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An impressive amount of different astrophysical data converges towards the picture of a spatially flat
Universe undergoing today a phase of accelerated expansion. The nature of the dark energy dominating
the energy content of the Universe is still unknown, and a lot of different scenarios are viable
candidates to explain cosmic acceleration. Most of the methods employed to test these cosmological
models are essentially based on distance measurements to a particular class of objects. A different
method, based on the lookback time to galaxy clusters and the age of the Universe, is used here. In
particular, we constrain the characterizing parameters of three classes of dark energy cosmological
models to see whether they are in agreement with this kind of data, based on time measurements rather
than distance observations.
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I. INTRODUCTION

The increasing bulk of data that have been accumulated
in the past few years have paved the way to the emergence
of a new standard cosmological model usually referred to
as the concordance model. The Hubble diagram of type Ia
supernovae (hereafter SNeIa), measured by both the
Supernova Cosmology Project [1] and the High-z Team
[2] up to redshift z� 1, first indicated that the Universe is
undergoing a phase of accelerated expansion. On the other
hand, balloon-borne experiments, such as BOOMERanG
[3] and MAXIMA [4], determined the location of the first
and second peak in the anisotropy spectrum of cosmic
microwave background radiation (CMBR), strongly indi-
cating that the geometry of the Universe is spatially flat. If
combined with constraints coming from galaxy clusters
on the matter density parameter �M, these data indicate
that the Universe is dominated by a nonclustered fluid
with negative pressure generically dubbed dark energy
which is able, eventually, to both close the Universe and
drive its accelerated expansion. This picture has been
further strengthened by the more precise measurements
of the CMBR spectrum, due to theWilkinson Microwave
Anisotropy Probe (WMAP) experiment [5], and by the
extension of the SNeIa Hubble diagram to z > 1 [6].

After the discovery of this scenario, an overwhelming
flood of papers presenting a great variety of models which
try to explain this phenomenon has appeared; in any case,
the simplest explanation is claimed by the well known
ding author.
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cosmological constant � [7]. Although the best fit to most
of the available astrophysical data [5], the �CDM (cold
dark matter) model failed in explaining why the inferred
value of � is so tiny (120 orders of magnitude lower)
compared to the typical vacuum energy values predicted
by particle physics and why its energy density is compa-
rable to the matter density right now (the so-called coin-
cidence problem). As a tentative solution, many authors
have replaced the cosmological constant with a scalar
field rolling down its potential and giving rise to the
model now referred to as quintessence [8]. Even if suc-
cessful in fitting the data, the quintessence approach to
dark energy is still plagued by the coincidence problem
since the dark energy and matter densities evolve differ-
ently and reach comparable values for a very limited
portion of the Universe evolution that is taken to coincide
with the present era. Moreover, it is not clear where this
scalar field originates, thus leaving a great uncertainty on
the choice of the scalar field potential (see [9] for com-
prehensive reviews).

The subtle and elusive nature of dark energy has led
many authors to look for completely different scenarios
able to give a quintessential behavior without the need of
exotic components.

To this aim, it is worth stressing that the acceleration of
the Universe claims for only a negative pressure dominant
component, but does not tell anything about the nature
and the number of cosmic fluids filling the Universe. This
consideration suggests that it could be possible to explain
the accelerated expansion by introducing a single cosmic
fluid with an equation of state causing it to act like dark
matter at high densities and dark energy at low densities.
-1  2004 The American Physical Society
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An attractive feature of these models, usually referred to
as unified dark energy (UDE) or unified dark matter
models, is that such an approach naturally solves, at least
phenomenologically, the coincidence problem. Some in-
teresting examples are the generalized Chaplygin gas
[10], the tachyon field [11], and the condensate cosmology
[12].

A different class of UDE models has been recently
proposed by some of us [13] where a single fluid is
considered whose energy density scales with the redshift
in such a way that the radiation dominated era, the matter
domination era, and the accelerating phase can be natu-
rally achieved. It is worth noting that such a model is
extremely versatile since it can be interpreted both in the
framework of UDE models and as a two-fluid scenario
with dark matter and scalar field dark energy.

Actually, there is still a different way to face the prob-
lem of cosmic acceleration. As stressed by Lue et al. [14],
it is possible that the observed acceleration is not the
manifestation of another ingredient in the cosmic pie,
but rather the first signal of a breakdown of our under-
standing of the laws of gravitation. From this point of
view, it is thus tempting to modify the Friedmann equa-
tions to see whether it is possible to fit the astrophysical
data with a model comprising only the standard matter.
Interesting examples of this kind are the Cardassian
expansion [15] and the Dvali-Gabadadze-Porrati gravity
[16].

Moving in this same framework, it is possible to find
alternative schemes where a quintessential behavior is
obtained by simply taking into account the effective
contribution to cosmology of some usually neglected
fundamental physics [17–19]. For instance, a cosmologi-
cal constant term may be recovered as a consequence of a
nonvanishing torsion field, thus leading to a model which
is consistent with both SNeIa Hubble diagram and
Sunyaev-Zel’dovich data coming from clusters of gal-
axies [20]. SNeIa data could also be efficiently fitted
including higher-order curvature invariants in the gravity
Lagrangian [21]. It is worth noting that these alternative
schemes provide naturally a cosmological component
with negative pressure whose origin is simply related to
the geometry of the Universe, thus overcoming the prob-
lems linked to the physical significance of the scalar field.

From this short overview, the high number of cosmo-
logical models which are viable candidates to explain the
observed accelerated expansion is evident. This abun-
dance of models is somehow a result of having only a
limited number of cosmological tests to discriminate
among rival theories so that any new observable which
could be added to the usual ones is welcome. To this aim,
it is useful to remember that both the SNeIa Hubble
diagram and the recently proposed angular size-redshift
relation of compact radio sources [22] are distance-based
methods to probe cosmological models. From this point
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of view, it is interesting to look for tests based on time-
dependent observables. To this aim, one can take into
account the lookback time to distant objects since this
quantity can discriminate among different cosmological
models. The lookback time is observationally estimated
as the difference between the present day age of the
Universe and the age of a given object at redshift z.
Such an estimate is possible if the object is a galaxy
observed in more than one photometric band since its
color is determined by its age as a consequence of stellar
evolution. It is thus possible to get an estimate of the
galaxy age by measuring its magnitude in different bands
and then using stellar evolutionary codes to choose the
model that reproduces the observed colors best. A quite
similar approach was pursued by Lima and Alcaniz [23]
who used the age (rather than the lookback time) of old
high redshift galaxies to constrain the dark energy equa-
tion of state (see also [24]). The same method was then
applied also to braneworld models [25] and the Chaplygin
gas [26].

It is worth noting, however, that the estimate of the age
of a single galaxy may be affected by systematic errors
which are difficult to control. Actually, this problem can
be overcome by considering a sample of galaxies belong-
ing to the same cluster. In this way, by averaging the
estimates of all galaxies, one obtains an estimate of the
cluster age and reduces the systematic errors. Such a
method was first proposed by Dalal et al. [27] and then
used by Ferreras et al. [28] to test a class of models where
a scalar field is coupled with the matter term giving rise
to a particular quintessence scheme. We improve here this
analysis using a different cluster sample and testing three
different approaches to the dark energy problem.
Moreover, we add a further constraint to better test the
dark energy models and assume that the age of the
Universe for each model is in agreement with recent
estimates. Note that this is not equivalent to the lookback
time as we will discuss below.

The layout of the paper is the following. In Sec. II, we
briefly present the three classes of cosmological models
considered, giving also the main quantities which we
need for a lookback time test. The method is developed
in Sec. III and the used data are presented in Sec. IV. A
detailed discussion of the results is the subject of Sec. V.
We summarize and conclude in Sec. VI.
II. DARK ENERGY MODELS

As overviewed in the introduction, many rival theories
have been advocated to fit the observed accelerated ex-
pansion and to solve the puzzle of the nature of dark
energy. Actually, we may divide the different cosmologi-
cal models in three wide classes. According to the models
of the first class, dark energy is a new ingredient of the
cosmic Hubble flow, the simplest case being the �CDM
scenario and its generalization which we will refer to as
-2



1It is worth stressing that this model may be interpreted not
only as comprising a single fluid with an exotic equation of
state, but also as made of dark matter and scalar field dark
energy or in the framework of modified Friedmann equations.
Here, we prefer the UDE interpretation even if the results do
not depend on this assumption.
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the QCDM model. This is in sharp contrast with the
assumption of UDE models (the second class) where there
is a single fluid described by an equation of state compre-
hensive of all regimes of cosmic evolution such as the one
proposed in Ref. [13] which we will consider here, refer-
ring to it as the parametric density model. Finally, ac-
cording to the third class models, accelerated expansion is
the first evidence of a breakdown of the Einstein general
relativity (and thus of the Friedmann equations) which
has to be considered as a particular case of a more general
theory of gravity. As an example of this kind of model,
we will consider the f�R� gravity [17–19,21]. Far from
being exhaustive, considering these three models allows
one to explore very different scenarios proposed to ex-
plain the observed cosmic acceleration.

In the following, we will sketch these three dark energy
models and derive all the quantities we will need for the
analysis developed in Sec. III.

A. The QCDM model

Cosmological constant � has now become a textbook
candidate to drive the accelerated expansion of the spa-
tially flat Universe. Despite its conceptual problems, the
�CDM model turns out to be the best fit to a combined
analysis of completely different astrophysical data rang-
ing from SNeIa to CMBR anisotropy spectrum and gal-
axy clustering [5,29,30]. As a simple generalization, one
may consider the QCDM scenario in which the barotropic
factor w � p=	 takes a negative value with w � �1
corresponding to the standard cosmological constant.
How such a negative pressure fluid drives the cosmic
acceleration may be easily understood by looking at the
Friedmann equations:

H2 �

�
_a
a

�
2
�

8�G
3

�	M � 	Q�; (1)

2
�a
a
�H2 � �8�GpQ � �8�Gw	Q; (2)

where the dot denotes differentiation with respect to
cosmic time t, H is the Hubble parameter, and we have
assumed that the Universe is spatially flat as suggested by
the position of the first peak in the CMBR anisotropy
spectrum [3–5]. From the continuity equation _	�
3H�	� p� � 0, we get for the ith fluid with pi � wi	i:

�i � �i;0a�3�1�wi� � �i;0�1� z�3�1�wi�; (3)

where z � 1=a� 1 is the redshift, �i � 	i=	crit is the
density parameter for the ith fluid in terms of the critical
density 	crit � 3H2

0=8�G, and, hereafter, we label all the
quantities evaluated today with a subscript 0. Inserting
this result into Eq. (1), we get

H�z� � H0

����������������������������������������������������������������������
�M;0�1� z�3 ��Q;0�1� z�3�1�w�

q
: (4)
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Using Eqs. (1), (2), and the definition of the deceleration
parameter q � �a �a= _a2, one finds

q0 �
1

2
�

3

2
w�1��M;0�: (5)

The SNeIa Hubble diagram, the large scale galaxy clus-
tering, and the CMBR anisotropy spectrum can all be
fitted by the �CDM model with ��M;0;�Q� ’ �0:3; 0:7�,
thus giving q0 ’ �0:55; i.e., the Universe turns out to be
in an accelerated expansion phase. The simplicity of the
model and its capability of fitting most of the data are the
reasons why the �CDM scenario is the leading candidate
to explain the dark energy cosmology. Nonetheless, we
will first consider its generalization, the QCDM model,
before concentrating on the �CDM scenario.

B. The parametric density model

In the framework of UDE models, a phenomenological
class of models has been recently proposed [13] by in-
troducing a single fluid1 with energy density:

	�a� � Anorm

�
1�

s
a

�
���

�
1�

�
b
a

�
�
�

(6)

with 0<�<�, s and b (with s < b) two scaling factors,
and Anorm a normalization constant. For several applica-
tions, it is useful to rewrite the energy density as a
function of the redshift z. Replacing a � �1� z��1 in
Eq. (6), we get

	�z� � Anorm

�
1�

1� z
1� zs

�
���

�
1�

�
1� z
1� zb

�
�
�
; (7)

having defined zs � 1=s� 1 and zb � 1=b� 1. It is easy
to show that 	 / a�� for a
 s, 	 / a�� for s
 a
 b,
and 	 / const for a� b. By setting ��;�� � �3; 4�, the
energy density smoothly interpolates from a radiation-
dominated phase to a matter-dominated period finally
approaching a de Sitter state. The normalization constant
Anorm may be estimated by inserting Eq. (6) into Eq. (1)
and evaluating the result today. This gives

Anorm �
	crit;0

�1� s�����1� b��
: (8)

The continuity equation may be recast in a form that
allows us to compute the pressure for our fluid and then
the barotropic factor w � p=	 obtaining [13]:

w�
���� 3�a���� 3�sb���3�a� s�� �����sa�

3�a� s��a�� b��
;

(9)
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2The model we obtain by this ansatz should be considered as
a toy model that is able to give some useful insights on the true
model. However, it is worth noting that the matter contribution
is indeed much smaller than the curvature one and it should be
indeed negligible if only the baryonic matter is considered,
provided that the theory is able to erase the need for dark
matter.

3Actually, there is another class of models characterized by
� � 0 and n � 0; 1=2; 1, but it is ruled out by the nonvanishing
value of the Hubble constant.
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which shows that the barotropic factor strongly depends
on the scale factor (and hence on the redshift). Combining
the Friedmann equations, we get for the deceleration
parameter q � �1� 3w�=2 which, in our case, gives

q�
���� 2�a���� 2�sb���2�a� s�� �����sa�

2�a� s��a��b��
;

(10)

inserting a � 1 gives the present day value as

q0 �
�y� 1��� zs��y� 2�1� y� � ��� 4��1� y�

2�2� zs��1� y�

(11)

with y � �1� zb���. Some straightforward considera-
tions allows one to derive the following constraints on
q0 [13]:

1

2

�
�� �
2� zs

� 2
�
� q0 �

1

2

�
�zs � 2�
2�2� zs�

� 2
�
: (12)

It is convenient to solve Eq. (11) with respect to zb in order
to express this one as a function of q0 and zs. It is

zb �
�
��1� zs� � �� �2� zs��2q0 � 2�

�� �� �2� zs��2q0 � 2�

�
1=�

� 1:

(13)

The parametric density model is fully characterized by
five parameters which are chosen to be the two asymp-
totic slopes ��;��, the present day values of the decel-
eration parameter and of the Hubble constant �q0; H0�,
and the scaling redshift zs. As in Ref. [13], we will set
��;�� � �3; 4� and zs � 3454 so that �q0; H0� will be the
two parameters to be constrained by the data.

C. Curvature quintessence

There is no a priori reason to restrict the gravity
Lagrangian to a linear function of Ricci scalar R as in
the usual Einstein general relativity. Actually, higher-
order curvature invariants are introduced in quantum
gravity theories so that it is worth considering the effect
of such generalizations on the late evolution of the
Universe.

Replacing the Ricci scalar R with a (up to now) generic
function f�R� of Ricci scalar in the gravity Lagrangian,
the resulting field equations may still be recast in the
Friedmann-like form provided that the total energy den-
sity and the total pressure are written as

	tot � 	M � 	curv; ptot � pM � pcurv;

where the energy density and the pressure due to the
higher-order curvature invariants are [17,19]

	curv �
1

f0�R�

�
1

2
�f�R� � Rf0�R� � 3H _Rf00�R�

�
; (14)
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pcurv �
1

f0�R�

�
�2H _R� �R�f00�R� � _R2f000�R�

�
1

2
�f�R� � Rf0�R�

�
: (15)

This approach is particularly useful since it allows one to
interpret the non-Einstein part of gravitational interac-
tion as a new fluid with energy density and pressure given
by Eqs. (14) and (15), respectively. The barotropic factor
for such a fluid turns out to be

wcurv � �1�
f00�R� �R� �f000�R� _R�Hf00�R�
�f�R� � Rf0�R�=2� 3Hf00�R�

: (16)

A leading role is played by the form chosen for f�R�.
Following Ref. [17], we set f�R� � f0Rn with f0 constant.
Unfortunately, it is not possible to analytically solve the
Friedmann equations for the model with both matter and
curvature contributions. However, if we neglect the mat-
ter term2 (i.e., we set 	M � 0), it is possible to find power
law solutions of the Friedmann equations as a�t� �
�t=t0�� with [19]

� �
2n2 � 3n� 1

2� n
: (17)

This gives an entire class3 of cosmological models with
constant deceleration parameter

q�t� � q0 �
1� �
�

� �
2n2 � 2n� 1

2n2 � 3n� 1
: (18)

In order to get an accelerated expansion (�> 0 and q0 <
0), the parameter n has to satisfy the following constraint:

n 2

�
�1;

1�
���
3

p

2

�
[

�
1�

���
3

p

2
;1

�
: (19)

We will refer to models with n in the first (second) range
as CurvDown (CurvUp) models, respectively, and use the
method described in the following section to constrain
the two parameters �n;H0� which completely assign the
model.
III. THE METHOD

Most of the tests recently used to constrain cosmologi-
cal parameters (such as the SNeIa Hubble diagram and
the angular size redshift) are essentially distance-based
-4



4The need for a prior to reduce the parameter uncertainties
has also been advocated in previous works using the age of old
high redshift galaxies as a cosmological test. For instance, in
Ref. [23] a strong prior on �M is introduced to better constrain
the dark energy equation of state. It is likely that extending the
data set to higher redshifts and reducing the uncertainties on
the age estimate will allow one to avoid resorting to priors.
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methods. The proposal of Dalal et al. [27] to use the
lookback time to high redshift objects is thus particularly
interesting since it relies on a completely different ob-
servable. The lookback time is defined as the difference
between the present day age of the Universe and its age at
redshift z and may be computed as

tL�z;p� � tH
Z z

0

dz0

�1� z0�E�z0;p�
; (20)

where tH � 1=H0 � 9:78h�1 Gyr is the Hubble time
(with h the Hubble constant in units of
100 kms�1 Mpc�1), E�z;p� � H�z�=H0 is the dimension-
less Hubble parameter, and we have denoted with fpg a set
of parameters characterizing a given cosmological model.
It is worth noting that, by definition, the lookback time is
not sensible to the present day age of the Universe t0 so
that it is (at least in principle) possible that a model fits
well the data on the lookback time, but nonetheless it
predicts a completely wrong value for t0. This latter
parameter can be evaluated from Eq. (20) by simply
changing the upper integration limit from z to infinity.
This shows that it is indeed a different quantity since it
depends on the full evolution of the Universe and not only
on how the Universe evolves from the redshift z to now.
That is why we will explicitly introduce this quantity as a
further constraint.

Let us now discuss how we use the lookback time and
the age of the Universe to test a given cosmological
model. To this end, let us consider an object i at redshift
z and denote by ti�z� its age defined as the difference
between the age of the Universe when the object was
born, i.e., at the formation redshift zF, and the one at z.
It is

ti�z� �
Z 1

z

dz0

�1� z0�E�z0;p�
�

Z 1

zF

dz0

�1� z0�E�z0;p�

�
Z zF

z

dz0

�1� z0�E�z0;p�

� tL�zF� � tL�z�; (21)

where, in the last row, we have used the definition (20) of
the lookback time. Suppose now we have N objects and
we have been able to estimate the age ti of the object at
redshift zi for i � 1; 2; . . . ; N. Using the previous relation,
we can estimate the lookback time tobsL �zi� as

tobsL �zi� � tL�zF� � ti�z�

� �tobs0 � ti�z� � �tobs0 � tL�zF�

� tobs0 � ti�z� � df; (22)

where tobs0 is the estimated age of the Universe today, and a
delay factor can be defined as

df � tobs0 � tL�zF�: (23)

The delay factor is introduced to take into account our
123501
ignorance of the formation redshift zF of the object.
Actually, what can be measured is the age ti�z� of the
object at redshift z. To estimate zF, one should use
Eq. (21), assuming a background cosmological model.
Since our aim is to determine what the background cos-
mological model is, it is clear that we cannot infer zF
from the measured age so that this quantity is completely
undetermined. It is worth stressing that, in principle, df
should be different for each object in the sample unless
there is a theoretical reason to assume the same redshift at
the formation of all the objects. If this is indeed the case
(as we will assume later), then it is computationally
convenient to consider df rather than zF as the unknown
parameter to be determined from the data. We may then
define a likelihood function as

L lt�p; df� / exp��#2
lt�p; df�=2 (24)

with

#2
lt �

1

N � Np � 1

(�
ttheor0 �p� � tobs0

$tobs0

�
2

�
XN
i�1

�
ttheorL �zi;p� � tobsL �zi�������������������

$2
i � $2

t

q �
2
)
; (25)

where Np is the number of parameters of the model, $t is
the uncertainty on tobs0 , $i is the one on tobsL �zi�, and the
superscript theor denotes the predicted values of a given
quantity. Note that the delay factor enters the definition of
#2
lt since it determines tobsL �zi� from ti�z� in virtue of

Eq. (22), but the theoretical lookback time does not
depend on df.

In principle, such a method should work efficiently to
discriminate among the various dark energy models.
Actually, this is not exactly the case due to the paucity
of the available data which leads to large uncertainties on
the estimated parameters. In order to partially alleviate
this problem, it is convenient to add further constraints on
the model by using a Gaussian prior4 on the Hubble
constant, i.e., redefining the likelihood function as

L �p� / Llt�p� exp
�
�
1

2

�
h� hobs

$h

�
2
�
/ exp��#2�p�=2;

(26)

where we have absorbed df in the set of parameters p and
have defined
-5
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#2 � #2
lt �

�
h� hobs

$h

�
2
; (27)

with hobs the estimated value of h and $h its uncertainty.
We use the Hubble space telescope key project results [31],
setting �h;$h� � �0:72; 0:08�. Note that this estimate is
independent of the cosmological model since it has been
obtained from local distance ladder methods.

The best fit model parameters p may be obtained by
maximizing L�p�, which is equivalent to minimizing the
#2 defined in Eq. (27). It is worth stressing that such a
function should not be considered as a statistical #2 in the
sense that it is not forced to be of order 1 for the best fit
model to consider a fit as successful. Actually, such an
interpretation is not possible since the errors on the mea-
sured quantities (both ti and t0) are not Gaussian distrib-
uted and, moreover, there are uncontrolled systematic
uncertainties that may also dominate the error budget.
Nonetheless, a qualitative comparison among different
models may be obtained by comparing the values of
this pseudo #2 even if this should not be considered as
definitive evidence against a given model.

Having more than one parameter, we obtain the best fit
value of each single parameter pi as the value which
maximizes the marginalized likelihood for that parame-
ter defined as

L pi /
Z
dp1 . . .

Z
dpi�1

Z
dpi�1 . . .

Z
dpnL�p�: (28)

After having normalized the marginalized likelihood to
one at maximum, we compute the 1$ and 2$ confidence
limits (CL) on that parameter by solving Lpi �

exp��0:5� and Lpi � exp��2�, respectively.
IV. THE DATA

In order to apply the method outlined above, we need a
set of distant objects whose age can be somehow esti-
mated. Clusters of galaxies seem to be ideal candidates in
this sense since they can be detected up to high redshift
and their redshift at formation epoch5 is almost the same
for all the clusters. Furthermore, it is relatively easy to
estimate their age from photometric data only.
5It is worth stressing that, in literature, the cluster formation
redshift is defined as the redshift at which the last episode of
star formation happened. In this sense, we should modify our
definition of df by adding a constant term which takes care of
how long the star formation process is and what the time
elapsed is from the beginning of the Universe to the birth of
the first cluster of galaxies. For this reason, it is still possible to
consider the delay factor to be the same for all clusters, but it is
not possible to infer zF from the fitted value of df because we
do not know the details of the star formation history. We stress
that this approach is particular useful since it allows us to
overcome the problem to consider lower limits of the Universe
age at z rather than the actual values.

123501
To this end, the color of their component galaxies, in
particular, the reddest ones, is all that is needed. Actually,
the stellar populations of the reddest galaxies become
redder and redder as they evolve. It is just a matter,
then, to assume a stellar population synthesis model
and to look at how old the latest episode of star formation
should be in the galaxy’s past to produce colors as red as
the observed ones. This is what we will refer to as color
age. The main limitation of the method relies on the
stellar population synthesis model and on a few (un-
known) ingredients (among which are the metallicity
and the star formation rate law).

The choice of the evolutionary model is a key step in
the estimate of the color age and the main source of
uncertainty [32]. An alternative and more robust route
to cluster age is to consider the color scatter (see [33] for
an early application of this approach). The argument,
qualitatively, goes this way: If galaxies have an extreme
similarity in their color and nothing is conspiring to
make the color scatter surreptitiously small, then the
latest episode of star formation should have happened in
the galaxy’s far past; otherwise, the observed color scatter
would be larger. Quantitatively, the scatter in color should
thus be equal to the derivative of color with time multi-
plied by the scatter of star formation times. The first
quantity may be predicted using population synthesis
models and turns out to be almost the same for all the
evolutionary models, thus significantly reducing the sys-
tematic uncertainty. We will refer to the age estimated by
this method as scatter age.

The data set we need to apply the method described in
the previous section may now be obtained using the
following procedure. First, for a given redshift zi, we
collect the colors of the reddest galaxies in a cluster at
that redshift and then use one of the two methods outlined
above to determine the color or the scatter age of the
cluster. If more than one cluster is available at that red-
shift, we average the results from different clusters in
order to reduce systematic errors. Having thus obtained
ti�zi�, we then use Eq. (22) to estimate the value of the
lookback time at that redshift. Actually, what we measure
is tobsL �zi� � df that is the quantity that enters the defini-
tion (25) of #2

lt and then the likelihood function.
To estimate the color age, following Refs. [34,35], we

have chosen, among the various available stellar popula-
tion synthesis models, the Kodama and Arimoto one [36],
which, unlike other models, allows a chemical evolution
neglected elsewhere. This gives us three points on the
diagram z vs tobsL obtained by applying the method to a
set of six clusters at three different redshifts as detailed in
the left part of Table I. Using a large sample of low
redshift Sloan Digital Sky Survey (SDSS) clusters im-
aged, one of us [37] has evaluated the scatter age for
clusters age at z � 0:10 and z � 0:25, while Blakeslee
et al. [38] applied the same method to a single, high
-6
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FIG. 1. Comparison between predicted and observed values
of % � tL�z� � df for the best fit QCDM model.
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TABLE I. Main properties of the cluster sample used for the
analysis. The data in the left part of the table refers to clusters
whose age has been estimated from the color of the reddest
galaxies (color age), while that of clusters in the right part has
been obtained by the color scatter (scatter age). For each data
point, we give the redshift z, the number N of clusters used, the
age estimate, and the relevant reference.

Color age Scatter age
z N Age (Gyr) Ref. z N Age (Gyr) Ref.

0.60 1 4.53 [34] 0.10 55 10.65 [37]
0.70 3 3.93 [35] 0.25 103 8.89 [37]
0.80 2 3.41 [34] 1.27 1 1.60 [38]
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redshift �z � 1:27� cluster. Collecting the data using both
the color age and the scatter age, we end up with a sample
of �160 clusters at six redshifts (listed in Table I) which
probe the redshift range �0:10; 1:27�. This nicely overlaps
the one probed by SNeIa Hubble diagram so that a com-
parison among our results and those from SNeIa is pos-
sible. We assume $ � 1 Gyr as uncertainty on the cluster
age, no matter what method is used to get that estimate.
Note that this is a very conservative choice. Actually, if
the error on the age were so large, the color-magnitude
relation for reddest cluster galaxies should have a large
scatter that is not observed. We have, however, chosen
such a large error to take qualitatively into account the
systematic uncertainties related to the choice of the evolu-
tionary model.

Finally, we need an estimate of tobs0 to apply the
method. Following Rebolo et al. [30], we choose
�tobs0 ; $t� � �14:4; 1:4� Gyr as obtained by a combined
analysis of the WMAP and Very Small Array data on
the CMBR anisotropy spectrum and SDSS galaxy clus-
tering. Actually, this estimate is model dependent since
Rebolo et al. [30] implicitly assume that the �CDM
model is the correct one. However, this value is in perfect
agreement with tobs0 � 12:6�3:4

�2:4 Gyr determined from
globular cluster age [39] and tobs0 > 12:5� 3:5 Gyr from
radioisotope studies [40]. For this reason, we are confi-
dent that no systematic error is induced on our method
using the Rebolo et al. estimate for tobs0 even when testing
cosmological models other than the �CDM one.
0 0.2 0.4 0.6 0.8 1
Ω

2

1.75

1.5
V. RESULTS

We have applied the method outlined above to the dark
energy models described in Sec. II in order to constrain
their parameters and see if they are viable candidates to
explain cosmic acceleration. To this aim, let us note that
each one of the presented models is fully described by
only a few parameters, which are6 ��M; h; w� for the
6We drop the subscript 0 from �M;0 since it does not give rise
to any confusion here. Also, we use the dimensionless parame-
ter h instead of the Hubble constant H0.
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QCDM model, �q0; h� for the parametric density model,
and �n; h� for the curvature quintessence. For all three
models, there is still another parameter entering the fit,
that is, the delay factor df, which we will marginalize
over since it is not interesting for our aims.

Let us first consider the QCDM model. The main
results are plotted in Figs. 1 and 2. In the first plot, we
compare the estimated cluster age with the quantity

%�z� � tL�z� � df; (29)

using the best fit values for the model parameters and the
delay factor, which turn out to be

��M; h; w� � �0:25; 0:70;�0:81�; df � 4:5 Gyr;
M

FIG. 2. The 1$ and 2$ confidence regions in the plane
��M;w� for the QCDM model after marginalizing over the
Hubble constant h and the delay factor df.
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FIG. 3. Comparison between predicted and observed values
of % � tL�z� � df for the best fit �CDM model.
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FIG. 4. The 1$ and 2$ confidence regions in the plane
��M; h� for the �CDM model.
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giving #2 ’ 0:04. The #2 value for the best fit parameters
(for both the QCDM model and the other dark energy
models considered) turns out to be quite small, suggesting
that we have seriously overestimated the errors. This is not
surprising given the (somewhat arbitrary) way we have
fixed the uncertainties on the estimated age of the clus-
ters. That this is likely to be the case is also suggested by a
qualitative argument. One could rescale the errors on
tobsL �zi� in such a way that #2 � 1 for the best fit model.
Since for the best fit QCDM model #2 ’ #2

lt, this leads
one to multiply by almost 1=5 the uncertainties on tobsL �zi�.
If the error on t0 were negligible, this means that we
should reduce the uncertainty on the cluster age from 1
to 0.2 Gyr, which is indeed a more realistic value. The
presence of an error on tobs0 slightly complicates this argu-
ment, but does not change the main conclusion. We are
thus confident that the very low value of #2 we get for the
best fit model is due only to overestimating the uncer-
tainties on the cluster ages. However, we do not perform
any rescaling of the uncertainties since, to this end, we
should select a priori a model as the confidence one which
is contrary to the philosophy of the paper. It is worth
stressing, however, that such rescaling does not affect in
any way the main results.

Figure 2 shows the 1$ and 2$ confidence levels in the
��M;w� plane obtained by marginalizing over the
Hubble constant and the delay factor. Two interesting
considerations may be drawn from that plot. First, we
note that phantom models (i.e., models with w<�1
violating the weak energy condition) are also allowed
by the data. This is in agreement with recent results
coming from fitting the QCDM model to the SNeIa
Hubble diagram and the CMBR anisotropy spectrum
[41]. Unfortunately, a direct comparison is not possible
since the marginalized likelihood is too flat to get any
constraints on w so that all the values in the range tested
��2 � w � 1=3� are well within the 1$ CL. Although
essentially due to the paucity of the data, this result is also
a consequence of having not used any prior on �M as is
usually done in other analyses. By using the procedure
described at the end of Sec. III, we obtain the following
estimates for the other QCDM parameters:

�M 2 �0:13; 0:39�; h 2 �0:63; 0:77� �1$ CL�;

�M 2 �0:01; 0:62�; h 2 �0:56; 0:84� �2$ CL�:

Given that we are able to give only weak constraints on
the QCDM model, from now on we will dedicate our
attention to only the case w � �1, i.e., to the �CDM
model, and do not discuss any more the results for the
QCDM model. The best fit parameters for the cosmologi-
cal constant model turn out to be

��M; h� � �0:22; 0:71�; df � 4:05 Gyr

�#2 ’ 0:09�;
123501
which gives rise to the curve %�z� shown in Fig. 3, while
Fig. 4 reports the confidence regions in the ��M; h� plane
after marginalizing over the delay factor. From the
marginalized likelihood functions, we get

�M 2 �0:10; 0:35�; h 2 �0:63; 0:78� �1$ CL�;

�M 2 �0:06; 0:59�; h 2 �0:56; 0:85� �2$ CL�:

The �CDM model has been widely tested against a
large set of different astrophysical data. This offers us the
possibility to cross check both the model and the validity
of method. It is instructive, in this sense, to compare our
results with those coming from the fit to the SNeIa
Hubble diagram. For instance, Barris et al. [42] used a
-8
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FIG. 6. The 1$ and 2$ confidence regions in the plane �q0; h�
for the parametric density model.
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FIG. 5. Comparison between predicted and observed values
of % � tL�z� � df for the best fit parametric density model.
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set of 120 SNeIa up to z � 1:03, finding �M � 0:33 as a
best fit value with a large uncertainty (not quoted explic-
itly, but easy to see in their Fig. 12) in good agreement
with our result. A more recent result has been obtained by
Riess et al. [6], who have used a SNeIa Hubble diagram
extending up to z � 1:55 and have found �M � 0:29�0:05

�0:03,
still in agreement with our result. The �CDM model has
also been tested by means of the angular size-redshift
relation. Using a catalog of ultracompact radio sources
and taking carefully into account systematic uncertain-
ties and selection effects, Jackson [43] has found �M �
0:24�0:09

�0:07 in almost perfect agreement with our estimate.
Neither Barris et al. [42] nor Riess et al. [6] quote a best

fit value for h since this parameter is infinitely degenerate
with the supernovae absolute magnitudeMwhen fitting to
the SNeIa Hubble diagram. Nonetheless, SNeIa may still
be used to determine h by fitting the linear Hubble law to
the low redshift (z < 0:1) SNeIa. Using this method, Daly
and Djorgovski [44] have found h � 0:664� 0:08 in
good agreement with our result. Moreover, it is worth
noting that our estimate for h turns out to be in agreement
with estimates coming from different methods such as
various local standard candles [31], the Sunyaev-
Zel’dovich effect in galaxy clusters [45], and time delays
in multiply imaged quasars [46]. Finally, let us quote the
results obtained by Tegmark et al. [29], who have per-
formed a combined fit of the �CDM model to both the
WMAP data on the CMBR anisotropy spectrum and the
galaxy power spectrum measured by more than
200 000 galaxies surveyed by the SDSS Collaboration.
They find �M � 0:30� 0:04 and h � 0:70�0:04

�0:03 in very
good agreement with our results.

Perhaps the most interesting result of testing the
�CDM model with our method is not the success of
this model (since it has yet been shown by a lot of
evidence), but the substantial agreement among our esti-
mates of the parameters ��M; h� and those coming from
different kinds of data. This is quite encouraging since it
is an important successful cross check and makes us
confident about the results one could obtain by applying
it to other cosmological models.

Let us now examine the results obtained for the para-
metric density model, pictorially shown in Figs. 5 and 6.
The best fit model is obtained for the following values of
the parameters �q0; h� and of the delay factor:

�q0; h� � ��0:68; 0:71�; df � 4:20 Gyr

�#2 ’ 0:07�:

Marginalizing over df, we get

q0 2 ��0:81;�0:47�; h 2 �0:64; 0:78� �1$ CL�;

q0 2 ��0:89;�0:24�; h 2 �0:58; 0:85� �2$ CL�:

Note that the 2$ CL on the q0 parameter has been trun-
123501
cated at the upper end since it formally extends to values
higher than the physically acceptable one.

In Ref. [13], the parameters of this model have been
constrained by using both the SNeIa Hubble diagram and
the angular size-redshift relation. In particular, fitting the
model to the SNeIa Hubble diagram gives h � 0:64�0:08

�0:05,
while the physically acceptable range for q0 turns out to
be in agreement with the data for q0 � �0:42 as best fit
value. The present day deceleration parameter q0 is better
constrained using the data listed in Jackson [43] to per-
form the angular size-redshift test, thus obtaining q0 �
�0:64�0:10

�0:12 [13]. Both these results are in very good
agreement with our estimates so that we conclude that
-9
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for curvature quintessence in the CurvDown regime.
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the parametric density model is a viable candidate alter-
native to the �CDM model.

Finally, let us discuss the results for the curvature
quintessence. Figures 7 and 8 report the confidence re-
gions in the plane �n; h� for the CurvUp and CurvDown
regimes, respectively, after marginalizing over the delay
factor. The first striking feature is that the contour plots
are not closed so that the marginalized likelihood func-
tion gives only an upper (lower) limit to the parameter n
in the CurvUp (CurvDown) regime. Formally, we get the
following estimates for the best fit values in the CurvUp
and CurvDown regimes, respectively:

�n; h� � �1:367; 0:71�; df � 4:80 Gyr

�#2 ’ 0:23�;

�n; h� � ��0:367; 0:74�; df � 4:80 Gyr

�#2 ’ 0:21�;

but the best fit value for n actually lies outside the inves-
tigated range for this parameter. The confidence regions
being open, it is meaningless to give constraints on h, but
nonetheless it is possible to infer the following limits:

n � 1:402 at 1$ CL; n � 1:424 at 2$ CL;

n � �0:508 at 1$ CL; n � �0:606 at 2$ CL;

where the first row refers to the CurvUp regime and the
second to the CurvDown one. These limits do not contra-
dict the ranges determined by fitting to the SNeIa Hubble
diagram [21], but seem to be quite nonrealistic. Actually,
the deceleration parameter corresponding to these values
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FIG. 7. The 1$ and 2$ confidence regions in the plane �n; h�
for curvature quintessence in the CurvUp regime.
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of n is quite small �q0 ��0:01�, thus contradicting the
evidence in favor of an accelerating Universe. Moreover,
the results in Ref. [21] have been obtained by using an old
sample of SNeIa, including some SNeIa that have now
been discarded from the gold set in Riess et al. [6]. On the
other hand, it is worth noting that fitting a power law
scale factor to the angular size-redshift relation for com-
pact radio sources gives � ’ 1 [47] which, by using
Eq. (17), translates to an estimate for n that is in good
agreement with our result.
VI. CONCLUSIONS

The impressive amount of data indicating a spatially
flat Universe in accelerated expansion has posed the
problem of dark energy and stimulated the search for
cosmological models able to explain such unexpected
behavior. Many rival theories have been proposed to solve
the puzzle of the nature of dark energy ranging from a
rolling scalar field to a unified picture where a single
exotic fluid accounts for the whole dark sector (dark
matter and dark energy). Moreover, modifications of the
gravity Lagrangian have also been advocated. Although
deeply different in their underlying physics, all these
scenarios share the common feature of well reproducing
the available astrophysical data. It is worth stressing,
however, that the most widely used cosmological tests
and, in particular, the SNeIa Hubble diagram and the
angular size-redshift relation are essentially based on
distance measurements to high redshift objects and are
thus affected by similar systematic errors. It is hence
particularly interesting to look for methods which are
related to the estimates of different quantities. Being
-10
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affected by other kinds of observational problems, such
methods could be considered as cross checks for the
results obtained by the usual tests and they should repre-
sent complementary probes for cosmological models.

The technique we have devised here is a first step in this
direction. We have used the present age of the Universe
and the lookback time to galaxy clusters to build a sort of
time diagram of the Universe in order to reconstruct its
age evolution. Relying on stellar evolutionary codes, the
estimate of the lookback time is related to a different
astrophysics than the distance-based methods and it is
thus free from any problem connected with the evolution
of standard candles (such as the SNeIa absolute magni-
tude and the intrinsic linear size of radio sources).
Actually, this technique could be affected by its own
systematics (such as, for instance, the degeneracy be-
tween age and metallicity), but these may be better con-
trolled. Moreover, comparing the results thus obtained
with those coming from distance-based methods allows
one to strengthen the conclusions suggested by both
techniques.

Motivated by these considerations, we have first ap-
plied our method to the �CDM model in order to esti-
mate the present day values of the matter density
parameter �M and of the dimensionless Hubble constant
h obtaining (at the 1$ CL):

�M � 0:22�0:13
�0:10; h � 0:71�0:07

�0:08:

These values are in agreement with previous estimates in
the literature. This can be considered an independent
confirmation not only of the viability of the �CDM
model, but also of our method. It is worth noting that
the �CDM scenario receives further support from this
test and henceforth the cosmological constant � still
remains the best candidate to explain the dark energy
puzzle from an observational point of view.

Nonetheless, the �CDM model is severely affected by
conceptual problems so that it is worthwhile to look for
alternative approaches. This has stimulated plenty of
models where the cosmic acceleration is due to a domi-
nant scalar field rolling down its potential. However, such
a scheme, on the one hand, still does not solve the coin-
cidence problem and, on the other hand, is plagued by the
unidentified nature of the scalar field itself and the igno-
rance of its self-interaction potential. These considera-
tions have opened the way to different models that are
able to give an accelerated expansion without the need for
scalar fields. Two of these approaches have been tested in
this paper.

In Ref. [13], a phenomenological unified model has
been proposed where a single fluid with a given energy
density assigned by few parameters is able to fit both the
SNeIa Hubble diagram and the angular size-redshift
relation for ultracompact radio sources without the need
for any cosmological constant or scalar field. This para-
123501
metric density model has been tested here with the look-
back time method, and the following estimates (at the 1$
CL) for its characterizing parameters have been obtained:

q0 � �0:68�0:21
�0:13; h � 0:71� 0:07;

in agreement with the results from the test performed in
Ref. [13]. It is worth stressing that our method turns out to
be more efficient than the usual fit to the SNeIa Hubble
diagram for the parametric density model. It is also
interesting to note that both q0 and t0 predicted by this
model are in almost perfect agreement with those com-
puted for the �CDM model with the parameters ��M; h�
as discussed above. This is not surprising since Eq. (6)
shows that, nowadays, the energy density of the para-
metric density model is very similar to that of the
�CDM model so that these two scenarios share most of
the observable properties referring to today’s quantities.
However, this by no way means that the two models are
the same. Actually, it is the underlying philosophy that is
completely different, having now a single fluid rather
than a cosmological constant dominating over the matter
term. Both models predict similar values of today’s ob-
served quantities simply because they are tied to repro-
duce the same data and not because they are two different
manifestations of the same underlying physics.

Another possible approach to the cosmic acceleration is
to consider this feature as the first signal of the break-
down of the Einstein general relativity at some character-
istic scale. In this picture, the Universe is still dominated
by standard matter, but the Friedmann equations have to
be modified as a consequence of a different gravity
Lagrangian. This philosophy inspired curvature quintes-
sence scenarios where an effective dark energy is related
to the properties of the function f�R� which replaces the
Ricci scalar R in the gravity Lagrangian [17–19]. The
coupling between matter and curvature for a theory with
f�R� � f0Rn gives rise to fourth order nonlinear differ-
ential equations for the evolution of the scale factor that
are not analytically solvable. This difficulty disappears if
one considers a toy model with �M � 0 so that power law
solutions, a� t�, are possible, provided that � is linked
to n by Eq. (17). Such a model is particularly attractive
from a theoretical viewpoint (since it allows one to give a
purely geometric interpretation of the dark energy) and
has also been shown to fit well the SNeIa Hubble diagram
[21]. We have shown here that, while it is able to pass
successfully the lookback time test implemented in this
paper, only weak constraints can be imposed on the
parameter n with the best fit value lying in a region
corresponding to decelerating rather than accelerating
models.We are thus tempted to conclude that this scenario
could be rejected with some confidence. Actually, this
conclusion is also suggested by the recent result by Riess
et al. [6] who, using the SNeIa Hubble diagram up to z �
1:55, have convincingly detected a change in the sign of
-11
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the deceleration parameter q. The power law solutions
predict, on contrary, a constant q so that they are ruled out
by the result in Riess et al. [6]. It is important to stress,
however, that this is not a definitive exclusion of the
curvature quintessence scenario. Actually, we have con-
sidered only power law solutions in absence of matter. It is
indeed conceivable that including a matter term com-
pletely changes the evolution of the scale factor, possibly
giving a past deceleration followed by the present accel-
eration thus leading to the curvature quintessence model
in agreement with what is suggested by the extended
SNeIa Hubble diagram (see also [18] and references
therein for a further discussion of curvature models).

Having tested three different models, it is worth asking
what is the better one. Unfortunately, this is not possible
on the basis of the test results only. Comparing the #2

values, one could naively conclude that the parametric
density model is the best one since it gives the lowest #2.
However, while the difference among the #2 values is
significant between the parametric density model and the
curvature quintessence scenario (almost an order of mag-
nitude), it is too small (0.07 vs 0.09) to conclude that the
�CDM model is disfavored.We have thus to conclude that
this test alone is not able to discriminate between these
two dark energy candidates. On the other hand, Sandvik
et al. [48] recently claimed that UDE models are not
viable because the growth of density perturbations will
lead to matter power spectrum in disagreement with what
is observed. This should be evidence against the para-
123501
metric density model. However, it is worth noting that
Sandvik et al. explicitly consider the generalized
Chaplygin gas model which is characterized by a negative
squared sound speed that seems to be the main cause of
the anomalous growth of perturbations. For the para-
metric density model, the sound speed is always positive
definite so that it is likely that the argument of Sandvik
et al. should be at least reconsidered.

Finally, we would briefly comment on the possibility to
ameliorate our method by increasing the maximum red-
shift probed. To this aim, galaxy clusters do not appear as
good candidates since it is quite difficult to detect a
significative number of member galaxies up to redshifts
larger than �1:3. However, high redshift galaxies may be
taken into account provided that they are detected in as
many photometric bands as possible. This latter require-
ment is fundamental since it allows one not only to better
estimate the age of the galaxy, but also to infer con-
straints on its formation redshift zF that cannot be as-
sumed to be the same for all the galaxies (as has been
possible for clusters). The i drop out technique allows one
to discover galaxies up to redshift z� 6 [49] and thus lets
us hope to measure lookback time up to such high red-
shift.With its ability of both furnishing multicolor photo-
metry of high redshift galaxies (and thus better estimates
of their color ages and formation redshift) and increasing
the number of SNeIa, the Great Observatories Origin
Deep Survey [50] seems to be the most promising source
of cosmological constraints in the near future.
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