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Abstract. The multiplicity function (MF) of groups and clusters of galaxies is determined using galaxy catalogues extracted
from a set of Digitized Palomar Sky Survey (DPOSS) plates. The two different types of structures (of low and high richness)
were identified using two different algorithms: a modified version of the van Albada method for groups, and a peak finding
algorithm for larger structures. In a 300 deg2 area up to z < 0.2, we find 2944 groups and 179 clusters. Our MF covers a
wide range of richnesses, from 2 to 200, and the two MFs derived by the two algorithms match smoothly without the need for
additional conditions or normalisations. The resulting multiplicity function, of slope α = −2.08 ± 0.07, strongly resembles a
power law.
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1. Introduction

The multiplicity function (hereafter MF), in its differential
form, is defined as the number of groups or clusters per area
or volume unit and per richness unit.

The MF, which is the richness spectrum of galaxy aggre-
gates, parametrises the observed clustering of galaxies and
hence, together with the correlation and luminosity functions,
is one of the fundamental cosmological observables. With re-
spect to the complete description of clustering, the MF is com-
plementary to the covariance function (which is related to the
two-point correlation function), being related to the ratio of the
amplitude of the higher-order to the two-point correlation func-
tions (Gott & Turner 1977, hereafter GT). Due to computa-
tional costs and errors, the measurement of correlation func-
tions of order N becomes unreliable for N > 3, and the MF is
therefore a crucial means of obtaining information on higher
order clustering.

The Press–Schechter theory (Press & Schecter 1974) states
that the shape of the mass function (a power-law mass distri-
bution with an exponential cutoff at the bright end) should pro-
vide important clues concerning the conditions at the epoch of
recombination and does not depend on the cosmic density pa-
rameterΩ. The steepness of the initial density fluctuation spec-
trum constrains the broadness of the mass function.
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The MF, the mass function or the luminosity function all
describe in a similar way the cosmic abundance of objects and,
in fact, present similar shape (Bachall 1979).

Despite the fact that the early descriptions of galaxy clus-
tering properties were given in terms of the MF (Gott & Turner
1977), most authors have focused on the shape of the mass
function, which can be directly compared to the PS formal-
ism. Even when the observed quantity is the MF, some authors
(Bachall & Cen 1993) prefer to convert it into a mass function
using a reliable M/L ratio. Nevertheless, one must consider all
of the uncertainties introduced by the mass estimation, which
are propagated to the mass function determination. These in-
clude errors in the internal velocity dispersion used for dynam-
ical mass estimates, the large intrinsic scatter in the richness-
mass relation, and errors in assuming dynamical equilibrium
for all clusters when using X-ray data (Girardi et al. 1998).

The main problem which must be overcome when deter-
mining the MF is the production of a statistically significant
and unbiased catalogue of groups and clusters covering a large
enough area of the sky and encompassing cosmic structures
spanning a wide range of richness, from very low multiplicity
structures such as galaxy triplets, up to very rich clusters with
several hundred members.

In the past, catalogues of groups and clusters have been
derived from either 3D data (cf. Maia et al. 1989; Ramella
et al. 1989, 2001, 2002), or from projected (2D) data
(de Vaucouleurs 1975a,b; Turner & Gott 1976; Materne 1978;
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de Filippis et al. 2000). All these catalogues are derived from
different data sets and with different algorithms and are there-
fore affected by different biases favouring the detection of
structures in a given richness range; biases induced by the
topology of the data, by the limited size of the survey, by ambi-
guities in the selection criteria, etc. Shectman (1985) pioneered
the field of automated cluster finding in optical surveys using
peak-finding methods, which has been refined and modified in
many later projects (Maddox et al. 1990; Dalton et al. 1992;
Lumsden et al. 1992; Nichol et al. 2001a; Gal et al. 2003).
Based on a model-dependent approach, Postman et al. (1996)
developed the matched filter technique, which has been widely
used, with several variants (Kawasaki et al. 1998; Schuecker
& Bohringer 1998; Lobo et al. 2000), including the adaptive
matched filter (Kepner et al. 1999). In addition, the availability
of multiband high accuracy CCD data, allowed the implemen-
tation of several cluster-finding methods based on the use of
galaxy colours (Gladders & Yee 2000; Goto et al. 2002; Nichol
et al. 2001b; Andreon 2003). An independent approach relied
on the Voronoi tessellation technique as a peak finder (Ramella
et al. 2001; Kim et al. 2000) and a modified version, taking
into account colours, was implemented by Kim et al. (2002).
More recently, other, more advanced pattern recognition tools
such as Bayesian clustering (Murtagh et al. 2002), maximum
likelihood (Cocco & Scaramella 1999), and neural networks
(Frattale Mascioli, Priv. Comm.) have been introduced.

Much less work has been done to detect poorer structures
such as loose groups; two principal methods (and their suc-
cessive elaborations) have been adopted. Turner & Gott (1976)
presented the first tentative objective identification of groups
as enhancements above a reliable threshold in the projected
galaxy distribution. The “Friends Of Friends” algorithm of
Huchra & Geller (1982) generates a measure of correlation
among galaxies and their neighbours, based on their separation
in the full 3D space. A noticeable exception to the lack of low-
richness catalogs has been the detection of compact groups,
where several teams (de Carvalho & Djorgovski 1995; Iovino
et al. 1999, 2003) have proposed different approaches to their
detection. For the determination of the MF, it is important to
note that its derivation from the above-cited catalogues is hin-
dered by the fact that all of the above algorithms are optimised
for the detection of either groups or clusters, and no systematic
work has been done in matching their outcomes in the transi-
tion region between structures of low and high richness.

Here, we attempt the derivation of an accurate MF, starting
from the galaxy catalogues extracted from DPOSS material.

The paper is structured as follows. In Sect. 2 we briefly
summarise the properties of the Digitized Palomar Sky Survey
(DPOSS) data (Djorgovski et al. 1998, 1999; Reid et al. 1991)
used to derive the multiplicity function described in Sect. 5.
In Sect. 3 we describe the algorithms used to detect groups
(Sect. 3.1) and clusters (Sect. 3.2), while in Sect. 4 we dis-
cuss the simulations performed in order to evaluate the accu-
racy of the method, expressed in terms of completeness and
fraction of spurious detections, and to evaluate the possible
existence of systematic errors in the ranges of overlapping
richness for the group and cluster finding procedures. Finally,

in Sect. 6, we draw our conclusions. Through this paper we
assume H0 = 100 km s−1 Mpc−1.

2. The data

The data used in this paper were extracted from the DPOSS
photographic plates (Djorgovski et al. 1998, 1999; Reid et al.
1991) using the SKICAT package (Weir et al. 1995a) which
provides photometric, morphological and astrometric data for
each detected object. SKICAT also provides a classification
(Star/Galaxy) based on a classification tree (Weir et al. 1995b).

In DPOSS, the three photometric bands (J, F and N) are
individually calibrated to the Gunn system (Thuan & Gunn
1976; Wade et al. 1979) by means of accurate CCD photometry
of objects of intermediate luminosity, (to take into account the
nonlinear response of the plates), with preferential targetting of
galaxies. From the DPOSS data covering the selected regions,
we extract, for each individual object: RA, Dec, total magni-
tude which best approximates the asymptotic magnitudes and
the object classification.

DPOSS individual plate catalogues must be cleaned of spu-
rious objects and artifacts (such as multiple detections coming
from extended patchy objects, halos of bright stars, satellite
tracks, etc.). In order to do so, we mask plate regions occu-
pied by bright, extended and saturated objects which locally
make object detection extremely unreliable. Subsequently, we
matched catalogues obtained in each of the three photometric
bands, by using the plate astrometric solution and by match-
ing each object in one filter with the nearest objects in the
two other filters (with a tolerance box of 7 arcsec, see Paolillo
et al. 2001). Due to the different S/N ratios in the three bands,
many objects had discordant star/galaxy classifications in cat-
alogues obtained in the different bands. The number of such
objects obviously increases at faint magnitudes (it needs to be
stressed, however, that this problem is greatly reduced when a
new training set for the classification is adopted, see Odewahn
et al. 2002 for details). In order to exclude from our final cat-
alogues the smallest number of true galaxies, we discard only
the objects classified as stars in all three filters. Final catalogues
were thus obtained for 10 DPOSS plates (see Table 1) cover-
ing a total area of ∼300 sq deg spread at high galactic latitude
(‖b‖ > 30 deg) (see Fig. 1), in order to reduce cosmic variance.
Details on the photometric calibration of these particular plates
can be found in Paolillo et al. (2001, 2003). We note that these
calibrations are not the same as the general DPOSS calibra-
tions described in Gal et al. (2003). Our catalogue of galaxies
is limited in magnitude down to the Gunn r = 20.5 mag.

3. Detection of galaxy overdensities (groups
and clusters)

Making an arbitrary choice, we use the term “groups” to denote
those galaxy aggregates that consist of fewer than 20 objects,
and “clusters” for all richer structures. This definition is com-
parable to that of Abell (1958), but in our case we set an im-
plicit threshold on the magnitude difference between the bright-
est and the faintest objects in the same structure, given by the
limiting magnitude.
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Fig. 1. Stereographic projection of a transequatorial sky region (ranging from δ = −5 up to 20 degs and from RA = 0 up to 80 degs) containing
the ten selected DPOSS fields listed in Table 1. In order to trace the global investigated area, all the detected clusters (without any cut in
magnitude) are represented.

Table 1. List of DPOSS plates from which we extracted our cata-
logues. Notes: (1) calibration from Paolillo et al. (2001); (2) calibra-
tion from Paolillo et al. (2003).

Plate RA Dec Effective area

Num (2000) (2000) (deg2)

610(1) 01:00 +15.0 30.0

680(1) 00:20 +10.0 37.8

682(1) 01:00 +10.0 38.7

688(1) 03:00 +10.0 38.5

693(1) 04:40 +10.0 30.2

752(1) 00:20 +05.0 32.0

755(1) 00:20 +05.0 24.3

757(1) 01:20 +05.0 24.6

827(2) 01:20 +00.0 10.1

829(1) 02:00 +00.0 24.6

3.1. The procedure for groups

In order to detect galaxy associations of low richness
(Nobj < 20), we have implemented a modified version of
van Albada’s algorithm originally developed for binary sys-
tems (see Oosterloo 1989; Soares et al. 1995).

Taking into account only the position and the apparent mag-
nitude for each galaxy in our catalog, we first search for the
nearest neighbour in a given magnitude range, and then esti-
mate the probability that the two objects are physically related.

For the fore/background galaxies, the projected distribution
is assumed to be Poissonian and the probability that the angular
separation between a given galaxy and its nearest neighbour
falls in the range θ and θ + dθ is:

P1(θ)dθ = exp
[
−πθ2ρ

]
2πθρdθ (1)

where ρ is the surface density of background galaxies in the im-
mediate neighbourhood. In order to combine the angular sep-
arations of different pairs into a single distribution, the quan-
tity x is defined as the ratio between the observed value of the
distance (θ1) to the nearest neighbour and the expected theoret-
ical mean value < θ1 > given by Eq. (1):

θ1 ≡ x 〈θ1〉 = x
2
√
ρ
· (2)

The resulting frequency distribution of x:

p1(x)dx = exp

[
−πx

2

4

]
π

2
xdx (3)

is then independent of the background density ρ.
The shape of the observed distribution, p0(x), and the

Poisson distribution p1(x), for large x, are expected to be simi-
lar. If an excess is found in the observed distribution relative to
the Poissonian expectation for small x (see Fig. 2, lower panel),
it is likely due to physical companions, which will tend to clus-
ter at smaller distances than random projections.

Normalising the observed distribution to the Poisson distri-
bution, we can use the excess p0(x)−p1(x), observed at small x,
to define the probability p that two galaxies, located at a cer-
tain x, are physically associated:

p ≡ 1 − p1(x)
p0(x)

· (4)

In this formalism, all galaxy pairs having p higher than a given
threshold value are considered to be physical companions.

Iteration of the above procedure allows us to estimate
the probability that other companions of higher order (up to
N � 20) are physically related to the first object by compar-
ing the observed distributions of higher order to the expected
Poissonian distributions (normalised to the local density) for
the second, third, etc. nearest neighbours (p 2(x), p3(x), etc.).

Groups are then identified by associating all galaxies hav-
ing probability p higher than a given threshold value. Groups
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Fig. 2. Upper panel: comparison of the Poissonian distribution (solid
line) and the distribution of xs (histogram) in a simulation with galax-
ies randomly distributed in the sky. Lower panel, as upper panel, but
for actual observations: some of the nearest neighbours are physically
linked (related) to the groups and produce an excess of neibourghs at
small x.

sharing one or more companions are finally merged into one
single system. The total number of objects defines our richness
for the groups.

To compute the quantity x for every pair of galaxies, it
is necessary to have an accurate estimate of the local galaxy
density background ρ. To derive ρ, for each galaxy and within
each magnitude interval, one first determines the distance to the
ith nearest neighbour θi. The relation between θi and ρ is given
by the probability that the distance to the ith nearest neighbour
lies between θ and θ + dθ:

Pi(θ)dθ = exp
[
−πθ2ρ

] (πθ2ρ)i−1

(i − 1)!
2πθρdθ. (5)

The mean expected value of θ i is:

〈θi〉 = Γ(i + 0.5)[
(i − 1)!

√
(πρ)
] · (6)

The higher the chosen value of i (i.e. for large distances to the
ith neighbours), the lower the probability of being affected by
possible physical companions, which would lead to an overes-
timate of the local background. Furthermore, the width of the
distribution of the ratio between θ i and its mean value (< θi >)
decreases with increasing i. Thus if i is large enough, it is pos-
sible to obtain an accurate estimate of ρ from Eq. (6) by re-
placing the expected value < θi > with the observed one θi. On
the other hand, i must not be too large, otherwise too much of
the small-scale clustering would be lost, and a large area of the
plate will be affected by border effects (distant companions of
galaxies located near the border of the plate will not follow a
Poissonian statistics and will be preferentially located towards
the center of the plate).

The choice of the value of i is therefore a compromise that
has to be made by taking into account all of the above factors.

3.2. The procedure of cluster identification

Candidate clusters were identified following a procedure sim-
ilar to that of Shectman (1985). The catalogue of galaxies is
binned into equal-area square bins in the sky, generating a two
dimensional map (density map) of the number density of galax-
ies. The bin size (1.2′) is chosen such that the mean number of
galaxies per bin is ∼1, in order not to degrade the spatial reso-
lution. The resulting map (Fig. 3) exhibits irregular structures
corresponding to the presence of overdensities emerging above
the intrinsic fluctuations of the background distribution.

The large fluctuations existing in the distribution of back-
ground galaxies are due to the non-uniform background galaxy
distribution. Once the density map has been created, the anal-
ysis of these maps poses similar problems to those of clas-
sical photometry, so we use S-Extractor (Bertin & Arnouts
1996) for the detection of areas showing enhanced signal. S-
Extractor is run on the density map searching for objects with
a minimum detection area of 4 pixels above a global threshold
of 0.4 times the Poissonian background noise estimated from
each plate using a background map. The evaluation of such
background is a crucial step, strongly affecting the final rich-
ness estimate. The use of S-Extractor poses several problems
(which cannot be trivially solved) since it is optimised to work
on images with Gaussian statistics, while in density maps there
are too few objects per bin, and they are distributed according
to Poissonian statistics, thus making the background determi-
nation provided by S-Extractor unreliable. To circumvent this
problem, we were forced to derive the background map in an
alternative way. We first divide the original density map into
sub-images of ∼1◦ ×1◦, and then compute the Poissonian mean
in each box, subsequently performing a fit with a 2-dimensional
polynomial function of first order. We found a mean back-
ground density of 1640 per sq deg with a σ of 148 galaxies.
In this way, we remove those spatial frequencies higher (the
clusters) than the mesh scale length. At the estimated typical
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Fig. 3. The smoothed two dimensional density map of the number
density of galaxies for a field 5◦ × 5◦ centered at RA = 1 h and
Dec = +15◦ (DPOSS plate n. 610). The smoothing has been per-
formed by a Gaussian 2D filter with width (∼3′) typical for a cluster
core at redshift 0.1−0.2.

redshift in our sample (z = 0.1−0.2) this scale corresponds to
a linear dimension of 9–15 Mpc. This map was then subtracted
from the global frame before running the detection procedure.

The resulting density map was then smoothed in the detec-
tion step using S-Extractor with a Gaussian 2D filter in order to
match the cluster density profiles and, since we are searching
structures with almost a Gaussian core, the filter width was cho-
sen depending on the expected average apparent size for the
cores (∼250 kpc) of clusters in the redshift range (z = 0.1−0.2)
probed by our data. We stress that the choice of the otimal pa-
rameters strongly depends on the characteristics of the specific
data sets and needs to be tuned on the simulations reproducing
the behaviour of true catalogues.

The extracted parameters characterizing the detected over-
densities are the density centroid in absolute equatorial coor-
dinates (J2000), the isophotal area above the threshold, the
S/N ratio of detection, and the number of objects inside the
isophotal area, which we use to derive (after the background
correction) our richness parameter for the clusters.

4. Outlines of the simulation

In order to test the limits of our group and cluster detection
procedures, we performed simulations over a region having the
same area and the galaxy counts as one POSS-II plate. In this
way we could estimate the shortcomings of our procedure, such
as the percentage of spurious detections and the percentage of
lost objects; at the same time this helped in the fine tuning of
the parameters of the detecting algorithms.

Fig. 4. MF of simulated (filled circles) and detected (empty squares)
groups. On the horizontal axis there is the number of galaxies in each
group, that is the richness.

4.1. Simulation of the galaxy background

First we simulated the galaxy background assuming a uni-
form galaxy distribution. The number of simulated background
galaxies is the average number of galaxies present in the
DPOSS plates (approx. 50 000 after excluding all the galax-
ies fainter than the limiting magnitude). To each background
galaxy, a sky position, randomly extracted within the plate lim-
its, and an apparent magnitude, distributed according to the ob-
served galaxy counts, were assigned.

4.2. Simulation of galaxy groups

The number of groups to be simulated was extracted from the
multiplicity function of Turner & Gott (1976).

We began by placing the principal galaxy of each group
at random positions inside each field. Then, to each princi-
pal galaxy we assign an absolute magnitude and a redshift.
Absolute magnitudes were extracted from a Schechter func-
tion with M∗ = −19.80 and α = −1.25 (Ramella et al. 1999),
while the redshifts were assigned from the galaxy distribution
observed in the Las Campanas redshift survey (Shectman et al.
1996). To each principal galaxy we then associate a number
of secondary galaxies matching the multiplicity function men-
tioned above, each of these galaxies having the redshift of the
corresponding principal galaxy. Taking into account the es-
timates provided in the literature, each simulated group was
given a maximum standard dimension depending on its rich-
ness: a maximum radius of 0.26 Mpc for groups with N obj ≤
18 members, while a maximum radius of 0.55 Mpc is used for
groups with Nobj > 18 members. All the secondary galaxies
belonging to a group were then distributed inside the group
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Fig. 5. Simulated (dots) and detected (triangles) structures. Left: groups. Right: clusters. Circles highlight simulated groups/clusters which have
been detected.

volume, and each assigned an absolute magnitude generated
from the same Schechter function as the brightest galaxies in
the group. Finally, absolute magnitudes were re-transformed to
apparent magnitudes by taking into account the cluster distance
and the average k-corrections from Fukugita et al. (1995). The
detection algorithm was then applied to the simulated plates
in order to fine tune the algorithm parameters (threshold value
of the probability p and choice of the ith nearest neighbour
to compute the background galaxy density). The results of the
simulations may be summarised as follows: the group detection
algorithm loses 28% of the simulated groups and produces 43%
spurious detections.

Figure 4 shows that, in spite of the high contamination
level, the MF shape is statistically preserved: the simulated MF
(filled circles) and the detected MF (empty squares) differ on
average by a vertical offset, which we take into account to cor-
rect the final group MF.

In Fig. 5 (left panel), we show, as an example, the outcome
of one typical simulation. The centers of the simulated (dark
dots) and detected (empty triangles) groups are plotted; a circle
is drawn when the two match.

4.3. Simulation of clusters

Cluster simulations were performed with the same assumptions
used for the groups, with some crucial differences. The num-
ber of simulated clusters of a given richness (ranging from 2
to 200 galaxies) in an area of 37.59 squared degrees (approx-
imately the area of one DPOSS plate) was determined from
a preliminary analysis performed on 10 DPOSS plates. In a
second step, a power law multiplicity function was used, with
the slope taken from the preliminary multiplicity function. In
this way we tried to take into account the total number of low

richness objects, which could not be measured from our pre-
liminary analysis.

The absolute magnitudes of the principal galaxies were
extracted from a Gaussian distribution centered on −22.99 ±
1.0 mag (Schneider et al. 1983), while those for the sec-
ondary galaxies were extracted from the luminosity function
of Paolillo et al. (2001). To take into account the richness de-
pendence of the cluster dimensions, we arbitrarily adopted a
core radius (σ of the Gaussian profile) of 0.5 Mpc for clusters
with ≤30 members, while a core radius of 1.0 Mpc was used for
clusters with >30 members. Although these values may appear
somewhat high, the adoption of smaller values for the core ra-
dius would only make the detection easier and therefore the
whole procedure more reliable. As with the groups, the de-
tection algorithm was applied to a large number of simulated
plates to test the algorithm performance as a function of the
properties of the objects to be detected.

In Fig. 6, we plot, for a typical simulated plate, the assigned
richness vs. the assigned core radius of the simulated clusters
(open circles) and mark with a cross the clusters retrieved by
the algorithm. Clusters with a very shallow profile or which are
poor are preferentially lost.

The dependence of the algorithm efficiency on the richness
is shown in Fig. 7, where we plot the number of simulated (con-
tinuous line) and retrieved (dash shaded area) clusters in the
typical plate area. All but two of the clusters having Nobj > 35
are retrieved. In the range of richness 25 < Nobj < 35, 80% of
the clusters are retrieved. Considering that a cluster belonging
to the Abell richness class 0 (30–49 members in a range of two
magnitudes) has Nobj > 30 (Nobj includes the cluster galaxies
in a range of at least four magnitudes), we are complete up to
z = 0.2 at least for all the Abell richness classes. Figure 7 also
shows that spurious detections (dot shaded area) are absent in
the richness range where the algorithm works with the highest
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Fig. 6. The richness vs. the core radius of the simulated clusters (open
circles). The crosses mark each retrieved cluster.
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Fig. 7. Cluster number in the one plate area is plotted as a function of
estimated richness. The continuous histogram represents the number
of clusters given in input to the simulation; the dash shaded histogram
represents the retrieved clusters and the dot shaded histogram the spu-
rious detections. The richness bin grows exponentially as 2n/2 (see
Sect. 5).

efficiency, and occur only in the range where the group finder
is to be used.

As already mentioned, the estimate of clusters richness is
given by the number of objects within the detection isophote
(isodensity counts). We wish to stress that this definition of
richness depends on the redshift of the detected structure. The
quality of the richness estimate has been tested using our
simulations. In Fig. 8, the points follows bisector of the di-
agram (a bit shifted towards the upper half part of the plot),
with a scatter in richness of ∼10 galaxies (which is consistent
with the background fluctuations). The small shift indicates an

Fig. 8. Richness of the simulated vs. the detected clusters. The errors
are inversely proportional to the signal to noise ratio for the detection.

understimation of the retrieved richnesses. We are comparing
the number of the galaxies put in a synthetic circular aper-
ture (the simulated) with the richness in the isodensity irregular
countours, as it is measured in the real case: in this way some
galaxies are missed. If we use circular apertures of the cluster
size (which are known in the simulations but not in the actual
observations), the shift disappears. Points in the lower right part
of the plot are due to overlapping clusters, for which (in the ab-
sence of a deblending procedure) the richness will obviously
be overestimated.

5. The conjoined groups/clusters multiplicity
function

Figure 9 summarizes our main results. We plot the MF, defined
as the number of groups or clusters per unit area and per unit of
estimated richness (the groups/clusters richness is defined re-
spectively in Sects. 3.1 and 3.2). For the clusters, the bin grows
exponentially as 2n/2, in order to keep the S/N ratio almost con-
stant along the richness axis. For the groups, the bin was instead
set equal to 1. In order to exclude the structures detected in
the redshift range where our magnitude-limited catalogue is in-
complete, only clusters and groups where the brightest galaxy
has m < 16.5 (in Gunn r) were selected. Assuming that bright-
est galaxies may be used as standard candles, our selection in
magnitude implies that z < 0.2.

The procedures described above were applied separately
for groups and clusters, obtaining two different multiplicity
functions (marked with different symbols in Fig. 9). These MFs
appear to define a common relation, without the need for any
offsets or normalisations. We emphasize that a minor correc-
tion for completeness was applied only to the last point of the
clusters MF. To correct the group’s MF for contamination by
spurious detections (see Sect. 4.2), a global shift derived from
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Fig. 9. The multiplicity function for galaxy structures ranging from
small groups (filled triangles) to rich clusters (filled circles). We re-
move clusters in the richness range where detection efficiency is low.

the simulations was also applied. Only the Poissonian statistical
fluctuations have been taken into account in the error estimate.
For the high richness clusters, the error on the richness estimate
is negligible with respect to the bin width. The error becomes
relevant only in the same richness range where incompleteness
is also significant.

In Fig. 10 we compare our results with a MF extracted by
us from the USGC catalog of groups (Ramella et al. 2002).
We adopt the same representation scheme for the two data
set. Normalisation to the same volume was applied to the
USGC groups, assuming a uniform distribution of objects in
redshift both for our sample and the USGC sample. It is impor-
tant to note that the two catalogs were derived in totally differ-
ent ways. The USGC is generated using spectroscopic redshifts
by a percolation method implemented by Ramella et al. (1997)
for group detection, which is designed to reduce the risk of
false detections introduced by chance projections.

The agreement between these two MFs (see Fig. 10), de-
rived under totally different assumptions and using indepen-
dent data sets, is due to similar biases affecting the estimated
richnesses for both samples. For low Nobj structures (groups)
the similarity is apparent; in both cases, the methods count in-
dividual objects fulfilling the respective membership criteria
but with secondary members having magnitudes falling within
similar (i.e. ∼four magnitudes) ranges with respect to the pri-
mary galaxy. For the clusters, instead, the different depths sam-
pled by the two data sets, when compared to the different lim-
iting magnitudes of the samples themselves, indicates that both
methods sample very similar intervals of the cluster’s luminos-
ity function.

Fig. 10. Overplot of the MF of USGC2 groups (empty circles) on the
multiplicity functions obtained from the DPOSS data.

6. Summary and discussion

We have implemented two algorithms for the detection of
galaxy associations, one for groups and one for clusters. The
former is a modified version of van Albada’s procedure to de-
tect galaxy pairs, while the latter is the Shectman (1985) ap-
proach, which uses a peak-finding procedure on a density map
obtained from the galaxy catalogue.

We evaluated the performance of these methods via exten-
sive simulations, which show that the group algorithm is reli-
able up to richness 20, and the cluster algorithm is reliable at
richnesses above 20 galaxies. The two algorithms were then ap-
plied to a �300 square degree field extracted from DPOSS data
(see Sect. 2). The resulting MFs show a remarkable internal
consistency from the two procedures which produce indepen-
dent MFs for groups and clusters, matching with no need for
normalisation. Additionally, the MF derived using our tech-
nique on the 3D based catalogues of Ramella et al. (2002)
agrees with the MF derived from the projected DPOSS data.
The final combined MF is well fit by a power-law of slope
α = −2.08 ± 0.07. The correlation coefficient on the log-log
scale is −0.98.

The data set we used to determine the MF samples a vol-
ume [∼300 deg2, z < 0.2] which is slightly smaller than that ex-
plored by Bachall et al. (2002) [∼400 deg 2, z = 0.1 − 0.2]. The
total number of detected structures for N > 10 in the Bachall
et al. (2002) and in our sample is respectively ∼300 and ∼370.
In a forthcoming paper we will analyze the cosmological im-
plications of the derived MF.
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