of equilibrium (e.g. merging).
The non-zero intrinsic scatter of the gas mass fraction decreases the
efficiency of f4,s for cosmological studies, and requires investigation
of whether the studied samples are representative, in terms of f;,
of the population of clusters in the Universe.

The intrinsic scatter in both the stellar and gas mass fraction is
a distinctive signature that, when taken individually, the regions in
which clusters and groups collected matter are not yet representa-
tive, in terms of stellar and gas content and therefore in the baryon
content, of the mean matter content of the Universe.

The observed stellar mass fraction values are in marked disagree-
ment with gasdynamics simulations with cooling and star formation
of clusters and groups. Instead, the amplitude and cluster mass de-
pendency of the observed stellar mass fraction are those that do not
need any AGN feedback to describe X-ray scale relations and gas
and stellar mass fractions in simple semi-analytic cluster models.

By adding the stellar and gas masses, or, more precisely speaking,
by fitting both of them and accounting for the intrinsic variance of
both quantities, we found that the baryon fraction is fairly constant
for clusters and groups with 13.7 < log M200 < 15.0 M, and it
is offset from the WMAP-derived value by about 60 . The offset is
unlikely to be due to an underestimate of the stellar mass fraction
and could be related to the possible non-universality of the baryon
fraction, pointed out by our measurements of the intrinsic scatter.

Our analysis is the first that does not assume that clusters are
identically equal at a given halo mass and it is also more accurate
in many aspects than previous works. The data and code used for
the stochastic computation are distributed with the paper.
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APPENDIX A: MODEL LISTING AND CODING

In this section we give the listing of the full model, and its coding
in JAGS.

Observed values of halo and stellar mass (obsigM200 and
obslgM.,, respectively) have a Gaussian likelihood:

obslgM?200; ~ N (IgM200;, errlgMZOOiz), (A1)

obsigM, ; ~ N(lgM,;, errlng_l.). (A2)

The tilde sign denotes ‘is drawn from’, and the symbol N (y, a?)
denotes a Gaussian centred on y with variance o.

True values of stellar and halo mass are linearly related (on a log
scale), with an intrinsic scatter o g,

zi=a+ 1254+ B (IgM200; — 14.5), (A3)
I§M., ~ N(zi. 02). (A4)

Masses are recentred, purely for computational advantages in the
MCMC algorithm used to fit the model (it speeds up convergence,

improves chain mixing, etc.). Please note that the relation is between
true values, not between observed values, which may be biased.

Uniform priors are taken: the halo mass, 0bslgM?200, has a strictly
uniform prior; the intercept, @ has a zero-mean Gaussian with very
large variance; the slope, 8, has a uniform prior on the angle (which
becomes a Student’s ¢ distribution for the angular coefficient), be-
cause we do not want the cluster properties to depend on astronomer
rules to measure angles (see Andreon 2006 and Andreon & Hurn
2010 for a discussion); 1/02,,, has a Gamma distribution with small
values for its parameters, as in Andreon & Hurn (2010). This has
the welcome property that the intrinsic scatter variable is positively
defined, as the intrinsic scatter is. In symbols:

1gM?200; ~ U(0, 500), (A5)
a ~ N(0.0, 10%), (A6)
B~ 1. (A7)
1/02, ~ T(107°,107°). (A8)

Our model makes weaker assumptions than other models adopted
in previous analyses, and plainly states what is actually also assumed
by other models (e.g. the conditional independence and the Gaussian
nature of the likelihood), also removing approximations adopted in
other approaches.

For the stochastic computation and for building the statistical
model, we use Just Another Gibb Sampler (Jacs,? Plummer 2008).
JAGs, following BuGs (Spiegelhalter et al. 1996), uses precisions, T
= 1/0?, in place of variances o2. The arrow symbol reads ‘take
the value of’. Normal, ¢ and Gauss distributions are indicated by
dpois, dt and dgamma, respectively.

model

{

for (i in 1:length(obslgMstar)) {
obs1gM200[i] ~ dnorm(1gM200[i],tau.1gM200[i])
1gM200[i] ~ dunif(0,500)
obslgMstar[i] ~ dnorm(lgMstar[i],tau.lgMstar[i])
z[i] <— alpha+12.54beta*x(1gM200[i]—14.5)
lgMstar[i] ~ dnorm(z[i], prec.intrscat)
1

intrscat <— 1/sqrt(prec.intrscat)

prec.intrscat ~ dgamma(1.0E—5,1.0E—5)

alpha ~ dnorm(0.0,1.0E—4)

beta ~ dt(0,1,1)

}

The code above, which is an almost literal translation of equations
(A1)—(A8), is only about 10 lines long in total, about 2 orders of
magnitude shorter than any previous implementation of a regression
model (e.g. Akritas & Bershady 1996; Andreon 2006; Kelly 2007).
The model is quite general, and applies to every quantity linearly
related, with Gaussian errors, and with an intrinsic scatter. For
example, in this paper the same model (and program) has been used
for the fg, versus mass and fg,, versus temperature scalings. The
same fitting model can be used for, say, the L,—o,, richness—mass
and halo occupation number versus mass scalings.

2 http://sourceforge.net/projects/meme-jags/
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