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ABSTRACT
We use a sample of 53 galaxy clusters at 0.03 < z < 0.1 with available masses derived from
the caustic technique and with velocity dispersions computed using 208 galaxies on average
per cluster, in order to investigate the scaling between richness, mass and velocity dispersion.
A tight scaling between richness and mass is found, with an intrinsic scatter of only 0.19 dex in
mass and with a slope one, i.e. clusters that have twice as many galaxies are twice as massive.
When richness is measured without any knowledge of the cluster mass or linked parameters
(such as r200), it can predict mass with an uncertainty of 0.29 ± 0.01 dex. As a mass proxy,
richness competes favourably with both direct measurements of mass given by the caustic
method, which has typically 0.14 dex errors (versus 0.29) and X-ray luminosity, which offers
a similar 0.30 dex uncertainty. The similar performances of X-ray luminosity and richness
in predicting cluster masses has been confirmed using cluster masses derived from velocity
dispersion fixed by numerical simulations. These results suggest that cluster masses can be
reliably estimated from simple galaxy counts, at least at the redshift and masses explored
in this work. This has important applications in the estimation of cosmological parameters
from optical cluster surveys, because in current surveys clusters detected in the optical range
outnumber, by at least one order of magnitude, those detected in X-ray. Our analysis is robust
from an astrophysical perspective because the adopted masses are among the most hypothesis-
parsimonious estimates of cluster mass and from a statistical perspective, because our Bayesian
analysis accounts for terms usually neglected, such as the Poisson nature of galaxy counts, the
intrinsic scatter and uncertain errors. The data and code used for the stochastic computation
are provided in the paper.
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ular, cD – galaxies: luminosity function, mass function – cosmological parameters – X-rays:
galaxies: clusters.

1 IN T RO D U C T I O N

Clusters of galaxies are attracting considerable attention for their
cosmological applications. A conceptually simple observation, such
as the number of clusters per unit volume, is able to put strong con-
straints on the cosmological parameters (or their combinations); for
example, on the equation of state of the dark energy (e.g. Albrecht
et al. 2006; i.e. the Dark Energy Report, and references therein). In
essence, both analytic predictions and gravitational N body simula-
tions give the halo mass function, dN/dM/dV , i.e. the number of
halos of mass M per unit halo mass and universe volume. The num-
ber of halos is sensitive to the cosmological parameters in two ways:
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linearly (with the cosmic volume) and exponentially (via the growth
function, i.e. how the cluster mass increases with time). Since one
can in principle measure the abundance of the clusters in the Uni-
verse, the comparison of the observed number of clusters to the
expected (cosmologically-dependent) number of halos allows one
to constrain the cosmological parameters. This is one of the drivers
of many on-going cluster surveys, such as the South Pole Telescope
Survey1 using clusters detected by the Sunyaev–Zel’dovich (SZ)
effect, the XMM-Large Scale Survey,2 the XMM-Cluster Survey3

using clusters detected by their X-ray emission, MaxBCG (Koester

1 PI Carlstrom, http://pole.uchicago.edu/
2 PI Pierre, http://vela.astro.ulg.ac.be/themes/spatial/xmm/LSS/
3 PI Romer, http://xcs-home.org/
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et al. 2007a) and the Red Sequence Cluster Survey4 using clusters
detected by optical data. More recently, lensing cluster surveys have
started (e.g. Bergé et al. 2008).

As is known, each experiment measures a combination of cosmo-
logical parameters, rather than the parameters per se. Only the com-
bination of several measures from different kinds of experiments is
able to break this degeneracy in the parameter space, also showing
the absence of systematic effects. In this sense, cluster counting is
complementary to other experiments such as the observations of
SNIa, or the measurements of Baryon Acoustic Oscillations and
CMB, etc. This last aspect is very important in order to test the
idea that dark energy is indeed a new source in Einstein equations
rather than e.g. the manifestation of a different theory of gravity;
by comparing observables that are mainly sensitive to the growth of
structures with tests of the redshift–distance relation, we can look
for inconsistencies that cannot be explained by dark energy in the
form of a new fluid (e.g. Trotta & Bower 2006).

The main obstacle to using clusters for cosmological tests is that
no technique is able to yield a direct measure of their masses, but
instead they measure proxies such as the X-ray flux, temperature
or Yx (Kravtsov, Vikhlinin & Nagai 2006), n200 (a sort of galaxy
richness; see below) or the SZ decrement.

The calibration between mass and mass proxy (average relation
and intrinsic scatter) can be achieved either by specific follow-
up observations (more direct, or at least independent, measures
of mass), or by a Bayesian technique called in the astronomical
context self-calibration (Majumdar & Mohr 2004; Gladders et al.
2007), i.e. basically modelling the relation with generic functions
and marginalizing over their parameters. However, cosmological
constraints are much less tight when determined in the absence of
an external measure of the mass-scaling of the mass proxy. In partic-
ular, recent work by Wu, Rozo & Wechsler (2008) has emphasized
how self-calibration is hampered by secondary parameters (i.e. the
halo formation time and concentration). Therefore, a direct mea-
surement of the scaling relation is essential to test the assumption
of the self-calibration technique, namely to determine the shape of
the scatter (currently Gaussian) and of the scaling (currently linear
in log units) and this is a valuable aim per se.

The caustic method (Diaferio & Geller 1997; Diaferio 1999)
offers a robust path to estimating cluster mass. It relies on the iden-
tification in projected phase-space (i.e. in the plane of line-of-sight
velocities and projected cluster-centric radii, v, R) of the envelope
defining sharp density contrasts (i.e. caustics) between the cluster
and the field region. The amplitude of such an envelope is a measure
of the mass inside R. Of course, there are other observables available
for measuring cluster masses, but these require additional hypothe-
ses. X-ray-determined masses require measurements of temperature
and surface brightness profiles and are based on the assumption that
the cluster hot gas is in hydrostatic equilibrium, an assumption that
has been questioned in recent years (e.g. Rasia et al. 2006). Masses
derived using SZ decrements additionally assume the intra-cluster
medium is isothermal (e.g. Muchovej et al. 2007). In this paper, we
use caustic masses, i.e. masses derived from the caustic technique
that assumes that galaxies trace the velocity field. As opposed to the
dynamical masses, derived from the virial theorem (i.e. from the
velocity dispersion) or from the Jeans method, caustic mass does
not require that the cluster is in dynamical equilibrium (see Rines
& Diaferio 2006 for a discussion). On the other hand, the relative
novelty of caustic masses make them much less studied through

4 PI Yee, http://www.rcs2.org/

numerical simulations and by comparisons to other mass proxies.
For this reason, we look for systematic errors on caustic masses and
we calibrate the mass–richness scaling with velocity dispersion and
with an additional mass proxy based on velocity dispersion fixed
by numerical simulations.

In this paper we aim to give the absolute calibration of the relation
between n200, the number of red galaxies (brighter than a specified
limit and within a given cluster-centric distance) and mass. We also
want to measure the scatter of the n200 mass proxy and compare
its performance to the LX mass proxy.

The mass–richness calibration was partially addressed in the pi-
oneering work of maxBCG (Koester et al. 2007a; Rozo et al. 2007
and references therein). Because these works lack clusters with
known masses and r200 and their analysis suffers from circularity
(r200 is derived for stack of clusters of a given n200 = n(<r200), i.e. of
clusters with a known r200), their calibration is doubtful, and in fact,
their r200, used to measure n200, is found in later papers to be on
average twice as large as the assumed r200 radius (e.g. Becker et al.
2007; Johnston et al. 2007; Sheldon et al. 2009), i.e. they counted
galaxies in a radius too large by a factor of two. Furthermore, they
found a redshift dependence when none is assumed to be there by
definition (Becker et al. 2007; Rykoff et al. 2008; Rozo et al. 2009).
Our analysis does not share the problems they encountered.

Throughout this paper we assume �M = 0.3, �� = 0.7 and H 0 =
70 km s−1 Mpc−1. In this paper, velocity dispersion, usually denoted
by σ v in the literature, is denoted with the symbol s. All quantities
are measured in the usual units: velocity dispersions in km s−1,
cluster radii in kpc, X-ray luminosities in erg s−1, cluster masses in
solar mass units.

2 PARAMETER ESTI MATI ON
I N BAYESI AN I NFERENCE

The Bayesian approach to statistics has become increasingly popu-
lar over the past few decades as computational and algorithmic ad-
vances have permitted the analysis of more complex data sets and the
use of more flexible models. For the theoretician, there are interest-
ing philosophical differences to be explored between the Bayesian
and frequentist approaches. For the practictioner, Bayesian data
analysis provides an additional valuable statistics tool. A good in-
troduction to the Bayesian framework can be found in many text-
books (e.g. D’Agostini 2003; MacKay 2003; Gelman et al. 2004).
In this section we will summarize a Bayesian approach to an applied
problem.

Suppose one is interested in estimating the (log) mass of a galaxy
cluster, lgM. In advance of collecting any data, we may have certain
beliefs and expectations about the values of lgM. In fact, these
thoughts are often used in deciding which instrument will be used
to gather data and how this instrument may be configured. For
example, if we are wanting to measure the mass of a poor cluster
via the virial theorem, a Jeans analysis or the caustic technique, we
will select a spectroscopic set up with adequate resolution, in order
to avoid that velocity errors are comparable to, or larger than, the
likely low velocity dispersion of poor clusters. Crystalizing these
thoughts in the form of a probability distribution for lgM provides
the prior p(lgM), used, as mentioned, in the feasibility section of
the telescope time proposal, where instrument, configuration and
exposure time are set.

For example, one may believe (e.g. from the cluster being some-
what poor) that the log of the cluster mass is probably not far from
13, plus or minus 1; this might be modelled by saying that the
probability distribution of the log mass, here denoted by lgM, is a
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Gaussian centred on 13 and with σ , the standard deviation, equal to
0.5, i.e. lgM ∼ N (13, 0.52).

Once the appropriate instrument and its set up have been selected,
data can be collected on the quantities of interest. In our example,
this means we record a measurement of log mass, say obslgM200,
via, for example, a caustic analysis, i.e. measuring distances and
velocities. The physics or, sometimes simulations, of the measuring
process may allow us to estimate the reliability of such measure-
ments. Repeated measurements are also extremely useful for assess-
ing it. The likelihood is the model that we adopt for how the noisy
observation obslgM200 arises given a value of lgM. For example,
we may find that the measurement technique allows us to measure
masses in an unbiased way but with a standard error of 0.1 and that
the error structure is Gaussian, i.e. obslgM200 ∼ N (lgM, 0.12). If
we observe obslgM200 = 13.3, we usually summarize the above
by writing lgM = 13.3 ± 0.1.

How do we update our beliefs about the unobserved log mass
lgM in light of the observed measurement, obslgM200? Ex-
pressing this probabilistically, what is the posterior distribution of
lgM given obslgM200, i.e. p(lgM|obslgM200)? Bayes Theorem
(Bayes 1764 and Laplace 1812) tells us that

p(lgM|obslgM200) = p(obslgM200|lgM)p(lgM)

p(obslgM200)
. (1)

The denominator p(obslgM200), known as the (Bayesian) evi-
dence, is equal to the integral of the numerator

p(obslgM200) =
∫

p(obslgM200|lgM)p(lgM)dlgM. (2)

Notice that, as with frequentist statistical approaches, assumptions
have been made that should be assessed; neither priors nor likeli-
hoods (on which frequentist methods such as maximum likelihood
estimation is based) are set in stone.

Simple algebra shows that in our example the posterior dis-
tribution of lgM|obslgM200 is Gaussian, with mean μ =
13.0/0.52+13.3/0.12

1/0.52+1/0.12 = 13.29 and σ 2 = 1
1/0.52+1/0.12 = 0.0096. μ is

just the usual weighted average of two ‘input’ values, the prior and
the observation, with weights given by prior and observation σ s.

In our example, the posterior mean and standard deviation are
numerically almost indistinguishable from the observed value and
its quoted error; however, this is not the rule for complex data analy-
sis; for example, when biases are there or in frontier measurements,
like in Butcher–Oemler studies, where one often finds observed val-
ues outside the range of acceptable values (see, e.g. Andreon et al.
2006a). From a computational point of view, only simple examples
such as the one described above can generally be tackled analyt-
ically. Markov chain Monte Carlo (MCMC) methods are widely
used for more complex problems.

Although this might sound intimidating to the astronomical end-
user, the advent of BUGS-like programs (Spiegelhalter et al. 1996),
such as JAGS (Plummer 2008), allow scientists to apply these ideas for
quite complicated models using a simple syntax. In our example,
we just need to write in an ASCII file the symbolic expression
of the prior, lgM ∼ N (13, 0.52), and likelihood, obslgM200 ∼
N (lgM, 0.12), and nothing more. For the work in this paper, the
JAGS code is given in Appendix B.

3 UNCERTAINTIES OF PREDICTED VA LUES
IN BAYESIAN INFERENCE

Suppose we want to estimate the value of a quantity not yet measured
(e.g. the mass of a not-yet-weighted cluster). Before data lgM are

collected (or even considered), the distribution of the predicted
values l̃gM can be expressed:

p(l̃gM) =
∫

p(l̃gM, θ)dθ =
∫

p(l̃gM|θ )p(θ )dθ. (3)

These two equalities result from the application of probability
definitions, the first equality is simply that a marginal distribution
results from integrating over a joint distribution, the second one is
Bayes’ rule.

If some data lgM have already been collected for similar objects,
we can use these data to improve our prediction for l̃gM . For
example, if mass and richness in clusters are highly correlated,
one may better predict the cluster mass knowing its richness than
in the absence of such information, simply because mass shows a
lower scatter at a given richness than when clusters of all richnesses
are considered (except if the relationship has slope exactly equal to
tan kπ/2, with k = 0, 1, 2, 3). In making explicit the presence of
such data, lgM, we rewrite equation (3) conditioning on lgM:

p(l̃gM|lgM) =
∫

p(l̃gM|lgM, θ )p(θ |lgM)dθ. (4)

The conditioning on lgM in the first term in the integral simplifies
out because lgM and l̃gM are considered conditionally independent
given θ , so that this term becomes simply p(l̃gM|θ ). The left-hand
side of the equation is called the posterior predictive distribution
for a new unobserved l̃gM given observed data lgM and model
parameters θ . Its width is a measure of the uncertainty of the pre-
dicted value l̃gM , a narrower distribution indicating a more precise
prediction.

Let us first consider a simple example. Suppose we do not know
the mass, l̃gM , of a given cluster and we are interested in predicting
it from our knowledge of its richness. In this didactical example,
we assume for simplicity that (a) all probability distributions are
Gaussian, (b) that previous data lgM for clusters of the same richness
allowed us to determine that clusters of that richness have on average
a mass of lgM = 13.3 ± 0.1, i.e. p(θ |lgM) = N (13.3, 0.12) and (c)
that the scatter between the individual and the average mass of the
clusters is 0.5 dex, i.e. p(l̃gM|θ ) = N (θ, 0.52). Then, equation (4)
is easily analytically solvable and gives the intuitive solution that
p(l̃gM|lgM) is a Gaussian centred on lgM = 13.3 and with a
σ given by the sum in quadrature of 0.1 and 0.5 (=0.51 dex).
Therefore, a not-yet-weighed cluster of the considered richness has
a predicted mass of 13.3 with an uncertainty of 0.51 dex. The
latter is the performance of richness as a mass estimator in our
didactical example. A different proxy, say X-ray luminosity, may
give a different value for the uncertainty of the predicted mass and
the comparison of these values allows us to rank the performances
of these different mass proxies.

Later in this paper, we measure and compare the performance of
mass and X-ray luminosity. The assumptions we use then go be-
yond the simplistic ones of the pedagogical example, starting with
the assumption of having a set of clusters with richness identical to
that of the cluster whose mass we want to estimate, the (tacit) as-
sumption of living in an observational error-free world, the lack
of modelling of a trend between richness and mass, the perfect
knowledge of the parameters of the sampling distribution, a perfect
matching of the richness of clusters with available mass and those
with to-be-estimated mass, etc. Despite this apparent complexity,
to account for all these factors, we only need to state a richness–
mass scaling model (the same one used to analyse the scaling itself,
detailed in Section 6.1) and use equation (4) to measure the perfor-
mances of the mass proxies.
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Although the above methodology might appear initially intimi-
dating to the astronomical end-user, the use of predictive posterior
distributions is generally pain free since programs such as BUGS of-
fer it as a standard feature. In practice, the integral in equation (4) is
computed quite simply using sampling; repeatedly values of θ are
drawn from the posterior p(θ |lgM) and for each of these, values
of l̃gM are drawn from p(l̃gM|θ ). The values of l̃gM are stored.
The width of the distribution of these values gives the uncertainty
of the predicted value, i.e. the performance of the considered mass
proxy. Therefore, the quoted performance accounts for all terms
entering into the modelling of proxy and mass, which include the
uncertainty of the proxy value (richness and X-ray luminosity), the
uncertainty on the parameters describing the regression between
mass and mass proxy (slope, intercept, intrinsic scatter and their
covariance), as well as other modelled terms (we also account for
the noisiness of the error itself in our analysis). Some factors are
automatically accounted for without any additional input; for exam-
ple, where data are scarce, for example near or outside the sampled
richness or LX range, predictions are noisier (because the regres-
sion is poorly determined here). As a consequence, proxy perfor-
mances are poorer (the posterior predictive distribution is wider)
there.

4 PR E D I C T I O N W I T H E R RO R S O N
PREDICTO R VARIABLES

It is important to distinguish between the prediction of a variable y
which is assumed to be linearly related to a non-random predictor
variable x, and the prediction of a variable y which is linearly related
to a predictor variable x which is itself a random variable. The latter
situation is the one in which we find ourselves here, given that we
want to predict mass as a function of richness and for both quantities
we must collect observational data.

Fig. 1 shows a set of 500 points drawn from a bivariate Gaussian
where marginally both x and y are standard Gaussian with mean
0 and variance 1 and x and y have correlation 1/2. Superimposed
on the left-hand panel of Fig. 1 is the line giving the theoretical
conditional expectation of y given x (this is known theoretically for
this bivariate Gaussian to be y = 0.5 x). By eye, this line perhaps
seems too shallow with respect to the trend identified by the points,
which perhaps might be captured by the x = y line shown in blue in
the right-hand panel. However, if what we want to do is to predict
a y given an x value, this ‘too shallow’ line is more appropriate. To
illustrate why this is the case, the middle panel of Fig. 1 concentrates

on those observed for x close to 2. It is clear from their histogram
that their average is closer to the value predicted by the red line (1
in this case) than the value predicted by the blue (2 in this case).
To emphasize that although we treat x and y symmetrically in terms
of both being random variables, we have an asymmetry in terms of
our predictive goals, the right-hand panel also shows the expected
value of x given a value of y.

Akritas & Bershady (1996) give a related description of the var-
ious types of fit from a non-Bayesian perspective.

5 DATA & DATA R E D U C T I O N

Our starting point is the CIRS (Cluster Infall Regions in SDSS,
Rines & Diaferio 2006) cluster catalogue. Fundamentally, clusters
are: (a) X-ray flux-selected, (b) with an upper cut at redshift z =
0.1 (to allow a good caustic measurement) and (c) are in the SDSS
DR6 spectroscopic survey. These catalogues give cluster centres,
virial radii r200 and masses within r200, M200, derived by the caustic
technique. CIRS also lists the cluster velocity dispersion, computed
using just those galaxies inside the caustic, and the turnaround ra-
dius. The velocity dispersions are computed using, on average, 208
member galaxies per cluster. We note that in CIRS velocity disper-
sions are quoted with slightly asymmetric errors. D’Agostini (2004)
suggests adopting the average of the asymmetric errors as a point
value of the error and the mid-point between the upper and lower
values as a point value of the measurement (velocity dispersion) it-
self. Masses, as quoted by CIRS, have more asymmetric errors and
are such that the lower error bar includes negative mass for some
clusters. This is compatible with symmetric errors on a log scale
being transformed on to a linear scale and is supported by the way
in which Rines & Diaferio (2010) summarize in their introduction
their previous (CIRS) paper. Therefore, we convert errors back on
the log scale. Our statistical analysis accounts for noisiness of mass
and velocity dispersion estimated errors.

For each cluster, we extract the galaxy catalogues from the Sloan
Digital Sky Survey (hereafter SDSS) sixth data release (Adelman-
McCarthy et al. 2008), discarding both clusters at z < 0.03 to
avoid shredding problems (large galaxies are split in many smaller
sources) and two cluster pairs (requiring a deblending algorithm
for estimating the richness of each cluster component). We also
discard clusters not wholly enclosed inside the SDSS footprint and
a few clusters with hierarchical centres that have converged on a
secondary galaxy clump, instead of on the main cluster. One fur-
ther cluster, the NGC4325 group, has been removed because it is

Figure 1. Left panel: 500 points drawn from a bivariate Gaussian, overlaid by the line showing the expected value of y given x. The yellow vertical stripe
captures those y for which x is close to 2. Central panel: Distribution of the y values for x values in a narrow band of x centred on 2, as shaded in the left panel.
Right panel: as the left panel, but we also add the lines joining the expected x values at a given y, and the x = y line.
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Table 1. Observed galaxy counts and solid angle ratios. Columns 2 and 3 list the observed galaxy
counts in the cluster and control directions. The latter subtend a solid angle C times larger than the
former. Columns 5 and 6 repeat the content of Columns 2 and 4, but for a different cluster solid angle,
whose radius is determined by equation (18), which uses the galaxy counts listed in Column 7.

Cluster id obstot obsbkg C ̂obstot Ĉ obsn(<1.43)
(1) (2) (3) (4) (5) (6) (7)

A0160 28 13 3.107 29 2.951 31
A0602 45 37 3.186 23 10.77 29
A0671 44 20 2.545 36 5.443 37
A0779 27 0 0.2245 19 0.4303 29
A0957 33 20 4.605 26 7.947 29
A0954 27 168 44.87 28 41.05 29
A0971 63 127 9.957 50 19.57 47
RXCJ1022.0+3830 30 28 8.598 26 10.27 33
A1066 76 41 4.075 65 6.421 58
RXJ1053.7+5450 48 70 6.381 40 13.77 38
A1142 25 1 0.596 15 1.606 24
A1173 28 110 20.96 27 30.45 25
A1190 65 88 9.149 63 9.896 55
A1205 46 67 9.111 42 11.84 43
RXCJ1115.5+5426 52 50 6.798 45 10.48 43
SHK352 44 24 3.063 32 6.125 35
A1314 37 5 1.151 33 1.832 33
A1377 47 48 6.697 50 5.913 47
A1424 49 45 8.575 39 13.47 43
A1436 46 51 15.6 64 8.021 58
MKW4 26 1 0.1811 19 0.5456 19
RXCJ1210.3+0523 30 67 25.68 36 19.22 38
Zw1215.1+0400 82 62 10.46 90 7.965 74
A1552 70 113 15.72 78 11.33 66
A1663 68 86 7.363 55 12.23 51
MS1306 22 104 34.78 19 44.83 21
A1728 46 135 11.93 22 26.7 33
RXJ1326.2+0013 16 118 34.21 12 57.11 17
MKW11 13 8 1.927 9 4.284 10
A1750 58 86 16.57 71 12.32 59
A1767 90 35 3.314 59 6.624 54
A1773 52 90 12.51 49 15.08 45
RXCJ1351.7+4622 18 31 25.54 29 13.96 35
A1809 63 121 16.62 67 11.66 56
A1885 29 74 9.011 21 50.58 20
MKW8 19 8 2.823 17 3.39 19
A2064 30 47 11.97 22 21.44 29
A2061 95 80 5.412 85 7.381 69
A2067 24 128 37.06 28 24.3 31
A2110 39 176 21.44 32 34.32 33
A2124 70 29 2.492 48 6.036 47
A2142 141 115 10.83 186 6.141 113
NGC6107 28 10 2.195 22 4.034 22
A2175 49 77 35.08 71 14.64 66
A2197 35 3 1.814 63 0.8029 59
A2199 77 0 0.3236 88 0.239 75
A2245 94 80 6.411 88 8.376 73
A2244 99 112 11.9 99 11.75 82
A2255 167 60 3.933 173 3.514 121
NGC6338 26 2 0.3734 16 1.068 19
A2399 47 48 10.82 56 7.135 51
A2428 37 154 18.16 33 25.2 33
A2670 95 41 9.163 109 4.442 93

of very low richness (it has only two galaxies brighter than the
adopted luminosity limit), far lower than the other clusters in the
sample. The list of the 53 remaining clusters is given in Table 1.
We emphasize that only two cluster pairs have been removed from

the original sample because of their morphology; all the other ex-
cluded clusters have been removed because they are not fully en-
closed in the sky area observed by SDSS or have suspect masses
because the CIRS algorithm converged on a secondary clump.
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Basically, we want to count red members within a specified lu-
minosity range and colour and within a given cluster-centric radius,
typically r200, as is already done for other clusters at similar red-
shift (e.g. Andreon et al. 2006b) or in the distant universe (Andreon
2006, 2008; Andreon et al. 2008b). We only consider red galaxies
because these objects are those whose luminosity evolution is better
known and because their star formation rate (and therefore lumi-
nosity) cannot be altered by cluster merging, these objects having
already exhausted the barionic reservoir needed to form new stars.

Since we aim to replicate the present analysis to include addi-
tional clusters in future papers, we take a (passive evolving) limiting
magnitude of MV = −20 mag, which is the approximate complete-
ness of the SDSS at z = 0.3 and of the CFHTLS wide survey and
CTIO imaging (e.g. Andreon et al. 2004) of the XMM-LSS field
at z ∼ 1; it is also a widely used magnitude cut (e.g. De Lucia
et al. 2007; Andreon 2008, etc.). Magnitudes are passively evolv-
ing, modelled with a simple stellar population of solar metallicity,
Salpeter IMF, from Bruzual & Charlot (2003), as in De Lucia et al.
(2007) and Andreon (2008) amongst others. Such a correction is
applied for consistency with other (past and future) work, but is
actually unnecessary for our clusters because it is negligible given
the small redshift range (0.03 < z < 0.1) probed in this work.

We count only red galaxies, defined as those within 0.1 redward
and 0.2 blueward in g − r of the colour–magnitude relation. This
definition of ‘red’ is quite simple because for our cluster sample
the resulting number hardly depends on the details of the ‘red’
definition; the determination of the precise location of the colour–
magnitude relation is irrelevant because the latter is much narrower
than 0.3 mag and because practically all galaxies brighter than the
adopted luminosity cut are red. Colours are corrected for the colour–
magnitude slope, but again this is a negligible correction given the
small magnitude range explored (a couple of magnitudes). For the
colour centre, we took the peak of the colour distribution.

Some of the galaxies counted in the cluster line of sight, are ac-
tually in the cluster fore/background. The contribution from back-
ground galaxies is estimated, as usual, from a reference direction
(e.g. Zwicky 1957; Oemler 1974; Andreon, Punzi & Grado 2005).
The reference direction is taken outside the turnaround radius, or
for the few clusters too close or near to an SDSS border, near the
turnaround radius.

Since richness is based on galaxy counts, it is computed within a
cylinder of radius r200. Masses are instead calculated (by Rines &
Diaferio 2006) within spheres of radius r200.

Table 1 gives for our 53 clusters: (1) the cluster id; (2) the observed
number of galaxies in the cluster line of sight within r200, obstoti;
(3) the observed number of galaxies in the reference line of sight,
obsbkgi; (4) the ratio between the cluster and reference solid an-
gles, Ci. Columns 5 and 6 list obstoti and Ci, but for the radius
inferred using equation (18), introduced in Section 7.1, based on
the observed number of galaxies, within an aperture of 1 h−1 Mpc,
obsn(<1.43). Column 7 lists obsn(<1.43).

6 R ESULTS

6.1 Richness–mass model

The aim of this section is to present a Bayesian analysis of the
richness–mass model. In particular, we wish to acknowledge the
uncertainty in all the measurements, including in error estimates.
Most previous approaches assume that errors are perfectly known,
which is seldom the case for astronomical measurements, in particu-
lar for complex astronomical measurements such as caustic masses

and velocity dispersions, whose quoted errors come from a sim-
plified analysis. Furthermore, no regression method for a Poisson
quantity has been previously published in astronomical journals and
even less so for a difference of Poisson deviates.

First of all, because of errors, observed and true values are not
identically equal. The variables n200i and nbkgi represent the true
richness and the true background galaxy counts in the studied solid
angles. We measured the number of galaxies in both cluster and
control field regions, obstoti and obsbkgi respectively, for each
of our 53 clusters (i.e. for i = 1, . . . , 53). We assume a Poisson
likelihood for both and that all measurements are conditionally
independent. The ratio between the cluster and control field solid
angles, Ci, is known exactly. In formulae:

obsbkgi ∼ P(nbkgi), (5)

obstoti ∼ P(nbkgi/Ci + n200i). (6)

For each cluster, we have a cluster mass measurement and a
measurement of the error associated with this mass, obslgM200i

and obserrlgM200i, respectively. We assume that the likelihood
model is a Gaussian centred on the true value of the cluster mass,
lgM200i, with a scatter given by the true value of the mass error,
σ i:

obslgM200i ∼ N
(
lgM200i , σ

2
i

)
. (7)

We now need to address the fact that we do not know the true
value of the mass error and that we only have an estimate of it, i.e.
we need to model the relationship between σ i and obserrlgM200i.
We use a scaled χ 2 distribution, chosen so that obserrlgM2002

i

will be unbiased for σ 2
i , with the (welcome) additional property

that positivity is enforced:

obserrlgM2002
i ∼ σ 2

i χ 2
ν /ν. (8)

Notice that for mathematical reasons we model the relationship
between variances rather than between standard deviations. The
degrees of freedom of the distribution, ν, control the spread of
the distribution, with large ν meaning that quoted errors will be
close to true errors. Our baseline analysis uses ν = 6 to quantify
that we are 95 per cent confident that quoted errors are correct up
to a factor of 2 (i.e. that 1

2 <
obserrlgM200i

σi
< 2, derived via the

equivalent probability statement for obserrlgM2002
i and σ 2

i ). We
note that when ν = 6, the χ 2 distribution is quite skewed, and
most of the remaining 5 per cent probability lies below 1/2. We
anticipate that results are relatively robust to the choice of ν. The
shape of the adopted distribution, a χ 2 distribution, is for analogy to
the case in which the quoted error is derived as a result of repeated
observations; in such a case, standard sampling theory for Gaussian
data would have made our choice extremely natural.

We now turn to the unobserved quantities in our model, for which
we will specify independent prior distributions. We assume a linear
relation between the unobserved mass and n200 on the log scale,
with intercept α + 14.5, slope β and intrinsic scatter σ scat:

lgM200i ∼ N
(
α + 14.5 + β(log(n200i) − 1.5), σ 2

scat

)
. (9)

Note that log(n200) is centred at an average value of 1.5 and α

is centred at −14.5, purely for computational advantages in the
MCMC algorithm used to fit the model (it speeds up convergence,
improves chain mixing, etc.). Please note that the relation is between
true values, not between observed values, which may be biased, as
we will show in Appendix A for an astronomical sample affected
by Malmquist bias.
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The priors on the slope and the intercept of the regression line in
equation (9) are taken to be quite flat, a zero-mean Gaussian with
very large variance for α and a Student’s t distribution with 1 degree
of freedom for β. The latter choice is made to avoid that proper-
ties of galaxy clusters depend on astronomers rules to measure
angles (from the x or from the y axis). This agrees with the model
choices in Andreon et al. (2006a and later works) but differs from
some previous works (e.g. Kelly 2007) that instead assume a uni-
form prior on the slope β = tan b and, as a consequence, favour
some angles over others, depending on the adopted convention on
the way angles are measured (i.e. from the x axis counter-clockwise
as in mathematics, or from the y axis clockwise as in astronomy).
Our t distribution on β is mathematically equivalent to an uniform
prior on the angle b.

α ∼ N (0.0, 104), (10)

β ∼ t1. (11)

For the true values of the cluster richness and background, we
have tried not to impose strong a priori values, only enforcing
positivity. Both are given independent improper uniform priors:

n200i ∼ U(0, ∞), (12)

nbkgi ∼ U(0, ∞). (13)

Finally, we need to specify the prior on the mass error, σ i, and on
the intrinsic scatter of the mass–richness scaling, σ scat. These are
positively defined (by definition), but otherwise we impose quite
weak prior information. For mathematical reasons, we parametrize
these priors on the variance rather than on the standard deviations as
might seem more natural (for astronomers). An extremely common
choice is the Gamma distribution:

1/σ 2
i ∼ �(ε, ε), (14)

1/σ 2
scat ∼ �(ε, ε), (15)

with ε taken to be a very small number. The above equations trans-
late almost literally into the JAGS code given in Appendix B. The code
is only about 15 lines long in total, about two orders of magnitude
shorter than any previous implementation of a regression model
(e.g. Andreon et al. 2006a; Kelly 2007), none of which addresses
the noisiness of the quoted error.

Our model seems quite complex with a lot of assumptions, more
than other models adopted in previous analyses, but actually it
makes weaker assumptions, plainly states what is actually also
assumed by other models (e.g. the conditional independence and
Poisson nature of obsbkgi and obstoti, the positivity of the in-
trinsic scatter, etc.) and removes approximations adopted in other
approaches. For example, it is common to ignore the uncertainty in
the count data and to take n200 to be the observed obsn200 =
obstot − obsbkg/C. However, doing so does not respect the
fact that n200 must be non-negative and in the low count regions
obstot − obsbkg/C can be found to be negative (see Appendix B of
Andreon et al. 2006a). Instead, we account for the difference and we
will show in Appendix A an example of the danger of ignoring the
difference between obsn200 and n200. Equations (5) and (6) also
capture the Poisson nature of galaxy counts that, for small values,
is fairly different from the usual Gaussian approximation widely
adopted in regression models published in astronomical journals.
Furthermore, it is common to ignore the uncertainty in the mass er-
ror. Our model may easily recover this case, by letting ν take a large
value (formally, to go to infinity). Our model replaces this strong

assumption with a weaker one, namely that the quoted squared er-
ror is an unbiased measure of the true squared error. Finally, the
remaining ingredients are just uniform (or nearly so) distributions
in the appropriate space.

Essentially, our model assumes that the true richness and true
mass are linearly related (with some intrinsic scatter) but, rather
than having these true values, we have noisy measurements of both
richness and scatter, with noise amplitude different from point to
point. In the statistics literature, such a model is know as an ‘errors-
in-variables regression’ (Dellaportas & Stephens 1995). Our model
goes one step beyond the works of D’Agostini (2004), Andreon et al.
(2006a) and Kelly (2007), which all assume errors to be perfectly
known (and none of which deals with Poisson processes as galaxy
counts). These works were, in turn, less approximate approaches
than previous fitting methods used in astronomy to regress two
quantities (for example, simple least-squares, bivariate correlated
error and intrinsic scatter, etc.).

To summarize, the novelty of the present approach is to treat
in a symmetric way measurements and estimates of errors. The
parameters of primary importance are those of the linear relationship
between true mass and richness, with associated intrinsic scatter
σ scat being of particular interest.

6.2 Richness–mass result

Using the model above, we found, for our sample of 53 clusters:

lgM200 = (0.96 ± 0.15)(log n200 − 1.5) + 14.36 ± 0.04. (16)

(Unless otherwise stated, results of the statistical computations are
quoted in the form x ± y, where x is the posterior mean and y is the
posterior standard deviation.)

Fig. 2 shows the scaling between richness and mass, observed
data, the mean scaling (solid line) and its 68 per cent uncertainty
(shaded yellow region) and the mean intrinsic scatter (dashed lines)
around the mean relation. The ±1 intrinsic scatter band is not ex-
pected to contain 68 per cent of the data points, because of the
presence of measurement errors.

Figure 2. Richness–mass scaling. The solid line marks the mean fitted
regression line of lgM200 on log(n200), while the dashed line shows this
mean plus or minus the intrinsic scatter σ scat. The shaded region marks the
68 per cent highest posterior credible interval for the regression. Error bars
on the data points represent observed errors for both variables. The distances
between the data and the regression line is due in part to the measurement
error and in part to the intrinsic scatter.
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Figure 3. Posterior probability distribution for the parameters of the richness–mass scaling. The black jagged histogram shows the posterior as computed
by MCMC, marginalized over the other parameters. The red curve is a Gauss approximation of it. The shaded (yellow) range shows the 95 per cent highest
posterior credible interval.

Fig. 3 shows the posterior marginals for the key parameters; for
the intercept, slope and intrinsic scatter σ scat. These marginals are
reasonably well approximated by Gaussians. The intrinsic mass
scatter at a given richness, σ scat = σ lgM200|log n200, is small, 0.19 ±
0.03. The small scatter and its small uncertainty is promising from
the point of view of using n200 for cosmological aims, for example
to estimate the mass distribution, given the obsn200 distribution.

The slope between richness and mass is very near to 1 (within
one-third of the estimated standard deviation), i.e. clusters that have
twice as many galaxies are twice as massive.

6.3 Checks

First, our results are robust to the choice of ν (we tested ν = 6 versus
ν = 3, 30, 300 or ν = 3000).

Second, the determination of the slope of the richness scaling re-
quires setting two (astronomical) parameters, a radius within which
galaxies should be counted and a limiting (reference) magnitude.
To investigate the dependence of the richness–mass slope on which
limiting magnitude is adopted, we recompute n200 using two dif-
ferent limiting magnitudes, 1 and 2 mag deeper than our reference
mag, MV = −20 mag. The resulting slopes of the mass–richness
scaling are 0.98 ± 0.15 and 0.95 ± 0.16, both very close to the
original slope derived using the reference mag (0.96 ± 0.15). The
intrinsic scatter changes insignificantly, by 0.01 dex, with the lim-
iting magnitude.

We now check whether the scaling of richness found with mass
may be biased (tilted) by having hypothetically taken a systemati-
cally incorrect r200 (for example, too small an r200 at large masses,
or too big a one at small masses). Fig. 4 plots r200 as a function of
cluster velocity dispersion. The superimposed straight line comes
from assuming that r200 is the virial radius (i.e. M200 = Mvirial),
r200 ∝ s [e.g. equation (1) in Andreon et al. 2005; equation (1) in
Carlberg et al. 1997; equation (3.1) in Muzzin et al. 2007) rather
than as a fit to these points. As the points are scattered roughly
around the slope of the expected relation, we reject the possibility
that the slope between richness and mass (or velocity dispersion)
is biased because of a bad choice of the reference radius in which
galaxies are counted (one that does not correctly scale with mass).

In summary, n200 tightly correlates with mass, with 0.19 dex
intrinsic scatter. The slope is fairly robust to the choice of the
reference magnitude, the uncertainty of error terms (ν) and the a
priori range of mass errors. Furthermore, it is unbiased with respect
to a (hypothetical) bad choice of the reference radius.

Figure 4. r200–s (velocity dispersion) scaling. The line marks the expected
scaling, r200 ∝ s. The good agreement between the trend identified by the
data and the expected scaling implies that there is no velocity dispersion
(mass) dependent systematic bias on the adopted r200.

6.4 Richness–velocity dispersion scaling and results

Velocity dispersions, s, are observationally more expensive than
n200 but less expensive than caustic masses. They are also good
tracers of the cluster mass (e.g. Biviano et al. 2006; Mandelbaum
& Seljak 2007; Evrard et al. 2008). Since at high redshifts caustic
masses are observationally prohibitive to calculate, from the per-
spective of testing the evolution of the richness scaling it is useful
to calibrate the scaling between richness and velocity dispersion.

The statistical model employed is very similar to that described
for the richness–mass scaling; essentially we only need to read
‘velocity dispersion’ where mass was written. Because velocity
dispersion errors are easier to measure than mass errors, we adopt
ν = 50, i.e. we are 68 per cent confident that quoted errors are
correct up to a factor 1.1 (i.e. within 10 per cent).

Because of the different measurement units, the intercept α is
now centred at 2.8 (for computational purposes in JAGS).

For our sample, we found

log s = (0.30 ± 0.04)(log n200 − 1.5) + 2.77 ± 0.01. (17)

Fig. 5 shows the fitted scaling between richness and velocity
dispersion, the observed data, the posterior mean scaling (solid line)
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Figure 5. Velocity dispersion–richness scaling. Symbols are as in Fig. 2.

and its uncertainty (shaded yellow region) and the mean intrinsic
scatter (dashed lines).

Similarly to the richness–mass scaling, the intercept, slope and
intrinsic scatter have posterior marginals which are close to Gaus-
sian. The intrinsic velocity dispersion scatter at a given richness,
σ scatt = σ log s|log n200, is small, 0.05 ± 0.01.

As in the case of the richness–mass scaling, these results are
robust to the choice of ν, for ν � 10.

The fitted slope of the richness–velocity dispersion scaling is
one-third of the slope of the richness–mass scaling, as it should
be, given that velocity dispersion scales with mass with power 0.33
(e.g. Evrard et al. 2008).

6.5 Caustic mass systematic errors

In the previous sections we have not accounted for possible system-
atic error in the caustic mass, except indirectly in a couple of loca-
tions: (a) in Fig. 4, when comparing the cluster velocity dispersion
with r200: if a systematic error on M200 were present, then the data
would not scatter around the expected relation; (b) in Section 6.4,
where we found that the slope of richness–velocity dispersion is
one-third of the slope of the richness–mass, as expected for a mass
that scales with the cube of velocity dispersion.

In order to further investigate the lack of gross systematic errors
on caustic masses, we plot in Fig. 6 caustic masses against two
masses, derived from velocity dispersion using relations calibrated
with numerical simulations (left panel: Evrard et al. 2008, right
panel: Biviano et al. 2006). The solid line is the one-to-one relation
rather than a fit to the points. If caustic masses were systematically
larger or smaller than masses derived from velocity dispersion, then
these points might well be systematically above or below the solid
line. If instead caustic masses were too big at high masses and too
small at low masses, or vice versa, points should have a different
(tilted) slope from the plotted line. Fig. 6 clearly shows that neither
of the two cases occurs. A 30 per cent offset error or a 30 per cent tilt
would be obvious to the eye. A second obvious conclusions coming
from this figure is that the two panels are virtually indistinguishable.
This is because the two calibrations of the velocity dispersion–mass
relation, although independent, are actually almost identical.

Figure 6. Caustic masses (ordinate) versus masses derived from the cluster
velocity dispersion using relations calibrated with numerical simulations
(left panel: Evrard et al. 2008, right panel: Biviano et al. 2006). The solid,
slanted, line marks the equality and it is not a fit to the data.

To summarize, this section shows the lack of an obvious gross
systematic error in caustic masses. ‘Statistical’ errors on caustic
mass and noisiness of errors are built-in in our model.

7 R IC H N ESS A S MA SS PROX Y

The richness–mass scaling derived in previous sections needs a
known r200, the radius within which galaxies have to be counted. If
we want to use n200 as a mass proxy, r200 should be instead consid-
ered as unknown. Lopes et al. (2009) disagree with this reasoning
because in their work they measured the performance of mass prox-
ies assuming r200 (or r500) known, when instead it is unknown for
clusters with unknown masses. We now measure the performances
of a richness estimate that does not require the knowledge of r200,
counting galaxies within some reference radius, r̂200, that can be
measured from imaging data.5 Since there are a number of ways
r̂200 may be estimated, we consider some of them.

In principle, we may be interested in the following.

(a) σ scat, i.e. the intrinsic scatter in mass at a given richness. This
may be of interest to those who want to known which part of the
observed scatter is intrinsic.

(b) The uncertainty of the mass estimated from the cluster rich-
ness. This is, for example, the case when one has one or a few
clusters with a measurement of richness and we would like to know
their estimated mass. With real data, cluster richness is known with
a finite precision which induces a minimal floor in the performances
of richness as mass proxy.

To this end, we first need to find a way to estimate r̂200 from galaxy
counts, because clusters for which we want an estimate of mass will
not have a known r200. Then we will calibrate the measured n̂200 (n200

values within r̂200) with mass and estimate the uncertainty of the
predicted lgM200 for a cluster sample, the latter using equation (4).
Recall that the performance of richness as a mass predictor accounts
for all terms entering into the modelling of proxy and mass, which
include the uncertainty of the proxy value and the uncertainty on
the parameters describing the regression between mass and mass
proxy (slope, intercept, intrinsic scatter and their covariance).

As in some literature approaches, we use the same sample
both to establish the scaling between regressed quantities and to

5 The hat above symbols is introduced to distinguish these values, derived
from equation (18), from values used in previous sections which were taken
from CIRS.
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measure the proxy performance. However, these literature ap-
proaches compute the proxy performances from a single regression
(usually named the best fit, i.e. for a single value of θ ), ignoring that
other fits are similarly acceptable and that the best fit itself is un-
certain (i.e. ignoring uncertainties on slope, intercept and intrinsic
scatter). When the best fit scaling is defined as the one minimizing
the scatter (and this is not our case), the measured scatter underesti-
mates the true scatter, by definition. Our approach supersedes these
previous approaches, allowing for errors other approaches neglect
and also including their covariance.

7.1 Reference case

Since we do not know a priori which approach is the optimal way to
estimate r200 from imaging data alone, in this section we consider
a reference case and in the following section we make a number of
tests to see how robust are our conclusions to the assumptions made
in the reference case.

We simply compute the number of cluster galaxies (i.e. obstot −
obsbkg/C) within a radius of 1.43 Mpc, obsn(r < 1.43) and then
we estimate r̂200 as

̂log r200 = 0.6(log obsn(r < 1.43) − 1.5). (18)

The slope, 0.6, and the radius, 1.43 Mpc, are taken for consistency
with Koester et al. (2007a). The intercept is chosen to reproduce
the trend between known obsn(r < 1.43) and r200 radii. Therefore,
our r̂200 has no bias (or at most a negligible one) with respect to r200

by construction. Instead, the normalization (intercept) adopted in
Koester et al. (2007a) has been later discovered (Becker et al. 2007;
Johnston et al. 2007) to give radii too large by a factor of 2.

Having adopted the radius above, we need to count the galaxies
within this radius and recompute the solid angle ratio. Asymptoti-
cally, ̂n200 is given by ̂obstot − obsbkg/Ĉ, but our analysis does
not assume that this asymptotic behaviour holds within our finite
sample.6

Using our fitting model, we found

lgM200 = (0.57 ± 0.15)(log ̂n200 − 1.5) + 14.40 ± 0.05. (19)

The data and fit are depicted in Fig. 7. The major difference with
respect to our fit performed on measurements using knowledge of
r200 (i.e. Section 6.2) is the shallower slope, which is 1.9 combined
σ shallower than it was. Intercept, slope and intrinsic scatter have
posteriors close to Gaussian. The intrinsic scatter is small, it has
mean 0.27 ± 0.03 dex. With respect to the case where r200 is known,
the intrinsic scatter is larger (0.27 ± 0.03 versus 0.19 ± 0.03),
as expected because we are not using our knowledge about r200.
We emphasize that this is the uncertainty on the mass inferred
from ̂n200 if we were able to measure the latter quantity with very
large precision, being 0.27 dex the part of the mass scatter not
associated to measurement errors. Since ̂n200 is not better known
than allowed by the observed data, the mass error inferred from
a (noisy) estimate of the cluster richness is larger and is given by
the average uncertainty of predicted lgM200, which is found to be
0.29 ± 0.01 dex. Therefore, we can predict the mass of a cluster
within 0.29 dex by measuring its richness. Since the uncertainty on
the predicted mass is only slightly larger than the intrinsic scatter,
the uncertainty on the mass–richness scaling (regression) and the
proxy uncertainty only account for small amounts of the variability.

6 Background counts do not need to be recomputed, which is why there is
no hat on obsbkg.

Figure 7. Richness–mass scaling for a richness measured within r̂200, an
r200 radius estimated from optical data. Symbols are as in Fig 2.

Therefore, the performance of richness as mass proxy is dominated
by the mass scatter at a given richness.

In comparison to caustic cluster masses, which have, on average,
a 0.14 dex error, masses estimated from ̂n200 have twice worse
accuracy (0.29 versus 0.14 dex). Although ̂n200 is noisier mass
proxy than caustic masses, the former requires far less expensive
observations than the latter and as a consequence is available for
almost a 200 times larger sample. The last number is computed
as the ratio of the number of clusters with available richness from
SDSS (e.g. maxBCG clusters, about 13 000, Koester et al. 2007a)
with those with caustic masses in the same sky region (74, listed in
Rines & Diaferio 2006).

7.2 Other paths to n̂200

To check the resulting robustness of our results to the few parameters
involved in the computation, we make some tests. First, we take as
reference radius a value near to the average of our r200, 1.25 Mpc
and use obsn(<1.25) as pivot value for estimating r̂200. Second, we
changed the slope to 0.55, because some maxBCG papers (Hansen
et al. 2005; Becker et al. 2007; Koester et al. 2007b) disagree on the
slope value (0.55 or 0.6) adopted in Koester et al. (2007a). Third,
we decide to count galaxies in a radius twice larger than r̂200, to
check the sensitivity to the adopted reference radius. The factor 2
is adopted to follow the maxBCG papers, which adopted an r200

radius later discovered to be too large by a factor of 2. Fourth, we
consider the simplest case, we adopt a fixed aperture, 1.43 Mpc, for
all clusters, irrespective of their size or mass. In all these cases we
found similar slopes, intrinsic mass scatter and average uncertainty
of predicted lgM200 as in our reference case. This is expected, given
that the intrinsic scatter alone accounts for most of the uncertainty
of predicted masses.

In summary, if r200 has to be estimated from a scaling relation
based on counting red galaxies within aperture in imaging data,
it seems that we have reached a floor on the quality of mass de-
termination, 0.27 dex of intrinsic scatter and 0.29 dex of average
uncertainty of predicted lgM200, no matter how precisely r̂200 is
defined.
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7.3 Comparison with other mass proxies

In this section we want to compare the performances of the X-
ray luminosity and richness as mass proxies. Among all possible
proxies, we choose X-ray luminosity because it is measurable from
survey data, as is richness. Other mass proxies, such as YX , do require
follow-up observations and it would be unwise to compare them to
(optical) mass estimates derived from survey data. Of course, in
this comparison, both mass proxies are measured without using
knowledge of mass or linked quantities, such as r200, because they
are unknown for clusters with unknown masses. Lopes et al. (2009)
disagree with this reasoning because they measured and compared
the performance of mass proxies assuming knowledge of r200 (or
r500).

Richness and its performance as a mass predictor have been mea-
sured by us in the previous section. In short, richness offers a mass
with a 0.29 dex uncertainty. X-ray luminosities are collected by
Rines & Diaferio (2006) and come, in order of preference, from
the ROSAT-ESO Flux-Limited X-Ray (REFLEX), the Northern
ROSAT All-Sky galaxy cluster survey (NORAS), the Bright Clus-
ter Survey (BCS) and its extension (eBCS) and, finally, from the
X-Ray Brightest Abell Cluster Survey (XBACS). Rines & Diaferio
(2006) do not list errors for X-ray luminosities, therefore we re-
peated our analysis with a 5 per cent and a 30 per cent error and
found that results are robust to the adopted error. The model for
the logarithm of the X-ray flux is assumed to be Gaussian and the
equations

obslgLxi ∼ N (lgLxi, err
2), (20)

lgLxi ∼ U(0, ∞), (21)

lgM200i ∼ N
(
α + 14.5 + β(lgLxi − 42.5), σ 2

scat

)
(22)

replace equations (5), (6), (9), (12) and (13). Before proceeding
further, we emphasize that our analysis involving LX ignores the
Malmquist bias due to the X-ray selection of the cluster sample
(e.g. Stanek et al. 2006), i.e. clusters brighter than average for their
mass are over-represented (easier to detect and thus more likely to
be in the sample).

Fig. 8 shows richness versus mass and X-ray luminosity versus
mass, the fitted scaling (posterior mean, solid line) and the mean

model plus and minus the uncertainty of predicted masses (dashed
lines).

By eye, our fit seems shallower than the data suggest. Our derived
slopes match those derived by other fitting algorithms; for example,
the LX versus mass regression has a slope of 0.30 ± 0.10 using our
fitting algorithm, a slope of 0.29 ± 0.10, neglecting the uncertainty
on the error (i.e. following Andreon 2006 and Kelly 2007) and
a BCES(Y |X) (Akritas & Bershady 1996) slope of 0.31 ± 0.07.
This slope is theoretically different from the slope of the underlying
relation between these quantities because we are interested here in
something different, namely prediction as explained in Section 4.
As a further cautionary check, we verified that the uncertainty of
predicted masses, the quantity of interest here, is robust, in particular
we forced a steeper slope (e.g. we keep the LX–mass slope to 0.5),
getting an identical value for the uncertainty.

For the richness, we found (Section 7.1) a mass uncertainty of
0.29 ± 0.01 dex. For the LX proxy, we found an identical value
for the mass uncertainty, 0.30 ± 0.01 dex. Therefore, masses pre-
dicted by LX or richness are comparably precise, to about 0.30 dex.
Qualitatively, one may reach the same conclusion by inspecting
Fig. 8 and performing an approximate analysis requiring a number
of assumptions that are unnecessary in our statistical analysis; the
precision of a mass proxy is, in our case, dominated by the intrinsic
scatter in mass at a given proxy value, which in turn is not too
dissimilar from the vertical scatter in Fig. 8 because observational
mass errors are not large. The two data point clouds display simi-
lar widths at a given value of the proxy (see Fig. 8) and therefore
the two proxies display similar performances as mass predictors.
Our statistical analysis removes approximations and holds when
the qualitative analysis does not, for example if the regression is
poorly determined or the mass errors are large or the richness is
poorly determined or in the presence of a mismatch in proxy value
between clusters with known and to-be-estimated mass.

A plot similar to our Fig. 8 by Borgani & Guzzo (2001) seems
to show a better LX performance, but only when compared to an
optical richness estimated by eye (Abell 1958; Abell, Corwin &
Olowin 1989).

The fact that the studied sample is mainly (but not exactly), an X-
ray flux-limited sample gives an advantage to LX as a mass proxy;
had we taken a volume complete mass-limited sample of the same
cardinality in the same Universe volume (i.e. unbiased with mass)
instead of the adopted (almost) flux-limited sample, some clusters

Figure 8. Comparison of the performances, as mass predictor, of X-ray luminosity and richness. The solid line marks the mean model; the dashed lines
delimit the mean model plus and minus the average uncertainty of predicted masses. Equal ranges (3.5 dex) are adopted for richness and X-ray luminosity. See
Section 4 for a discussion of the slopes of prediction lines.
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would not be X-ray detected and thus would have a very loose mass
constraint, lacking an LX detection. A richness-selected sample
formed by all clusters with n200 above a threshold would also have
favoured the n200 mass proxy, because the scatter between n200
and LX would have included in the sample clusters undetected in
X-ray. Therefore, in spite of the selection favouring the X-ray proxy,
richness performs as LX in predicting cluster masses.

Richness has a further advantage, it is available for a larger num-
ber of clusters per unit Universe volume. Let us consider, for ex-
ample, z < 0.3, clusters with optical estimates of mass (i.e. with
̂n200) outnumber the one with an X-ray-based proxy (i.e. with LX)
by a factor of 58; there are 5800 ster−1 optically detected clusters
(maxBCG clusters, Koester et al. 2007a) and only 100 ster−1 X-ray
detected (REFLEX clusters, Böhringer et al. 2001). The optically
selected cluster sample is a quasi-volume-limited sample. If, mim-
icking what has been done for X-ray measurements, a cut on ̂n200
signal to noise is used, instead of adopting a quasi-volume-limited
sample, the number of optically detected clusters grows signifi-
cantly. Similarly, in about four degrees squares, there are about
106 clusters with obsn200 > 6 (Andreon et al., in preparation) and
0.32 < z < 0.8. In the very same area there are nine C1 clusters
(Pacaud et al. 2007), i.e. ten times fewer. If, as for X-ray data, a
cut on obsn200 signal to noise is adopted, the number of optically
detected clusters would be larger. Schuecker, Böhringer & Voges
(2004) claim SDSS being deeper than the Rosat All Sky Survey
(RASS) ‘can thus be used to guide a cluster detection in RASS down
to lower X-ray flux limits’. Unsurprisingly, the fact that COSMOS
(Scoville et al. 2007) and many X-ray cluster surveys keep X-ray
detections that match with optical clusters (e.g. Finoguenov et al.
2007, for COSMOS) assumes that in current data sets X-ray clus-
ters are a sub-set of optically selected clusters, i.e. a smaller sample.
Finally, while X-ray-selected clusters are almost always optically
detected, the reverse has proved much more difficult, which clarifies
that optical cluster detection is observationally cheaper. Therefore,
studies that require large samples of clusters or a denser sampling
of the universe volume may adopt optically selected cluster samples
because they offer a mass estimates of comparable quality for larger
samples.

Some words of caution are in order. The good performance of
richness as a mass estimator holds for our sample and should be
confirmed on a sample of clusters optically selected. Of particular
relevance is the frequency of catalogued optically selected clusters
being instead line-of-sight superpositions of smaller systems. Such
points will be addressed by our X-ray follow-up of all (53) clusters
optically selected with 59 < n200 < 70 and 0.1 < z < 0.3 in the
maxBCG catalogue (Koester et al. 2007a).

Similarly, the same caution is in order for other mass estima-
tors. For example, LX has been proposed as a mass estimator by
Maughan (2007). Its performances as a mass predictor, however,
have been measured on data having LX based on hundreds or thou-
sands of photons and therefore the noisiness of LX itself in es-
tablishing his performances as a mass estimator has been largely
underestimated. Furthermore, point sources are identified and re-
moved through (high-resolution) Chandra observations, making the
identification and flagging of point sources easy and studied clusters
have preferentially large count rates and are little affected by resid-
ual, unrecognized as such, point sources. To summarize, the good
performances of LX cannot be immediately extrapolated to com-
mon cluster samples, dominated by objects with noisy LX /count
rate (because of the steep cluster number counts) and for which
residual point source contamination is more important and which
are perhaps observed by survey instruments as XMM, having a

lower resolutions and therefore a more difficult identification and
of contaminating point sources.

8 A T H I R D MA S S C A L I B R AT I O N

Our approach can be used to calibrate richness against mass, no
matter which mass we are talking about (e.g. lensing, caustic, Jean,
etc). In Section 6.4 we use velocity dispersion (uncorrected with any
numerical simulation) to calibrate the richness scaling, recycling the
same model already used for caustic masses. As a further example,
we recycle our model to calibrate richness against Ms, the mass
derived from velocity dispersion, s, fixed with a mass–s relation
derived by numerical simulations. We adopt the mass–s relation
in Biviano et al. (2006). As shown in Fig. 6, had we used the
mass–s relation in Evrard et al. (2008) we would have found near-
indistinguishable results. To use the masses Ms in place of the
caustic ones, we need only write their values (and their errors) in
the data file and run our same model. Mass errors are derived by
combining in quadrature velocity dispersion errors (converted to
mass) and the intrinsic noisiness of Ms (12 per cent, from Biviano
et al. 2006). We adopt, as for velocity dispersions, ν = 50 (but
results do not depend on ν, if ν � 30). We found, for our sample of
53 clusters:

lgMs = (0.92 ± 0.11)(log n200 − 1.5) + 14.35 ± 0.03

with an intrinsic scatter of 0.12 ± 0.04 dex. The intercept, slope and
intrinsic scatter have posterior marginals that are close to Gaussian,
as for the scaling with caustic masses.

Unsurprisingly, we found a near-identical slope and intercept to
those using caustic masses; to find different values, we would need
that caustic masses be tilted or offset from velocity-dispersion-
derived masses, whereas Fig. 6 shows the lack of a gross tilt or
offset.

We also found compatible values for intrinsic scatter (0.12 ±
0.04 versus 0.19 ± 0.03). The similarity of the two intrinsic scatters
testifies that errors on caustic masses and on Ms are on a consistent
scale, i.e. similarly correct (or incorrect); for example, if the caustic
mass error is overestimated, the intrinsic scatter of the caustic mass–
richness scaling would be lower than the one using Ms, because
the intrinsic scatter is that part of the scatter does not account for
measurement errors.

We now move on to consider ̂n200, the cluster richness estimated
without knowledge of the cluster mass and linked quantities, as r200.
How does it perform as a mass proxy, when lgMs is used as mass?
At the minimal effort of listing the data in the data file, we find:

lgMs = (0.62 ± 0.12)(log ̂n200 − 1.5) + 14.40 ± 0.04,

i.e. indistinguishable from the scaling with caustic masses,

lgM200 = (0.57 ± 0.15)(log ̂n200 − 1.5) + 14.40 ± 0.05.

The intercept, slope and intrinsic scatter have posteriors close to
Gaussian, as with the scaling with caustic masses. The intrinsic
scatter is small, it has mean 0.21 ± 0.03 dex, very similar to the
one obtained using caustic masses, 0.27 ± 0.03 dex. The average
uncertainty of predicted lgMs, i.e. the quality of richness as mass
proxy, is found to be 0.23 ± 0.01, similar to the one obtained using
caustic masses, 0.29 ± 0.01 dex.

To explore the quality of LX as a mass proxy when mass is
measured by lgMs, we only need to list the data and run our model,
with no change. We found that mass, predicted from LX has an
average uncertainty of 0.22 ± 0.01. When caustic masses are used,
the average uncertainty of predicted masses was 0.30 ± 0.01.
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Figure 9. Comparison of the performances, as mass predictors, of X-ray luminosity and richness. In this figure we use masses inferred from cluster velocity
dispersion, but the basic result does not change; X-ray luminosity and richness score similarly as mass proxies. Lines and symbols as in previous figure.

Fig. 9 shows the richness versus mass and X-ray luminosity ver-
sus mass, for velocity-dispersion-derived masses. It is the equivalent
of Fig. 8. The bottom line is hardly different from that derived in
Section 7.3; richness and X-ray luminosity show comparable per-
formances in predicting cluster mass (either caustic or derived from
cluster velocity dispersion). If anything, there is some tentative evi-
dence that both X-ray luminosity and richness better predict masses
derived from velocity dispersions than caustic masses (∼0.21 versus
∼0.29). We will defer to a future paper for an in-depth examination
of the significance of this possible effect.

9 D I S C U S S I O N A N D C O N C L U S I O N S

In order to exploit clusters as cosmological probes, it is important to
know the mass–proxy scaling. Although self-solving for the scaling
itself is feasible, an independent calibration of the scaling is a safety
check and allows us to improve cosmological constraints.

In this paper we computed the richness (number of red galaxies
brighter than MV = −20 mag) of 53 clusters with available caustic
masses, the latter having the advantage that, unlike other masses,
they do not require the cluster to be in dynamical or hydrostatic
equilibrium. We investigated the possibility of systematic biases by
comparing caustic masses to masses derived from velocity disper-
sions and found no gross offsets or tilt. Richness is computed from
SDSS imaging data both with and without knowledge of the ref-
erence radius r200 from SDSS imaging data. We then measure the
scaling between richness and caustic mass. Our richness–mass cali-
bration is solid, both from an astrophysical perspective, because the
masses we adopted are amongst the most hypothesis-parsimonious
estimates of cluster mass, and statistically, because we account
for terms usually neglected, such as the Poisson nature of galaxy
counts, the intrinsic scatter and uncertain errors. Our cluster sample
is larger, by a factor of a few, than previous samples used in compa-
rable works. The data and code used for the stochastic computation
are provided in this paper. This code is quite general; we used it to
derive two alternative richness–mass calibrations, using as a mass
proxy the cluster velocity dispersion or a mass calibrated from the
velocity dispersion via numerical simulations.

We found a slope between richness and (caustic) mass of 0.96 ±
0.15 with knowledge of r200, i.e. clusters that have twice the num-
ber of galaxies are twice as massive. The intrinsic scatter is small,
0.19 dex. An identical result is found using masses calibrated from

the velocity dispersion via numerical simulations. When the refer-
ence radius in which galaxies should be counted has to be estimated
from optical data, the slope decreases to 0.57 ± 0.15 and masses
inferred by the cluster richness are good to within 0.29 ± 0.02 dex,
largely independently of the way the radius itself is estimated. The
uncertainty of predicted masses is twice the average uncertainty
of caustic masses (0.14 dex), but observationally less expensive to
obtain and for this reason available for a 200 times larger sample.
Richness is a mass proxy of quality comparable to X-ray luminosity,
both showing a 0.29 dex mass uncertainty, but is less observationally
expensive than the latter, as testified by the larger number density of
optically detected clusters with respect to X-ray detected clusters in
current catalogues. This has important applications in the estimation
of cosmological parameters from optical cluster surveys, because
in current surveys clusters detected in the optical range outnumber,
by at least one order of magnitude, those detected in X-ray. In par-
ticular, we note that our richness is computed from the shallowest
data ever used by us, 54 s exposures at a 2-m telescope, taken under
mediocre seeing conditions (1.5 arcsec FWHM), i.e. SDSS imaging
data. Similar or better data should be available for every cluster; we
are unaware of a cluster of galaxy claimed to be so without some
optical imaging of it.

Similar performances of X-ray luminosity and richness in pre-
dicting cluster masses has been confirmed using cluster masses
derived from velocity dispersion fixed by numerical simulations.

People wanting to estimate the mass of one or two clusters have to
measure galaxy counts brighter than MV = −20 mag within the r200

radius estimated from equation (18) plus a similar measurement
in an area devoid of cluster galaxies to account for background
galaxies, list these values with our measurements and run the JAGS

code listed in Appendix B. Those in a hurry and accepting a reduced
quality of the mass estimation and of its uncertainty may simply
insert the measured n200 in equation (19) and take a ±0.29 dex
mass error.

In Appendix A we present an individual comparison with the lit-
erature addressing the richness–mass scaling. Here we emphasize
that our measurement of the performances of mass proxies con-
ceptually differs from some other published works. (a) We quote
the posterior predictive uncertainty and not the scatter. The former
accounts for the uncertainty in the richness–mass scaling, while the
latter does not. Since the scaling between mass and richness is not
known perfectly, we prefer posterior predictive uncertainty to the
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scatter. (b) Our own measurement of the scatter is not biased low,
whereas literature values are sometimes biased low as a result of
the way the best-fitting model is found, minimizing the scatter. The
best-fitting relation is preferred (by other authors) to the true relation
if this leads to a lower scatter. The effect is intuitively obvious (and
quantitatively important) for small samples. We prefer, instead, not
to be optimistic. (c) Some works (e.g. Lopes et al. 2009) evaluate
the performances of a mass proxy assuming that mass-linked quan-
tities such as r200 are known while they are unknown for clusters
with unknown masses. This logical inconsistency has an important
impact on the final result. Had we followed Lopes et al. (2009), we
should have concluded that richness returns masses with a 0.19 dex
precision, instead of with a 0.27 dex precision, almost a 50 per cent
underestimate. (d) Some works, instead, forget important items,
such as Malmquist bias. As detailed in Appendix A, where indi-
vidual works are considered, generally speaking, authors tend to be
more optimistic about the quality of the richness–mass calibration
and the proxy performances than their data allow.

As mentioned, in order to use richness for cosmological studies,
we need to check that our results hold for an optically selected
cluster and, if a large redshift range is considered, we need to mea-
sure the evolution of the scaling, similarly to what is necessary for
calibrating every other mass proxy. The first issue will be attacked
by our (running) X-ray observations of an optically selected cluster
sample, the second one by a lensing analysis of an intermediate
redshift (0.3 < z < 0.8) cluster sample. From this perspective,
in this paper we also calibrated richness against cluster velocity
dispersion, which are easier to measure than caustic masses. Evo-
lution of red galaxies is now well understood (Kodama et al. 1998;
Stanford, Eisenhardt & Dickinson 1998; De Propris et al. 1999;
Andreon 2006; Andreon et al. 2008b), quite differently from an-
other widely used mass tracer, the X-ray emission from the intra-
cluster medium. For the latter, one is forced to assume self-similar
evolution for lack of better knowledge (e.g. Vikhlinin et al. 2009)
even if available X-ray observations argue against this scenario
(e.g. Markevitch 1998; Pratt et al. 2008).
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APPENDIX A : C OMPARISON W ITH
P R E V I O U S WO R K S

The comparison of our results with previous works uses a reduced
model, because part of the data needed for our full analysis is
unpublished. Generally speaking, previous works did not publish
observed values of background and total counts, obsbkg and obstot,
but just obsn200 = obstot − obsbkg/C and assumed the latter
quantity (an observed value) to be equal to n200 (the true value).

In the maxBCG work, such an identification leads to a significant
bias, as discussed later. In the other works, such identification is
safer, but authors systematically underestimate their uncertainties
either assuming that the mass–richness scaling has no intrinsic scat-
ter, or that the slope of the scaling is perfectly known, for example
when the intrinsic scatter is derived.

Rines et al. (2003) compute N200 values for a sample of nine
clusters with available caustic masses. Their scaling, derived by a
least-squares fit, has inverse slope 0.70 ± 0.09. Our revised model
now assumes that the observed richness is Gaussian distributed with
mean n200 and standard deviation obserrn200 and an uniform prior
on n200. In formulae, equations (5), (6), (12) and (13) are replaced
by

obsn200i ∼ N (n200i , obserrn2002
i ), (A1)

n200i ∼ U(0, ∞). (A2)

With our model, which allows an intrinsic scatter that their least-
squares fit does not, we found (using their data kindly made available
to us) a slope of 1.23 ± 0.25, in agreement with our determination
using a larger sample. The slope error we found in their data is
about twice as large as that we found in our data (our sample is
six times bigger) and is larger than their quoted slope error, derived
assuming no intrinsic scatter (and also no noisiness of mass errors).
The 95 per cent confidence interval on the intrinsic scatter derived

8http://calvin.iarc.fr/∼martyn/software/jags/jags_user_manual.pdf
9http://www.mrc-bsu.cam.ac.uk/bugs/documentation/Download/manual05.
pdf

with this small sample largely depends on the adopted prior, in
contrast to what we find with our larger sample.

Muzzin et al. (2007) measure N500 for a sample of 15 clusters
(one of which is discarded a posteriori) with dynamical masses
(i.e. coming from a velocity dispersion measurement). They use
masses and richnesses within r500, M500 and find a slope of 1.40 ±
0.22 with mass. Their slope is at 1.6 combined σ from the slope we
derive for our sample. However, their uncertainty on the found slope
assumes that no intrinsic scatter is there and once one is allowed,
their errors escalate and the difference between the two slopes, in
terms of combined σ , decreases.

For 25 clusters in the Red Cluster Sequence Survey (RCS,
Gladders & Yee 2005), Blindert (2006) computes the scaling be-
tween the RCS richness, BgcR, and velocity dispersion. Their rich-
ness only uses red galaxies, as does ours. We note, however, that
their velocity dispersions s are derived from a small number of ve-
locities (<25 for about half the sample, versus our average of 208
velocities per cluster) and thus have low reliability (Gal et al. 2008;
Andreon et al. 2008a; Andreon 2009). They found a slope of 0.75 ±
0.57, which is entirely consistent with our, better determined, slope
of 0.30 ± 0.04, given Blindert (2006)’s large errors.

Johnston et al. (2007) stack maxBCG (Koester et al. 2007a) clus-
ters, derive masses from lensing and measure the scaling between
richness and the derived masses. For our present purposes, it is
probably of little relevance that their obsn200, counting by def-
inition galaxies within r200, counts instead galaxies within 2r200.
They obtain a slope of 1.28 ± 0.04, much more precise than our
slope, which has an error of 0.15, at least at first sight. Johnston
et al.’s (2007) statistical analysis is quite complex. Let us consider
just a single aspect, Johnston et al. (2007) did not account for the
difference between the observed value, obsn200 and the true value
n200.10 Errors introduce a scatter between n200 and obsn200 and,
because of the large abundance of clusters of low richness, the scat-
ter brings many more low-richness clusters up than high-richness
clusters down. This implies that a given observed richness, obsn200,
many objects have indeed a n200 < obsn200. This selection effect,
usually called Malmquist or Eddington bias, is especially large for
the maxBCG clusters, whose observed richness is as low as 3. Let
us compute the Malmquist or Eddington correction; in mathemati-
cal terms, p(n200|obsn200) ∝ p(obsn200|n200) p(n200) (Bayes
theorem). The cluster number counts in Johnston et al. (2007) paper
have a logarithmic slope of about −3 (=∂log n/∂log n200). This is
the adopted logarithmic slope of the prior p(n200). The likelihood,
p(obsn200|n200), is Poisson. Performing the algebra, it turns out
that on average n200 ∼ obsn200 − 2, as qualitatively expected. If
we now refit the Johnston et al. (2007) richness–mass data using
Malmquist corrected values (i.e. using obsn200 − 2), we got a slope
of ≈1.0. This is about 7σ away from the quoted value, if we trust
the slope error as published by Johnston et al. (2007), this shows
that their slope is not robust and their slope error is largely underes-
timated. As stressed by Jeffreys (1938) and Eddington (1940), our
correction above has to be taken as an indication, by no means as
a replacement of the correct analysis. It has been presented only
to give a glimpse of its size. Our finding that the mass– richness
calibration by Johnston et al. (2007) is more uncertain than claimed
is also supported by the result of a very similar but independent
lensing analysis by Mandelbaum, Seljak & Hirata (2008).

10 This difference is instead considered when the distribution of obsn200 is
used to constrain cosmological parameters in Rozo et al. (2010).
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Lin, Mohr & Stanford (2004) compute the richness–mass scaling
for a large cluster sample and found a slope about 1σ away from
our one, but with very small errors. However, their masses are
derived from X-ray temperatures, in turn assumed to be perfectly
known (even in presence of large temperature errors), although they
have been derived in heterogeneous ways (e.g. from measurements
performed in heterogeneous selected apertures, with or without
flagging the cool core, etc.) from heterogeneous data/telescopes.
Furthermore, temperature–mass scaling is assumed to be perfectly
known, without any scatter and valid for clusters not in hydrostatic
equilibrium, none of which is true. Similarly, the radius within
which richness is computed is estimated from cluster temperature,
assuming no scatter between temperature and mass. Therefore, the
small errors quoted by Lin et al. (2004) are found in an analysis
where masses and radii are assumed to be perfectly known, in spite
of their significant noisiness and, possibly, bias.

APPENDIX B: MODEL LISTING

In this section we give the listing of the full model.
For the stochastic computation and for building the statistical

model, we use Just Another Gibbs Sampler (JAGS,11 Plummer 2008).
Equations (5)–(15) find an almost literal translation in JAGS, Poisson,
Normal and Uniform distributions become dpois, dnorm and

dunif, respectively. JAGS, following BUGS (Spiegelhalter et al. 1996),
uses precisions, prec = 1/σ 2, in place of variances σ 2. Furthermore,
it uses neperian logarithms, instead of decimal ones. Equation (6)
has been rewritten using the property that the χ 2 is a particular form
of the Gamma distribution. Equation (7) is split in two JAGS lines
for a better reading. The arrow symbol reads ‘take the value of’.
obsvarlgM200 is the square of obserrlgM200.

11 http://calvin.iarc.fr/∼martyn/software/jags/

data

{
nu <−6

}
model

{
for (i in 1 : length(obstot)) {
obsbkg[i] ˜ dpois(nbkg[i])
obstot[i] ˜ dpois(nbkg[i]/C[i]+n200[i])
n200[i] ˜ dunif(0, 3000)
nbkg[i] ˜ dunif(0, 3000)

precy[i] ˜ dgamma(1.0E−5, 1.0E−5)
obslgM200[i] ˜ dnorm(lgM200[i], precy[i])
obsvarlgM200[i] ˜ dgamma(0.5∗nu, 0.5∗nu∗precy[i])

z[i] <− alpha+14.5+beta∗(log(n200[i])/2.30258−1.5)
lgM200[i] ˜ dnorm(z[i], prec.intrscat)
}

intrscat < −1/sqrt(prec.intrscat)
prec.intrscat ˜ dgamma(1.0E−5, 1.0E−5)
alpha ˜ dnorm(0.0, 1.0E−4)
beta ˜ dt(0, 1, 1)
}

In order to evaluate equation (4), i.e. to determine the uncertainty
of the predicted mass, we simply need to add to the data file the list
of clusters for which we want predictions. In this paper we used the
same sample, as mentioned in Section 7, which is, as a result, listed
twice in the data file, the second time with ‘NA’ (‘not available’)
values of mass indicating the program with which they should be
estimated.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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