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ABSTRACT
In this paper we present a rigorous derivation of the luminosity function (LF) in the presence
of a background. Our approach is free from the logical contradictions of assigning nega-
tive values to positively defined quantities and avoids the use of incorrect estimates for the
68 per cent confidence interval (error bar). It accounts for Poisson fluctuations ignored in
previous approaches and does not require binning of the data. The method is extensible to
more complex situations, does not require the existence of an environment-independent LF,
and clarifies issues common to field LF derivations. We apply the method to two clusters of
galaxies at intermediate redshift (z ∼ 0.3) with among the deepest and widest K s observations
ever taken. Finally, we point out the shortcomings of flip-flopping magnitudes.
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1 I N T RO D U C T I O N

The luminosity function (LF), i.e. the number of galaxies per unit
luminosity and volume, is one of the fundamental quantities of ob-
servational cosmology: it is interesting in its own right, and it is a
necessary ingredient (weight) in most cosmological measures deal-
ing with galaxies. The history of the LF determination dates back
to Zwicky (1957) at least. This debate with Hubble Hubble (1936);
Zwicky (1951) around the shape of the LF is one of the pillars of
the history of LF determination.

With the advent of large surveys, such as the 2dF (Folkes et al.
1999), the Sloan Digital Sky Survey (SDSS; York et al. 2000) and
the Virtual Observatory, samples grow by orders of magnitude, and
it is nowadays common to deal with more than 1000 galaxies when
computing the LF. However, at the extremes of absolute magnitude
ranges or in special environments or for certain galaxy types, the
number of galaxies is often low. Methods used for the LF computa-
tion have also improved along the years (see citations in Section 3).

In Andreon (2004) we have shown how much the neglected ob-
server prior influences the found result (error and confidence inter-
val; an example along the same lines is presented in Blanton et al.
2003). This paper has a twofold aim: to improve the method in the
LF determination and to apply it to the best data (useful for the LF
determination) ever taken in the K band.

�Based on observations collected at the European Southern Observatory,
Chile, and, in part, on observations with the NASA/ESA Hubble Space
Telescope.
†E-mail: andreon@brera.mi.astro.it

The paper is organized as follows. In Section 2, we present the
data and the data reduction. In Section 3, we present a new statistical
method. In Section 4 we derive the LF. A discussion and a summary
are presented in Section 5.

We assume H 0 = 70 km s−1 Mpc−1, �� = 0.7 and �M = 0.3.

2 DATA A N D DATA R E D U C T I O N

2.1 AC 114 and AC 118

AC 114 and AC 118 are among the most observed clusters at inter-
mediate redshift. Discovered by Couch & Newell (1984) and later
by Abell, Corwin & Olowin (1989), they have been the focus of ex-
tensive studies: spectroscopic observations (e.g. Couch & Sharples
1987), near-infrared imaging (e.g. Barger et al. 1996), Hubble Space
Telescope (HST) observations (e.g. Couch et al. 1998), mass deter-
mination through gravitational lensing experiments (Smail et al.
1997), galaxy evolution studies (Barger et al. 1996; Couch et al.
1998; Jones, Smail & Couch 2000; Couch et al. 2001), etc. AC 114
is a regular massive cluster, whereas AC 118 is a massive merging
system. A detailed description of these two clusters may be found
in the above-mentioned papers.

AC 114 observations were carried out at the 3.5-m New Tech-
nology Telescope (NTT) with SOFI (Moorwood, Cuby & Lidman
1998) for four nights during the autumn of 1998. SOFI is equipped
with a 1024 × 1024 pixel Rockwell ‘Hawaii’ array. In its large
field mode, the pixel size is 0.292 arcsec and the field of view 5 ×
5 arcmin2. The field was observed in the near-infrared K s passband
(λc = 2.2µ; �λ ∼ 0.3µ) during four photometric nights with good
seeing (FWHM < 0.8 arcsec). The total useful exposure time is
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Figure 1. The K s-band image of AC 114. The field of view is ∼5 × 5 arcmin2. North is up and east is to the left.

18 840 s, resulting from the co-addition of many short jittered expo-
sures. Photometric calibration has been obtained by observing a few
standard stars, interspersed with AC 114 observations, taken from
the list of Infrared NICMOS Standard Stars published in Persson
et al. (1998). Fig. 1 shows the final K s image of AC 114. This image
has a seeing of 0.8 arcsec.

AC 118 observations were carried out with the same instrument,
the night after AC 114 observations, and are fully described in
Andreon (2001, hereafter Paper I).

All images have been reduced as in Paper I. Shortly, they are
flat-fielded by flaton–flatoff. In order to test the accuracy of the flat-
fielding, a standard star has been observed in eight chip locations.
The root-mean-square (rms) variation of its magnitude is 0.008 mag.
Because the rms deviation is small, our images do not require a

supplementary illumination correction. The background has been
removed by using ECLIPSE (Devillard 1997), taking advantage of
the telescope nodding during the observations. Images have been
combined using the task IMCOMBINE under IRAF using integer pixel
shifting.

2.2 Control field: CDF-S and HDF-S

As control field we use the Hubble Deep Field South 1 and 2
(HDF-S) images (Da Costa et al. 1998), already used for AC 118,
and therein described, supplemented by Chandra Deep Field South
(CDF-S) images (Rengelink et al. 1998; Vandame et al. 2001). We
only remind that all these images have been taken with the same
instrument, filter and telescope as the AC 114 and AC 118 images;
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Table 1. The data.

AC 114 AC 118 CDF-S HDF-S

Exposure time (min) 314 265 80–180 180–300
Seeing (FWHM, arcsec) 0.73 0.75 ∼0.8 0.9-1.0
Completeness magnitude 20.3 20.5 19.5–20.0 20.25

(φ = 4.4 arcsec)
Area (arcmin2) 23.7 23.7 242.0–45.0 47.0

these cluster images are interspersed to control field images, hence
ensuring an almost perfect homogeneity of the data. The basic data
reduction of control and science fields is based on the same software
(ECLIPSE). Two major differences occur: science data have not been
resampled, in order not to correlate the noise of adjacent pixels; and
science data are combined with more attention to flux (see Paper I for
details), allowing us to claim a better photometric calibration pre-
cision for cluster images (better than 0.01 mag) than other authors
claim for the control field (around 0.05 mag).

The 16 SOFI pointings of the CDF-S guarantee a large area cov-
erage (242 arcmin2) down to K s = 19.5 and hence a good deter-
mination of the galaxy counts in the control field. Three of them,
covering 45 arcmin2, are exposed longer and reach K s = 20, hence
supplementing the 47 arcmin2 of the HDF-S down to K s = 20.25
used in Paper I. At K s < 18 HDF-S shows a marginally high over-
density with respect to CDF-S. Therefore, we arbitrary remove the
bright part of the HDF-S galaxy counts (which, in any case, carry a
negligible weight, given the small observed area of the HDF-S).

Table 1 shows a summary of all observations. The area coverage
of the CDF-S alone is larger than the latest published galaxy counts
(Cristóbal-Hornillos et al. 2003), down to their completeness limit
(K ∼ 19.5).

2.3 Photometry and flip-flopping magnitudes

Objects have been detected by using SEXTRACTOR version 2.2
(Bertin & Arnouts 1996). For AC 114 we made use of the rms
map for a clean detection, as we did for AC 118. Because of the
varying exposure time across the field of each image, due to the
dithering, we consider here only the central square areas listed in
Table 1.

Figure 2. The magnitude bias in a Monte Carlo simulation with Gaussian noise (σ = 0.03 mag; shown in the left panel), adopting an orthogonal (solid
histogram) or vertical cut (dotted histogram).

Galaxy are extended objects, and hence their luminosity depends
on the way their borders are defined. We improve our magnitude
definition with respect to Paper I; here, we adopt Kron magnitudes
(see Kron 1980 for the exact definition, and Bertin & Arnouts 1996
for a software implementation) for bright [(K Kron + K aper)/2 <

18 mag] objects and aperture (in a 4.4-arcsec aperture) otherwise. In
Paper I, the cut was performed along one of the axes (KKron), and not
orthogonally to the K Kron–K aper relationship, spuriously producing
a density variation in the unbinned distribution of galaxy counts (not
actually used in that paper, but used here) due to the spread around
the K Kron–K aper relationship. A Monte Carlo simulation of what
occurs is shown in Fig. 2. On the left, we show a linear relationship
between the Kron and aperture magnitude, with a Gaussian small
scatter (σ = 0.03 mag) and no bias. On the right, we histogram the
galaxy counts with a cut orthogonal to the Kron–aperture magnitude
relationship (solid histogram), and at a fixed Kron magnitude (dotted
histogram). The latter histogram presents a huge (40 per cent) vari-
ation near the ‘bridge’ magnitude, absent when an orthogonal cut is
performed.

Why not use Kron magnitudes at all magnitudes then, as in many
of the works in the literature? The reason is found in the SEXTRAC-
TOR manual. The Kron magnitude is measured in two different ways
depending on the measured object radius: it is a true Kron magnitude
for objects larger than a radius threshold and an aperture magnitude
for fainter objects. Such a measure, and potentially all flip-flopping
magnitudes (such as ‘auto’ or ‘best’ magnitude) distorts the lumi-
nosity distribution (i.e. the galaxy counts) near the ‘bridge’ point.

The magnitude completeness is defined as the magnitude where
objects start to be lost because their measured central brightness
is lower than the detection threshold (see Garilli, Maccagni &
Andreon 1999 and Paper I for details). For AC 114, the (5σ ) limiting
magnitude is K s ∼ 20.3 mag in a 4.4-arcsec aperture. For simplicity
and for excess of caution, we consider here only K s < 20.0 mag
objects.

Objects are classified according to their compactness, by us-
ing the SEXTRACTOR stellar classifier. Almost the whole area of
AC 114 studied here has been observed by the HST mosaic (Couch
et al. 1998). Galaxies are resolved (i.e. not point-like) objects at the
HST resolution. The comparison of our ground-based classification
and HST images of the same objects confirms the goodness of our
ground-based star/galaxy classification because a few galaxies, out
of hundreds, are misclassified.
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2.4 Comparison to literature photometry

AC 114 has been observed in the K ′ band by Barger et al. (1996) and
by Stanford et al. (2002). Stanford et al. (2002) measure aperture
magnitudes (in a 5-arcsec aperture). Our Kron magnitudes agree
well with them, with no photometric offset and a typical scatter of
0.2 mag.

Barger et al. (1996) measure pseudo-total magnitudes on images
taken with an instrument having a large pixel size (0.79 arcsec).
Our magnitudes are brighter than theirs by 0.18 mag, the offset
being potentially due to their quite large pixel size and worse seeing
(between 1.1 and 1.7 arcsec).

All objects listed in Barger et al. (1996) or Stanford et al. (2002)
are present in our catalogue, as expected, because our images are
much deeper. Instead, several objects, brighter than the complete-
ness magnitude of Barger et al. (1996) or Stanford et al. (2002), are
missing in their catalogues.

3 L U M I N O S I T Y F U N C T I O N : S TAT I S T I C A L
M E T H O D S

3.1 Background

We are here faced with the classical problem of determining two
extended (integral >1) density probability functions, one carrying
the signal (the cluster LF) and the other being due to a background
[background galaxy counts (BKGs)] from the observations of many
individual events (the galaxies luminosities), without knowledge of
which event is the signal and which is background.

Traditionally, the cluster LF is computed as the difference be-
tween galaxy counts in the cluster and control field directions
(Zwicky 1957; Oemler 1974), i.e. after binning the events (galaxy
magnitudes) in magnitude bins. In performing such a computation:

(i) galaxy counts are binned in magnitude bins (of arbitrary
width);

(ii) galaxy counts in the control field direction are subtracted
from counts in the cluster direction in order to obtain the cluster
contribution alone;

(iii) in order to estimate the error on the cluster LF, approximate
Poisson errors (i.e.

√
n) and, in some cases, over-Poisson errors due

to large-scale structure are added in quadrature, under the (approx-
imate) hypothesis that they are Gaussian distributed.

Binning has several advantages:

(i) it allows us to ‘see’ how data are distributed (or better, to ‘see’
the data distribution convolved by the binning function);

(ii) it allows a quick analysis of the data;
(iii) it allows us to calculate the goodness of fit in a simple way,

using χ 2; and
(iv) it provides a correct result at large signal-to-noise ratio.

The bin width is arbitrary, but recently Takeuchi (2000) has sug-
gested a legitimate rule when bins are all of the same width: the
Akaike information criterion can be used for optimally choosing
the number of bins. However, when galaxy counts change by three
order of magnitudes, as is usual in computing LFs, such an approach
is optimal, on average, but far from optimal in the (faint) bins pop-
ulated by thousand of galaxies or in the almost empty (bright) bins.

Indeed, it would be preferable to avoid any binning of the data
for the following reasons.

(i) No matter which amplitude bin is chosen, it tends to be too
wide in crowded regions and too narrow in low-populated regions.

Adaptive binning (i.e. of variable width) depending on the local
population is a possible solution, which, however, shares the prob-
lems listed below, and requires a more elaborate fitting algorithm
(an appropriate convolution of the fitting function).

(ii) The negative LF (as well as background galaxy counts) makes
no sense (because both functions are positively defined), and hence
any determination allowing the LF to be negative has a dubious
meaning. Binning, coupled with background subtraction, may pro-
duce such occurrences: it may happen that, because of statistical
fluctuations, the counts in the control field direction are larger than
those in the cluster direction, leaving a negative number of galaxies,
for a positively defined quantity. Are a negative number of galax-
ies ever seen? Although negative values are often consistent with
zero, they cannot be simply ignored or set to zero, otherwise a sig-
nificant bias would occur. For example, the integral over the LF,
the cluster richness and the luminosity density are systematically
overestimated.

(iii) Binning frequently produces error bars on LF crossing the
LF = 0 line, considering the possibility of a negative number of
galaxies (which the authors are still not ready to accept).

(iv) Binning in high dimensions (here we have, for example, six
to nine dimensions; see equation 3) makes the data sparse, no matter
how large the sample is, especially when the galaxy density changes
by three orders of magnitude from bright to faint magnitudes. As
mentioned, low-populated regions are a problem for several reasons.

(v) Binning implicitly assumes that no change is occurring inside
the bin, and it occurs only at the bin boundaries (the idea of con-
tinuity is lost in binning). For example, LFs are often measured in
redshift bins (assuming they do not evolve inside the redshift bin),
and then compared among them to look for a redshift evolution,
which, according to the logic of the people making such a compar-
ison, occurs at the bin boundary only, and with ‘quantum jumps’
(see Andreon 2004 for details).

(vi) Binning makes a rigorous statistical analysis a nightmare:
errors are not Gaussian distributed (when the number of objects
inside a bin is small, and in a multidimensional space there are
always bins low populated), linear least-squares fits (such as χ2)
badly fail and give biased results when the number of objects inside
the bin is small (Wheaton et al. 1995). The latter work suggests
fitting ‘one count at a time’, i.e. not to bin at all. Furthermore,
having observed n0, the 68 per cent confidence interval is not given
by [n0−√

n0, n0+√
n0] when n0 is small (see, for example, Gehrels

1986, or statistical textbooks).

We therefore opt for an unbinned fit of ‘one galaxy at a time’, fol-
lowing the path put forward by Sandage et al. (1979, hereafter STY),
where it was assumed that no background, no evolution and no envi-
ronment dependence were present. In Lin et al. (1999), a monolithic
(i.e. independent of luminosity) extension has been introduced un-
der the assumption of no background at all (i.e. the redshift of each
galaxy is known). Andreon (2004) removed the monolithic evolu-
tion, allowing galaxies of different luminosity to evolve by different
amounts, still in the absence of background.

In the present paper, we allow the presence of background galax-
ies, unrelated to the cluster, i.e. we present how the LF can be
computed when the individual membership of galaxies is unknown.
However, we assume (as STY) a LF universality (i.e. an LF inde-
pendent of environment). The reason is mainly technical, not theo-
retical: the formalism introduced below is easily extensible to such
a case (for example, following the parametrization with environ-
ment or redshift outlined in Andreon 2004), but coding it is quite
complex.
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In order to account for observations of different quality (depth,
area, etc.) a determination using several data sets (each having
bounds in magnitude or area) is allowed, as in Efstathiou et al.
(1988, hereafter EEP). For example, the HDF-S observations used
are actually left-censored (i.e. we have no data to the left of) at K s

= 19.0 and right-censored (i.e. we have no data at the right of) at
K s = 20.25.

The method naturally converges to results obtained when data are
binned, when binning can be done, i.e. when the number of objects
for the bin is large and the Gaussian approximation occurs.

3.2 Adopted approach

3.2.1 Using extended likelihood and properly accounting
for background

Our approach is based on a single likelihood function, which ac-
counts simultaneously for all available data, cluster and control
fields. The use of extended likelihood keeps the normalization usu-
ally lost in other methods. We do not require that the observed
background in the cluster line of sight is ‘average’ (or typical), but
only that it is drawn from the same parent distribution from which
the background in the control field is drawn.

Given j data sets (say, cluster 1, cluster 2, . . . field 1, field 2, . . .)
each composed of Nj galaxies, we maximize the extended likelihood
L given by

lnL =
∑

data sets j

( ∑
galaxies i

ln pi − s j

)
. (1)

Here, pi is the (extended, because integral is not 1) probability of
the ith galaxy of the jth data set to have mi, i.e. pi = p(mi); s is the
integral of function φ over the range [ magleft, j , maglim, j ], i.e. the
expected number of galaxies, given the model. In

s =
∫ maglim, j

magleft, j

φ(m) dm, (2)

maglim,j is the limiting magnitude of the jth data set, and magleft,j is
the limiting magnitude at the bright end (in the case of left-bounded
magnitude values) of the jth data set. For example, if in the sample
K < 10 galaxies are filtered out (because saturated, or because such
galaxies would cause trouble for the instrument by, say, occupying
a large fraction of the field of view), it will be magleft = 10 for that
sample.

φ is the sum of a power law (accounts for the background contri-
bution) and a Schechter (1976) function:

pi = φ(m) = δc� jφ
∗100.4(αz+1)(m∗−m)e−100.4(m∗−m)

+ � j 10a+b∗(m−20)+c∗(m−20)2
. (3)

Here, δc = 1 for cluster data sets, δc = 0 for the other data sets,
a, b, c describe the shape of the galaxy counts in the reference
field direction, and � j is the studied solid angle. The number ‘20’
is there for numerical convenience. If galaxy counts have a more
complex magnitude distribution, more coefficients (or any other
parametrization) can be used to describe the shape distributions.
Analogously, if the cluster LF is more complex than a Schechter
function, say a sum over the LFs of the individual morphological
types (e.g. Andreon 1998), the Schechter function in equation (3)
can be replaced with the reader’s favourite function without affecting
the overall approach.

The above approach neglects the effect of large-scale structure,
and it is justified when the variance due to large-scale structure is

much lower than the Poissonian variance. For K s > 12 mag, and
for a solid angle as small as one single SOFI field of view (about
20–25 arcmin2), the variance due to large-scale structure, computed
according to Huang et al. (1997), is less than 1 per cent of the
Poissonian variance and can be safely neglected.

The cluster LF is given by the Schechter (or favourite) function
with parameters that maximize the likelihood. Confidence contours
may be computed using the likelihood ratio theorem. The 68 and
95 per cent confidence contours for two interesting parameters
are computed from 2� lnL = 2.3 and 6.17, respectively (Avni
1976; Wilks 1938, 1963; Cash 1979; Press et al. 1993). The 68 per
cent confidence interval for a single parameter is computed using
2� lnL = 1 (Avni 1976; Wilks 1938, 1963; Cash 1979; Press et al.
1996). We note the approximate nature of these and that some reg-
ularity conditions are required (see Protassov et al. 2002 for astro-
nomical related references). The large (>1000) number of galaxies
and the absence of borders near the best-fitting parameters guarantee
that the hypothesis on which the likelihood ratio theorem is based
is satisfied for the data used in the present paper. Regularity condi-
tions are not always satisfied when dealing with the Butcher–Oemler
effect (Andreon, in preparation).

For the goodness of fit, we adopt the Persson χ2 test, accurately
described in section 14.3 of Press et al. (1993) for Poissonian dis-
tributed quantities. The Persson χ2 is, in the long run, χ2-distributed
with the number of degrees of freedom, ν, equal to the number of
the bins minus the number of parameters of the fit function. The test
is applied on galaxy counts, not on the difference of galaxy counts
in the cluster and control field directions. The goodness-of-fit esti-
mation requires us to bin the data.

3.2.2 How to find a global minimum?

The maximum likelihood can be found using simulated annealing
methods (e.g. Press et al. 1996), because the desired global maxi-
mum is often hidden among many, poorer, local maxima in high-
dimensional spaces. For larger dimension problems, it is computa-
tionally more efficient to use the Markov Chain Monte Carlo method
(e.g. Dunkley et al. 2005).

Best-fitting parameters are determined all together at once; we
avoid the procedure used by other authors of fitting the control
field counts, and, once we have found the best-fitting parameters for
the control field, we switch to fitting the cluster counts by keeping
the background parameters fixed. The above procedure does not
guarantee finding the global minimum.

Such a global fitting also accounts for a difference in the observed
value of background counts in cluster and reference field directions.

3.3 Where we improve with respect to previous approaches

In this section we summarize the differences between our approach
and previous approaches.

3.3.1 Sandage, Tammann & Yahil

The approach of STY and other maximum likelihood approaches
do not deal with the presence of a background, and hence cannot be
used when the individual membership of galaxies is unknown.

It is well known that in the STY approach the normalization is
lost (i.e. φ∗). This situation is not typical of maximum likelihood
methods in general, and, in fact, the normalization is kept in our
approach, which also gives rigorous 68 per cent confidence intervals;
this is a good reason to adopt it.
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3.3.2 Efstathiou, Ellis & Peterson

The EEP method does not deal with the presence of a background,
and hence cannot be used when the individual membership of galax-
ies is unknown. Furthermore, EEP need to bin the data. Section 3.1
explains why we dislike binning the data.

3.3.3 Wrong Poisson errors for small n

As mentioned, LF determinations derived by binning the data in
magnitude bins and by computing the cluster contribution as a
straightforward cluster − field difference have error bars that are
difficult to compute, because for small n, the 68 per cent confidence
interval is not given by [n − √

n, n + √
n] (e.g. Gehrels 1986), and

the 68 per cent confidence interval on the difference is not given by
the quadrature sum of the 68 per cent confidence intervals of the
two addenda.

Because we do not bin the data, we avoid dealing with these
incorrect expressions.

3.3.4 Binning but forgetting to marginalize the model over the bin

Several LF methods bin the data in mag. Obviously, the change
does not occur at the border bin. One should therefore marginalize
(integrate) the model LF over the quantity binned. Such a rule is used
in several papers for the ‘mag’ quantity (e.g. Paolillo et al. 2001),
but not systematically by all authors. Said simply, some authors
sincerely believe that inside the bin there is only one ‘mag’ and they
compute errors as if this belief is true. However, when describing the
LF these authors do not write that the LF is a sum of delta function,
each one centred at the centre of the bin, but a smooth function, in
logical contradiction with having assumed a sum of delta functions.

3.3.5 Forgetting s

The s term in the likelihood is required, as long as Poisson fluctu-
ations are allowed. If absent, or replaced by the observed number
of galaxies, Poisson fluctuations at each m are allowed, but Poisson
fluctuations of the total number of objects are not.

In particular, neglecting s in the presence of small signals (i.e. the
only occasion when statistics is actually required) is dangerous, in
the sense that even meaningless results can be found (for example,
a negative number of cluster galaxies), and usually leads to under-
estimating the uncertainty on the parameters. Overlooking s is quite
standard in the astronomical community, in the LF computation, in
recent detections of cluster of galaxies jointly using (ROSAT) X-ray
photons and (SDSS) galaxy catalogues, etc.

Popesso et al. (2004) adopt a maximum likelihood method but
they replace s with the number of observed galaxies (see their
equation 4 and related comments). Their algorithm fails to find a
reasonable best-fitting parameter in several cases (look for M∗ =
0.00 values in their table 2); the error on the best-fitting param-
eter is found in some cases to be less than 0.005 (for example,
for RXC J0747.0+4131), a precision never previously achieved
not even with a 10 times larger sample. M∗ of a z = 0.78 cluster
(RXC J1140.3+6609) can be computed with good accuracy using
about 50-s exposures at a 2.5-m telescope, when its brightest galax-
ies are marginally detected, if any. Replacing s with the number of
observed galaxies may produce failures in finding reasonable values
for the best-fitting parameters and may give strongly underestimated
uncertainties. The s term, prescribed by the extended likelihood ap-
proach, does not allow similar situations to occur.

The latter work disagrees with us in computing the LF from in-
complete samples without accounting for incompleteness.

3.3.6 Dissenting views

The measure of the LF by using the statistical subtraction of back-
ground has been criticized by Toft, Soucail & Hjorth (2003), who
suggest an alternative way to compute the LF ‘without having to
make uncertain statistical corrections to account for foreground and
background contamination’. A similar statement is repeated in Toft
et al. (2004), and in Blanton et al. (2005), because ‘background
subtraction [is] an uncertain procedure’.

First of all, it is unclear to us why the background subtraction is
uncertain. It is known with a degree of accuracy that it depends on
the available data, as other experimental quantities.

Secondly, Toft et al. (2003) replace it with a photometric redshift
selection plus a correction for galaxies lost in the selection. Such
a correction is uncertain, because it requires us to know the distri-
bution of spectral types at the observed redshifts, and the spectral
templates at these redshifts. Both are unknown, at the difference of
background counts that are known, because computed in a control
field.

The solution of Blanton et al. (2005), instead, is to adopt a method
(EEP) which assumes that the LF is independent of environment
(equation 2.3 of EEP) for a sample in which the dependence of the
LF on environment is flagrant (fig. 15 in Blanton et al. 2005).

Therefore, we cannot agree with their criticisms of the back-
ground subtraction methods, and with their proposed solution.

The background subtraction method has been criticized by
Valotto, Moore & Lambas (2001), claiming that the presence of a
background overdensity in the cluster line of sight favours the clus-
ter detectability and biases the slope of the LF. The above occurs
often in their simulations, because ‘many of the clusters found in two
dimensions have no significant three-dimensional counterparts’, as
they claim. In nature, instead, most of (and perhaps all) the clusters
whose LFs are computed have three-dimensional counterparts (i.e.
when spectroscopy is performed, the cluster is confirmed), which
simply means that their simulations are not an accurate reproduc-
tion of nature. Therefore, their criticism does not apply to actual data
used for the LF measure, but eventually applies to cases where the
cluster detection is doubtful. Furthermore, the LF of a large sample
of clusters in Paolillo et al. (2001), selected in two dimensions by
Abell (1958) and background subtracted in the way criticized by
Valotto et al. (2001), is equal to the LF of another large sample of
clusters (Garilli et al. 1999), which is X-ray selected and, according
to Valotto & Giovanelli (2004), does not suffer bias. Therefore, the
effect of the bias (if it exists) is negligible for the data sets actually
used. Finally, in the few cases when a cluster LF is determined by
performing a spectroscopic survey deep enough to probe the LF
slope, the derived LF is equal within the errors to that derived by
using a statistical background subtraction (e.g. for the Coma cluster;
Mobasher et al. 2003 versus Andreon & Cuillandre 2002).

4 A P P L I C AT I O N O F T H E M E T H O D , T H E
C O M P O S I T E L U M I N O S I T Y F U N C T I O N
A N D D I S C U S S I O N

We apply the method to the data presented in Section 2. Table 2 lists
the best-fitting parameters and errors for Schechter parameters.

Figs 3 (for AC 114) and 4 (for AC 118) show the galaxy counts
in the control field direction (lower points in the lower panel) and
in the cluster line of sight (upper points in the lower panel), and
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Table 2. Best-fitting parameters, errors and goodness of fit. a, b
and c describe the shape of galaxy counts (equation 3), whereas α,
M∗ and φ∗ describe the shape of the cluster LF (equation 3). Units:
when inserted in equation 3, a, b and c provide galaxy counts in
units of deg−2. The latter are also the units of φ∗. M∗ is given in mag
units. In the first three lines, there are more decimals than precision
allows, to avoid truncation errors. The last three lines quote values
including all (0.5 mag wide) bins or, in parentheses, excluding bins
with less than 10 galaxies.

AC 114 AC 118 AC 114 + AC 118

a 4.37095547 4.37931252 4.37309837
b 0.303063065 0.312422931 0.305745333
c −0.0223323945 −0.0203797854 −0.0216595493
α −1.30 ± 0.07 −1.03 ± 0.02 −1.15 ± 0.05
M∗ 15.04 ± 0.32 15.72 ± 0.21 15.43 ± 0.14
φ∗ 6.3 ± 1.8 103 1.47 ± 0.28 104 1.04 & 1.03 104

χ2 39.0 (21.1) 34.2 (12.3) 49.0 (24.7)
ν 32 (15) 33 (15) 50 (24)
P(� χ2) 0.20 (0.15) 0.40 (0.65) 0.53 (0.40)

a joint fit to cluster and control field counts. For display purposes
only, we show points and error bars computed with usual recipes, al-
though we make no use of them in our analysis (parameter or errors
determination). The fit is performed on the unbinned distributions,
whereas we bin them for display purposes only. According to astro-
nomical standard practice, the error bars in the lower panels have
a width given by

√
n/� j . The points in the upper panels of Figs 3

Figure 3. Upper panel: the K s-band LF of AC 114. Lower panel: galaxy
counts in the AC 114 line of sight (solid upper points, in black) and in the
control field (lower points, colour-coded and type-coded: green triangles =
CDF-S; red empty circles = deep part of CDF-S; blue crosses = HDF-S).
Note that because of crowding some points are to be seen on the plot. Incom-
plete bins (i.e. those that cover a magnitude interval not completely explored
by the observations) are not plotted. The cyan lines are best joint fit to the
control field and cluster line-of-sight directions on unbinned data. Data are
binned in the figure for display purposes only, and are computed as described
in the text. Note that bins are 0.25 mag wide, half the usual bin width.

Figure 4. As Fig. 3, but for AC 118.

and 4 mark the algebraic difference between the galaxy counts in the
cluster direction and the best-fitting background counts. When the
difference is negative (at K < 14 mag, plus a few points at fainter
mag) the result cannot be plotted, because the scale requires a pos-
itive argument for the logarithm. Error bars in the upper panels of
Figs 3 and 4 mark the square root of the variances of the minuend
and subtrahend.

The Schechter curve is instead the rigorous derivation of the
cluster LF, drawn with the best-fitting parameters found on the
(cluster+field, field) data sets. It is not a best fit to the cluster − field
difference, as detailed in Section 3.2.2, and it is positively defined
at every magnitude, at the variance of the above-mentioned ‘data’
points. Nevertheless, the curves nicely describe the (approximately
computed) cluster contribution, especially at large signal-to-noise,
because here the two approaches converge by definition. At K s =
14.75 mag for AC 118, the model predicts a number of galaxies
similar to the data points of adjacent bins, but the above-mentioned
difference takes an unphysical value, the unpleasing situation dis-
cussed in Section 3.1.

The fits are good, in the sense that the probability of finding a
worse χ 2 is large (Table 2).

These LF determinations are among the deepest at the studied
(large) area ever measured (see fig. 10 in Paper I), to the best of our
knowledge. We hope that our LF method makes them also the most
rigorously determined.

A question naturally arises. Are our improvements formally cor-
rect but of null importance? After all, the best-fitting model passes
through the cluster contribution, even if approximately computed.
So, why should we bother with all these apparently useless compli-
cations?

Our method does not produce puzzling results, and it is the ap-
propriate choice when puzzling results are found, for example when
the following are observed:

(i) negative star formation rates, which, according to the authors
‘lack physical sense’ (Rojas et al. 2004);

C© 2005 RAS, MNRAS 360, 727–736



734 S. Andreon, G. Punzi and A. Grado

Figure 5. The 68 and 95 per cent confidence contours for α and m∗. The
contours at the left, right and centre concern AC 114, AC 118 and the com-
bined AC 114 + AC 118 sample, respectively.

(ii) negative flux densities (for some SCUBA sources; Smith et al.
2001, their table 1);

(iii) clusters with negative blue fraction (Butcher & Oemler 1984,
their fig. 3);

(iv) clusters with negative masses (at least in some magni-
tude/radial bin; see, for example, Hansen et al. 2005, their fig. 5,
top-left panel).

Most of these (and other) puzzling results originate from not fully
accounting for the impact of a background and of its fluctuations in
computing the quantity of interest. Either the analysis is rigorous,
and we are sure that the result makes sense, or the correctness of the
results cannot be guaranteed.

Fig. 5 shows 68 and 95 per cent confidence contours on m∗ and α.
With respect to confidence contours of AC 118 computed in Paper I,
here confidence contours shrank by a factor of 2 because of the better
determination of the background counts, and moved by one (old)
sigma, because the new background counts no longer show a minor
excess, with respect to a power law, at intermediate magnitudes.

Inspection of Fig. 5 shows that two LFs are approximately com-
patible at the 95 per cent confidence level. AC 114 is, if at all,
steeper and brighter than AC 118, as comparison of Figs 2 and 3
also shows. Such a difference is expected, given the dependence of
the best-fitting LF parameters on the environment, put forward in
Paper I and in Andreon (2002), and the observed difference in the
density distribution of the two clusters (compare Fig. 1 with fig. 1
of Paper I).

Although the inspection of the relative location of (α, M∗) val-
ues and contours is the standard astronomical way of comparing
(α, M∗) values for different samples, a rigorous comparison of the
two LFs, however, should follow another path. First of all, Fig. 5
shows that there are (α, M∗) values within both 95 per cent con-
fidence contours, but it does not show whether these values are
achieved for the same values of the parameters not plotted in the
figure. For our LFs, the nuisance parameters are the background
(a, b, c) parameters. For field LFs, the nuisance parameter φ∗ is
‘hidden’ and the 95 per cent confidence contours of the two com-
pared LFs may overlap, but for incompatible φ∗ values. Secondly,
a simple comparison of Fig. 5 may incorrectly leave the impression

of compatible LFs, when instead the two LFs are actually different.
Consider, for example, the case of two LFs, very different but com-
puted for a background known within a large uncertainty (leading
to large confidence contours). The derived contours overlap each
other, while a correct comparison of the data (see below) will show
the two LFs to be different. Finally, and even in the absence of a
background (or any nuisance parameter), the figure actually shows
that there is a region of observed values of the α, M∗ plane (the re-
gion where confidence contours cross) that can be drawn from two
different true values of α, M∗ at a given confidence, and not that a
single pair of α, M∗ may generate two observed α, M∗ at that con-
fidence; confidence contours give the probability of the data given
the hypothesis and not vice versa. By the way, the contours for the
two clusters are computed for different hypotheses and both cannot
be true at the same time (the two pairs of best-fitting parameters are
numerically different).

In order to establish if the two LFs differ, we can ask whether
a fit of both clusters with a single set of α, m∗ values is much
worse than a fit with individual α, m∗ values for each cluster. The
likelihood ratio test (LRT) allows such a comparison, and without
any need to bin the data. Our models to be compared are hierar-
chically nested1 and regularity conditions needed to use the LRT
hold in our case (but see Protassov et al. 2002 for a case where
regularity conditions do not). The likelihood ratio is computed by
taking the ratio of the maximum value of the likelihood function
under the constraint of the null hypothesis (= one set of α, m∗ val-
ues) to the maximum with that constraint relaxed (= two sets of
α, m∗ values). If the null hypothesis is true, then 2� lnL (= twice
the above ratio expressed in logarithm units) will be asymptotically
χ 2-distributed with the number of degrees of freedom equal to the
difference in dimensionality of the two considered models.

Therefore, we modify equation (3) adding one more Schechter
function, and we fit at once all data, once keeping one single set
of m∗, α values for both clusters, and once leaving free m∗, α for
each cluster independently. In each fit, both clusters share the same
set of parameters describing the background, at variance of the fits
discussed earlier in this section, when we did not constrain the
parameters of the background to be the same in the AC 114 and
AC 118 fits.

We measure 2� lnL = 6.4 for two (more) degrees of freedom.
Therefore, under the null hypothesis (the two LFs having the same
m∗, α parameters), there is about 5 per cent probability of observ-
ing a larger likelihood ratio, confirming the cursory inspection of
AC 114 and AC 118 confidence contours previously mentioned.
Such a probability is not small enough to reject the null hypothesis
that the two LFs have the same m∗, α parameters at high confidence.
We can therefore co-add the data of the two clusters and compute
the composite LF, which is, actually, the likelihood under the null
hypothesis just computed. The above path naturally solves the dif-
ficult procedure of averaging the LFs of the two clusters (or, more
generally two data sets), rigorously accounting for the error on the
relative normalization of the two LFs, often not even mentioned in
astronomical papers.

Best-fitting values for the combined data set (= AC 114 +
AC 118) are listed in Table 2, and m∗, α confidence contours are
shown in Fig. 5. The fit is good, in the sense that the probability of
finding a worse χ2 is large (Table 2).

Although the use of a rigorous (and time-consuming) test leads
to the same conclusion of a cursory inspection of AC 114 and

1 For example, the allowed parameter values of one model must be a subset
of those of the other model.
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AC 118 confidence contours; the former guarantees a correctness
that the latter does not, and therefore should be preferred.

5 S U M M A RY A N D C O M M E N T S

We have presented a rigorous method to measure the LF in the
presence of background, extending previous methods to deal with
a more complicate case, and including neglected terms. The ap-
proach does not suffer from logical inconsistencies (or limitations)
present in previous approaches and puts on a sure foot claims of
providing errors with the correct coverage (i.e. our errors are 68 per
cent confidence intervals). We have applied the method to measure
the LFs of two clusters of galaxies, using among the deepest and
widest observations in the K s band ever, and producing one of the
best determinations of the LF in this band (and we hope one of the
more rigorous ones, too). In passing, we show the bias of a flip-
flopping definition of magnitude, and we note that several types of
magnitudes are flip-flopping. Several of our comments are clearly
not specific to cluster LFs and hold for the field LF too.

Distribution functions in the presence of background (such as
the cluster LF in the absence of a redshift survey, but also the Hα

equivalent width distribution in the presence of a continuum) should:

(i) be fitted without removing the background contribution,
adding instead a background term to the model;

(ii) be simultaneously fitted with the background distribution;
(iii) use unbinned data;
(iv) adopt the likelihood (not the conditional likelihood);
(v) allow Poisson fluctuations of the whole sample (i.e. include

the s term, as prescribed by the extended likelihood approach);
(vi) avoid the use of

√
n in place of the 68 per cent confidence

interval; and
(vii) not compute the 68 per cent confidence interval by summing

in quadrature the 68 per cent confidence intervals of the addenda.

Two sources of errors are negligible in our work, and therefore
neglected. First, the error on the value of the input quantities, which
in our case are magnitudes, but in other papers are magnitudes and
densities. With the operated choices, magnitudes have negligible
errors, and for this reason we have neglected their impact on the
LF parameters. If this condition does not arise, it is necessary to
convolve the fitting function by the error function, in the way de-
scribed by Jeffreys (1938). Densities, instead, usually have large
errors, as large as 100 per cent (for example, in some 2dF subsam-
ples, from quantities quoted in Croton et al. 2005), simply because
densities are computed by counting a small number of galaxies (e.g.
as few as 1). �5, a measure of density derived from the distance
of the fifth neighbour, used in some recent density estimates, has a
±55 per cent error. The presence of large errors on the input quan-
tity further complicates a rigorous determination of the LF and of
its dependence on environment. Such a rigorous determination has
not yet been published, to the best of our knowledge.

Secondly, we studied the whole galaxy population, and not a
minority population. In the latter case, errors in the galaxy classifi-
cation, even if coming infrequently, pollute the minority population
with objects coming from the main sample. Let us consider an exam-
ple: the LF of a population representing a tiny fraction, say 0.0003, as
the fraction of local E+A galaxies. If classification errors concern a
fraction of 0.0003 of the whole galaxy population (a very small frac-
tion, indeed), any E+A sample studied is 50 per cent contaminated
by objects unrelated to the class aimed to study, and one should
not be surprised to ‘discover’ that the selected sample has an LF
similar to that of the whole sample, being 50 per cent contaminated.

Such contamination should be accounted for in the LF computa-
tion, but it is usually not. Our approach of not subtracting the back-
ground from the data, but of adding a background term to the model,
accounts for the uncertainty due to the mentioned contamination
population.
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