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A B S T R A C T

Astronomical wide-field imaging performed with new large-format CCD detectors poses

data reduction problems of unprecedented scale, which are difficult to deal with using

traditional interactive tools. We present here NExt (Neural Extractor), a new neural network

(NN) based package capable of detecting objects and performing both deblending and star/

galaxy classification in an automatic way. Traditionally, in astronomical images, objects are

first distinguished from the noisy background by searching for sets of connected pixels

having brightnesses above a given threshold; they are then classified as stars or as galaxies

through diagnostic diagrams having variables chosen according to the astronomer's taste and

experience. In the extraction step, assuming that images are well sampled, NExt requires

only the simplest a priori definition of `what an object is' (i.e. it keeps all structures

composed of more than one pixel) and performs the detection via an unsupervised NN,

approaching detection as a clustering problem that has been thoroughly studied in the

artificial intelligence literature. The first part of the NExt procedure consists of an optimal

compression of the redundant information contained in the pixels via a mapping from pixel

intensities to a subspace individualized through principal component analysis. At magni-

tudes fainter than the completeness limit, stars are usually almost indistinguishable from

galaxies, and therefore the parameters characterizing the two classes do not lie in discon-

nected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a

supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then

applies them to the whole data set). In practice, each object is classified depending on its

membership of the regions mapping the input feature space in the training set. In order to

obtain an objective and reliable classification, instead of using an arbitrarily defined set of

features we use a NN to select the most significant features among the large number of

measured ones, and then we use these selected features to perform the classification task. In

order to optimize the performance of the system, we implemented and tested several

different models of NN. The comparison of the NExt performance with that of the best

detection and classification package known to the authors (SExtractor) shows that NExt

is at least as effective as the best traditional packages.

Key words: methods: data analysis ± techniques: image processing ± catalogues.

1 I N T R O D U C T I O N

Astronomical wide-field (hereafter WF) imaging encompasses

the use of images larger than 40002 pixels (Lipovestky 1994) and

is the only tool to tackle problems based on rare objects or on

statistically significant samples of optically selected objects.

Therefore, WF imaging has been and still is of paramount

relevance to almost the whole field of astrophysics: from the

structure and dynamics of our Galaxy to the environmental effects

on galaxy formation and evolution to the large-scale structure of

the Universe. In the past, WF was the almost exclusive domain of

Schmidt telescopes equipped with large photographic plates and
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was the main source of targets for photometric and spectroscopic

follow-ups using telescopes in the 4-m class. Nowadays, the

exploitation of the new generation 8-m class telescopes, which are

designed to observe targets that are often too faint to be even

detected on photographic material (the POSS-II detection limit in

B is ,21.5 mag), requires digitized surveys realized with large-

format CCD detectors mounted on dedicated telescopes. Much

effort has therefore been devoted worldwide to constructing such

facilities: the MEGACAM project at the CFHT, the ESO Wide

Field Imager at the 2.2-m telescope, the Sloan DSS and the ESO±

OAC VST (Arnaboldi et al. 1999) are only a few of the ongoing or

planned experiments.

One aspect which is never stressed too often is the enormous

problem posed by the handling, processing and archiving of the

data produced by these instruments: the VST alone, for instance, is

expected to produce a flow of almost 30 Gb of data per night or

more than 10 Tb per year of operation.

The scientific exploitation of such a huge amount of data calls

for new data reduction tools, which must be reliable, must require

a small amount of interactions with the operators and must be as

independent of a priori choices as possible.

In processing a WF image, the final goal is usually the

construction of a catalogue containing as many as possible astro-

metric, geometric, morphological and photometric parameters for

each individual object present in the image. The first step in any

catalogue construction is therefore the detection of the objects, a

step which, as soon as the quality of the images increases (both in

depth and in resolution), becomes much less obvious than it may

seem at first glance. The traditional definition of `object' as a set

of connected pixels having brightness higher than a given

threshold has in fact several well-known pitfalls. For instance,

low surface brightness galaxies very often escape recognition

because (i) their central brightness is often comparable to or

fainter than the detection threshold, and (ii) their shape is clumpy,

which implies that even though there may be several nearby pixels

above the threshold, they can often be unconnected and thus

escape the assumed definition.

A similar problem is also encountered in the catalogues extracted

from the Hubble Deep Field (HDF), where a plethora of small

`clumpy' objects is detected but it is not clear whether each clump

represents an individual object or instead is a fragment of a larger

one. Ferguson (1998) stresses some even stronger limitations of the

traditional approach to object detection: (i) a comparison of

catalogues obtained by different groups from the same raw material

and using the same software shows that, near the detection limits,

the results are strongly dependent on the assumed definition of

`object'; (ii) object detection performed by the different groups is

worse than that attained by even an untrained astronomer by

visually inspecting an image ± many objects that are present in the

image are lost by the software, while others that are missing on the

image are detected (hereafter spurious objects; see Fig. 1). In other

words, the silent assumption that faint objects consist of connected

and amorphous sets of pixels makes the definition of `object'

astronomer±dependent and produces quite ambiguous results at

very low signal-to-noise ratios (S/N).

The classification based only on morphological grounds of an

object as a star or as a galaxy relies instead on whether the object

is spatially resolved or not. Human experts can usually classify

objects either directly from the appearance of the objects on an

image (either photographic or digital) or from the value of some

finite set of derived parameters via diagnostic diagrams (such as

magnitude versus area). This approach, however, is much too

time-consuming and much too dependent on the `know how' and

personal experience of the observer: (i) the choice of the most

suitable parameters varies greatly from author to author, making

comparisons difficult if not impossible, and (ii) regardless the

complexity of the problem, owing to the obvious limitations of

representing three or more dimensions in space on a two-

dimensional graph, only two features are often considered. In

recent years much effort has therefore been devoted to imple-

menting and fine-tuning artificial intelligence (AI) tools to

perform star/galaxy classification on automatic grounds. The

powerful package SExtractor (hereafter SEx: Bertin & Arnouts

1996), for instance, uses nine features (eight isophotal areas and

the peak intensity) and a neural network to classify objects. The

SEx output is an index, ranging from 0 to 1, which gives the

degree of `stellarity' of the object. This, however, still implies a

fair degree of arbitrariness in choosing these features and not any

other set. Other approaches to the same problems will be reviewed

in the last section of this paper.

This paper is divided into two major parts: in Section 2 we

present the AI theory used in the paper and in Section 3 the

experiments. Finally, in Section 4 we discuss our results and draw

some conclusions.

2 T H E T H E O RY

In the AI domain there are dozens of different NNs used and

Figure 1. A portion of the Hubble Deep Field. The two panels show the

objects in the Couch (1996) and Lanzetta, Yahil & Fernandez-Soto (1996)

catalogues. The figures are taken from Ferguson (1998), and are

reproduced with the permission of Cambridge University Press.
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optimized to perform the most various tasks. In astronomical

literature, in contrast, only two types of NNs are used: the

Artificial NN, called in AI literature `multilayer perceptron (MLP)

with back-propagation learning algorithm', and Kohonen's self-

organizing maps (or their supervised generalization).

We followed a rather complex approach, which can be

summarized as follows. Principal Component Analysis (PCA)

NNs were used to reduce the dimensionality of the input space.

Supervised NNs need a large number of labelled data to obtain a

good classification, while unsupervised NNs overcome this need,

but do not provide good performances when classes are not well

separated. Hybrid and unsupervised hierarchical NNs are therefore

very often introduced to simplify the expensive post-processing

step of labelling the output neurons in classes (such as objects/

background), in the object detection process. In the following

subsections we illustrate the properties of several types of NNs

that were used in one or another of the various tasks. All the

discussed models were implemented, trained and tested and the

results of the best performing ones are illustrated in detail in

the next sections.

2.1 PCA neural nets

A pattern can be represented as a point in a L-dimensional

parameter space. To simplify the computations, a more compact

description is often needed, where each pattern is described by M,

with M , L; parameters. Each L-dimensional vector can be

written as a linear combination of L orthonormal vectors or as a

smaller number of orthonormal vectors plus a residual error. PCA

is used to select the orthonormal basis that minimizes the residual

error.

Let x be the L-dimensional zero mean input data vectors and

C � E�xxT� � kxxTl be the covariance matrix of the input vectors

x. The ith principal component of x is defined as xTc(i), where c(i)

is the normalized eigenvector of C corresponding to the ith largest

eigenvalue l(i).

The subspace spanned by the principal eigenvectors

c�1�;¼; c�M�; �M , L� is called the PCA subspace (with

dimensionality M: Oja 1982; Oja et al. 1996). In order to perform

PCA, in some cases and especially in the non-linear one, it is

convenient to use NNs that can be implemented in various ways

(Oja 1982; Baldi & Hornik 1989; Sanger 1989; Jutten & Herault

1991; Oja, Ogawa & Wangviwattana 1991; Plumbley 1996). The

PCA NN used by us was a feedforward neural network with only

one layer, which is able to extract the principal components of the

stream of input vectors. Fig. 2 summarizes the structure of the

PCA NNs. As can be seen, there is one input layer, and one

forward layer of neurons that is totally connected to the inputs.

During the learning phase there are feedback links among

neurons, the topology of which classifies the network structure

as either hierarchical or symmetric depending on the feedback

connections of the output layer neurons.

Typically, Hebbian type learning rules are used, based on the

one-unit learning algorithm originally proposed by Oja (1982).

The adaptation step of the learning algorithm ± in this case the

network is composed of only one output neuron ± is then written as

w�t�1�
j � w�t�j � my�t��x�t�j 2 y�t�w�t�j �; �1�

where x�t�j ; wj(t) and y(t) are, respectively, the value of the jth input,

the jth weight and the network output at time t, while m is the

learning rate. my�t�x�t�j is the Hebbian increment and equation (1)

satisfies the condition

XM
j�1

�w�t�j �2 < 1: �2�

Many different versions and extensions of this basic algorithm

have been proposed in recent years (Sanger 1989; Karhunen &

Joutsensalo 1994, hereafter KJ94; Karhunen & Joutsensalo 1995,

hereafter KJ95; Oja et al. 1996).

The extension from one to more output neurons and to the

hierarchical case gives the well-known generalized Hebbian

algorithm (GHA) (Sanger 1989; KJ95):

w�t�1�
ji � w�t�ji � my�t�j x�t�i 2

Xj

k�1

y�t�k w�t�jk

" #
; �3�

while the extension to the symmetric case gives Oja's Subspace

Network (Oja 1982):

w�t�1�
ji � w�t�ji � my�t�j x�t�i 2

XM

k�1

y�t�k w�t�jk

" #
: �4�

In both cases the weight vectors must be orthonormalized and

the algorithm stops when

tn �
�������������������������������������������XM

j�1

XL

i�1

�w�t�ji 2 w�t21�
ji �2

vuut , 1;

where 1 is an arbitrarily chosen small value. After the learning

phase, the network becomes purely feedforward. KJ94 and KJ95

proved that PCA neural algorithms can be derived from optimiza-

tion problems, such as variance maximization and representation

error minimization. They generalized these problems to non-linear

Figure 2. Hierarchical PCA NN (left) and symmetric PCA NN(right).
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problems, deriving non-linear algorithms (and the relative net-

works) having the same structure as the linear ones: either

hierarchical or symmetric. These learning algorithms can be

further classified as robust PCA algorithms and non-linear PCA

algorithms. KJ95 defined robust PCA algorithms as those in which

the objective function grows more slowly than a quadratic one.

The non-linear learning function appears at selected places only.

In non-linear PCA algorithms all the outputs of the neurons are

non-linear functions of the responses.

More precisely, in the robust generalization of variance maxi-

mization, the objective function f �z� is assumed to be a valid cost

function such as ln cos(z) or jzj: This leads to the adaptation step

of the learning algorithm:

w�t�1�
ji � w�t�ji � mg�y�t�j �e�t�ji ; �5�

where

eji � x�t�i 2
Xl� j �
k�1

y�t�k w�t�jk ;

g � df

dz
:

In the hierarchical case l� j � � j: In the symmetric case l� j � � M;
the error vector e�t�j becomes the same e(t) for all the neurons, and

equation (5) can be compactly written as

W�t�1� � W�t� � m�I 2 W�t�W�t�T�xg�xTW�t��
� W�t� � me�t�g�y�t�T�; �6�

where y�t�T � xTW�t� is the instantaneous vector of neuron

responses at time t. The learning function g, derivative of f, is

applied separately to each component of the argument vector.

The robust generalization of the representation error problem

(KJ95) with f �t� < t2 leads to the stochastic gradient algorithm:

w�t�1�
j � w�t�j � m�w�t�Tj g�e�t�j �x�t� � x�t�Tw�t�j g�e�t�j ��: �7�
This algorithm can again be considered in both the hierarchical

and symmetric cases. In the symmetric case l� j � � M; the error

vector is the same e(t) for all the weights w(t). In the hierarchical

case l� j � � j; equation (7) gives the robust counterparts of the

principal eigenvectors c(i).

In equation (7) the first update term

w�t�Tj g�e�t�j �x�t�

is proportional to the same vector x(t) for all weights w�t�j :
Furthermore, we can assume that the error vector e(t) is relatively

small after the initial convergence. Hence, we can neglect the first

term in equation (7), and this leads to

w�t�1�
j � w�t�j � my�t�j g�e�t�j �: �8�
Let us consider now the non-linear extensions of PCA

algorithms that can be obtained in a heuristic way by requiring

all neuron outputs to be always non-linear in equation (5). Then

w�t�1�
j � w�t�j � mg�y�t�j �b�t�j ; �9�

where

b�t�j � x�t� 2
Xl� j �
k�1

g�y�t�k �w�t�k :

In previous experiments (Tagliaferri et al. 1998, 1999a) we

found that the hierarchical robust NN of equation (5) with learning

function g � tanh�ax� achieves the best performance with respect

to all the other mentioned PCA NNs and linear PCA.

2.2 Unsupervised neural nets

Unsupervised NNs partition the input space into clusters and

assign to each neuron a weight vector, which unequivocally

individualizes the template characteristic of one cluster in the

input feature space. After the learning phase, all the input patterns

are classified.

Kohonen (1982, 1988) self organizing maps (SOM) are

composed of one neuron layer structured in a rectangular grid of

m neurons. When a pattern x is presented to the NN, each neuron i

receives the input and computes the distance di between its weight

vector wi and x. The neuron that has the minimum di is the winner.

The adaptation step consists of modifying the weights of the

neurons in the following way:

w�t�1�
j � w�t�j � 1�t�hs�t� �d� j; k���x 2 w�t�j �; �10�

where 1 (t) is the learning rate �0 < 1�t� < 1� decreasing in time,

d( j, k) is the distance in the grid between the j and the k neurons

and hs (t)(x) is a unimodal function with variance s (t) decreasing

with x.

The neural±gas NN is composed of a linear layer of neurons

and a modified learning algorithm (Martinetz, Berkovitch &

Shulten 1993). It classifies the neurons in an ordered list

� j1;¼; jm� according to their distance from the input pattern.

The weight adaptation depends on the position rank( j ) of the jth

neuron in the list:

w�t�1�
j � w�t�j � 1�t�hs�t� �rank� j ���x 2 w�t�j �; �11�

and works better than the preceding one: in fact, it is quicker and

reaches a lower average distortion value.1

The Growing Cell Structure (GCS) (Fritzke 1994) is a NN

which is capable of changing its structure depending on the data

set. The aim of the net is to map the input pattern space into a two-

dimensional discrete structure S in such a way that similar patterns

are represented by topological neighbouring elements. The struc-

ture S is a two-dimensional simplex where the vertices are the

neurons and the edges attain the topological information. Every

modification of the net always maintains the simplex properties.

The learning algorithm starts with a simple three-node simplex

and tries to obtain an optimal network by a controlled growing

process, i.e. for each pattern x of the training set, the winner k and

the weights of the neighbours are adapted as follows:

w�t�1�
k � w�t�k � 1b�x 2 w�t�k �; w�t�1�

j � w�t�j � 1n�x 2 w�t�j �
�12�

;j connected to k, where 1b and 1n are constants which determine

the adaptation strength for the winner and for the neighbours,

respectively.

The insertion of a new node is made after a fixed number l of

adaptation steps. The new neuron is inserted between the most

frequent winner neuron and the more distant of its topological

neighbours. The algorithm stops when the network reaches a pre-

defined number of elements.

1 Let P(x) be the pattern probability distribution over the set V # Rn and

let wi(x) be the weight vector of the neuron that classifies the pattern x. The

average distortion is defined as E � � P�x��x 2 wi�x��2 dx.
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The online K-means clustering algorithm (Lloyd 1982) is a

simpler algorithm which applies the Gradient Descent (GD)

directly to the average distortion function as follows:

w�t�1�
j � w�t�j � 1�t��x 2 w�t�j �: �13�
The main limitation of this technique is that the error function

presents many local minima, where the learning could stop before

reaching the optimal configuration.

Finally, the Maximum Entropy NN (Rose, Gurewitz & Fox

1990) applies the GD to the error function to obtain the adaptation

step:

w�t�1�
j � w�t�j � 1�t�

exp�2b�t�dj�Pm
k�1

exp�2b�t�dk�
�x 2 w�t�j �; �14�

where b is the inverse temperature and takes a value increasing in

time and dj is the distance between the jth and the winner neurons.

2.3 Hybrid neural nets

Hybrid NNs are composed of a clustering algorithm which makes

use of the information derived by one unsupervised single-layer

NN. After the learning phase of the NN, the clustering algorithm

splits the output neurons into a number of subsets, equal to the

number of the desired output classes. As the aim is to put similar

input patterns in the same class and dissimilar input patterns in

different classes, a good strategy consists of applying a clustering

algorithm directly to the weight vectors of the unsupervised NN.

A non-neural agglomeration clustering algorithm that divides

the pattern set (in this case the weights of the neurons) W �
{w1;¼;wm} into l clusters (with l , m� can be briefly

summarized as follows:

(i) initially it divides W into m clusters C1;¼;Cm such that

Cj � {wj};

(ii) it then computes the distance matrix D with elements Dij �
d�Ci;Cj�;

(iii) it then finds the smallest element Dij and unifies the clusters

Ci and Cj into a new one Cij � Ci < Cj;

(iv) if the number of clusters is greater than l then it goes back

to step 2, otherwise it finally stops.

Many algorithms quoted in the literature (Everitt 1977) differ

only in the way in which the distance function is computed. For

example,

d�Ci;Cj� � min
wik[Ci and wjl[Cj

kwik 2 wjlk

(nearest neighbour algorithm);

d�Ci;Cj� � 1

jCij
X

wik[Ci

wik 2
1

jCjj
X

wjl[Cj

wjl




(centroid method);

d�Ci;Cj� � 1

jCijjCjj
X

wik[Ci; wjl[Cj

kwik 2 wjlk

(average between groups).

The output of the clustering algorithm will be a labelling of the

patterns (in this case neurons) in l different classes.

2.4 Unsupervised hierarchical neural nets

Unsupervised hierarchical NNs add one or more unsupervised

single-layer NNs to any unsupervised NN, instead of a clustering

algorithm as is the case for hybrid NNs.

In this way, the second-layer NN learns from the weights of the

first-layer NN and clusters the neurons on the basis of a similarity

measure or a distance. The iteration of this process to a few layers

gives the unsupervised hierarchical NN.

The number of neurons in each layer decreases from the first to

the output layer and, as a consequence, the NN takes the

pyramidal aspect shown in Fig. 3. The NN takes as input a pattern

x and then the first layer finds the winner neuron. The second

layer takes the first-layer winner weight vector as input and finds

the second-layer winner neuron and so on up to the top layer. The

activation value of the output layer neurons is 1 for the winner unit

and 0 for all the others. In short: the learning steps of a s-layer

hierarchical NN with training set X are the following:

(i) the first layer is trained on the patterns of X with one of the

learning algorithms for unsupervised NNs;

(ii) the second layer is trained on the elements of the set X2,

which is composed of the weight vectors of the first-layer winner

units;

(iii) the process is iterated to the ith layer NN �i . 2� on the

training set, which is composed of the weight vectors of the winner

neurons of the �i 2 1�th layer when presenting X to the first layer

NN, X2 to the second layer and so on.

By varying the learning algorithms, we obtain different NNs

with different properties and abilities. For instance, by using only

SOMs we have a multilayer SOM (ML-SOM) (Koh, Suk &

Bhandarkar 1995) where every layer is a two-dimensional grid.

We can easily obtain (Tagliaferri, Capuano & Gargiulo 1999a)

ML±NeuralGas, ML±Maximum Entropy or ML±K means organ-

ized on a hierarchy of linear layers. The ML±GCS has a more

complex architecture and has at least three units per layer.

By varying the learning algorithms in the different layers, we

can take advantage of the properties of each model (for instance,

because we cannot have a ML±GCS with two output units we can

use another NN in the output layer).

A hierarchical NN with a number of output layer neurons

equal to the number of the output classes simplifies the expensive

Figure 3. The structure of a hierarchical unsupervised NN.
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post-processing step of labelling the output neurons in classes,

without reducing the generalization capacity of the NN.

2.5 Multilayer perceptron

A MultiLayer Perceptron (MLP) is a layered NN composed of

(i) one input layer of neurons which transmit the input patterns

to the first hidden layer;

(ii) one or more hidden layers with units computing a non-linear

function of their inputs;

(iii) one output layer with elements calculating a linear or a

non-linear function of their inputs.

The aim of the network is to minimize an error function, which

generally is the sum of squares of the difference between the

desired output (target) and the output of the NN. The learning

algorithm is called back-propagation because the error is back-

propagated in the previous layers of the NN in order to change the

weights. In formulae, let x p be an L-dimensional input vector with

corresponding target output c p. The error function is defined as

follows:

Ep � 1
2

P
i�c p

i 2 y
p
i �2;

where y
p
i is the output of the ith output neuron. The learning

algorithm updates the weights by using the gradient descent (GD)

of the error function with respect to the weights. We can define the

input and the output of the neuron j respectively as

net
p
j �

X
i

wjiy
p
i

and

y
p
j � f �net

p
j �;

where wji is the connection weight from the neuron i to the neuron

j, and f �x� is linear or sigmoidal for the output nodes and sigmoidal

for the hidden nodes. It is well known in the literature (Bishop

1995) that these facts lead to the following adaptation steps:

w�t�1�
ji � w�t�ji �Kw�t�ji where Kw�t�ji � hd p

j y
p
i �15�

and

d p
j � �c p

j 2 y
p
j �y p

j �1 2 y
p
j � or d p

j � �c p
j 2 y

p
j �
X

k

d p
k wkj �16�

for the output and hidden units, respectively. The value of the

learning rate h is small and causes a slow convergence of the

algorithm. A simple technique often used to improve it is to sum a

momentum term to equation (15), which becomes

Kw�t�ji � hd p
j y

p
i � mKw�t21�

ji : �17�
This technique generally leads to a significant improvement in

the performances of GD algorithms but it introduces a new

parameter m which has to be empirically chosen and tuned.

Bishop (1995) and Press et al. (1993) summarize several

methods to overcome the problems related to the local minima and

to the slow time convergence of the above algorithm. In a

preliminary step of our experiments, we tried all the algorithms

discussed in chapter 7 of Bishop (1995), finding that a hybrid

algorithm based on the scaled conjugate gradient for the first steps

and on the Newton method for the next ones gives the best results

with respect to both computing time and relative number of errors.

In this paper we used it in the MLP experiments.

3 T H E E X P E R I M E N T S

3.1 The data

In this work we use a 2000 � 2000 arcsec2 area centred on the

North Galactic Pole extracted from the slightly compressed

POSS-II F plate n. 443, available via the World Wide Web at

the Canadian Astronomy Data Center (http://cadcwww.
dao.nrc.ca). Fig. 4 shows the studied field. POSS-II data were

linearized using the sensitometric spots recorded on the plate. The

seeing full width at half-maximum (FWHM) of our data was

3 arcsec. The same area has been widely studied by others and, in

particular, by Infante & Pritchet (1992, hereafter IP92) and

Infante, Pritchet & Hertling (1995), who used deep observations

obtained at the 3.6-m CFHT telescope in the F photographic band

under good seeing conditions �FWHM , 1 arcsec� to derive a

catalogue of objects complete down to mF , 23; i.e. much deeper

than the completeness limit of our plate. Their catalogue is

therefore based on data of much better quality and accuracy than

ours, and it was because of the availability of such a good template

that we decided to use this region for our experiments. We also

studied a second region in the Coma cluster (which happens to be

in the same n. 443 plate) but, because none of the catalogues

available in the literature is much better than our data, we were

forced to neglect it in most of the following discussion.

The characteristics of the selected region, a relatively empty

one, slightly penalize our NN detection algorithms, which can

easily recognize objects of quite different sizes. In contrast to what

happens to other algorithms, NExt works well even in areas

where both very large and very small objects are present such as,

for instance, the centres of nearby clusters of galaxies, as our

preliminary test on a portion of the Coma clusters clearly shows

(Tagliaferri et al. 1998).

3.2 Structure of NExt

The detection and classification of the objects is a multistep task.

(1) First of all, following a widely used AI approach, we

mathematically transform the detection task into a classification

one by compressing the redundant information contained in

nearby pixels by means of a non-linear PCA NN. Principal vectors

of the PCA are computed by the NN on a portion of the whole

image. The values of the pixels in the transformed M-dimensional

eigenspace obtained via the principal vectors of the PCA NN are

then used as inputs to unsupervised NNs to classify pixels into a

few classes. We wish to stress that, in this step, we are still

classifying pixels, and not objects.

The adopted NN is unsupervised, i.e. we never feed into the

detection algorithm any a priori definition of what an object is,

and we leave it free to find its own object definition. It turns out

that image pixels are split into a few classes, one coincident with

what astronomers call background and some others for the objects

(in the astronomical sense). Afterwards, the class containing the

background pixels is kept separated from the other classes, which

are instead merged together. Therefore, as final output, the pixels

in the image are divided into `object' or `background'.

(2) Since objects are seldom isolated in the sky, we need a

method to recognize overlapping objects and deblend them. We

adopt a generalization of the method used by Focas (Jarvis &

Tyson 1981).

(3) Owing to the noise, object edges are quite irregular. We
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therefore apply a contour regularization to the edges of the objects

in order to improve the following star/galaxy classification step.

(4) We define and measure the features used, or suitable, for the

star/galaxy classification, then we choose the best performing

features for the classification step, through the sequential back-

ward elimination strategy (Bishop 1995).

(5) We then use a subset of the IP92 catalogue to learn, validate

and test the classification performed by NExt on our images. The

training set was used to train the NN, while the validation was

used for model selection, i.e. to select the most performing

parameters using an independent data set. As template classifier,

we used SEx, the classifier for which is also based on NNs.

The detection and classification performances of our algorithm

were then compared with those of traditional algorithms, such as

SEx. We wish to stress that, in both the detection and

classification phases, we were not interested in knowing how

well NExt can reproduce SEx or the performance of an

astronomer's eye, but rather to see whether the SEx and NExt

catalogues are or are not similar to the `true' one, represented in

our case by the IP92 catalogue.

Finally, we would like to stress that in statistical pattern

recognition, one of the main problems in evaluating the system

performances is the optimization of all the compared systems in

order not to give any unfair advantage to one of the systems with

respect to the others (just because it is better optimized than the

others). For instance, because the background subtraction is

crucial to the detection, all algorithms, including SEx, were run on

the same background-subtracted image.

3.3 Segmentation

From the astronomical point of view, segmentation allows us to

disentangle objects from a noisy background. From a mathemati-

cal point of view, instead, the segmentation of an image F consists

of splitting it into disconnected homogeneous (according to a

uniformity predicate P) regions {S1;¼; Sn}; in such a way that

their union is not homogeneous:[n
i�1

Si � F with Si > Sj � À; i ± j;

where P�Si� � true;i and P�Si < Sj� � false when Si is adjacent to

Sj. The two regions are adjacent when they share a boundary, i.e.

when they are neighbours.

A segmentation problem can be easily transformed into a

classification one if classes are defined on pixels and P is written

in such a way that P�Si� � true if and only if all the pixels of Si

belong to the same class. For instance, the segmentation of an

astronomical image into background and objects leads us to assign

each pixel to one of the two classes. Among the various methods

discussed in the literature, unsupervised NNs usually provide

Figure 4. The studied field. The field is 2000 � 2000 arcsec wide. North is up and east is left. The image is binned at 4 � 4:
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better performance than any other NN-type on noisy data (Pal &

Pal 1993) and have the great advantage of not requiring a

definition (or exhaustive examples) of an `object'.

The first step of the segmentation process consists of creating a

numerical mask where different values discriminate between the

background and the object (Fig. 5).

In well-sampled images, the attribution of a pixel to either the

background or the object classes depends on both the pixel value

and the properties of its neighbours: for instance, a `bright'

isolated pixel in a `dark' environment is usually just noise.

Therefore, in order to classify a pixel, we need to take into account

the properties of all the pixels in a �n � n� window centred on it.

This approach can be easily extended to the case of multiband

images. n � n; however, is too high a dimensionality to be

effectively handled (in terms of learning and computing time) by

any classification algorithm. Therefore, in order to lower the

dimensionality, we first use a PCA to identify the M (with M !
n � n� most significant features. Details are as follows.

(i) We first run the �n � n� window on a subimage containing

representative parts of the image. We used both 3 � 3 and 5 � 5

windows.

(ii) Then we train the PCA NNs on these patterns. The result is

a projection matrix W with dimensionality �n � n� �M; which

allows us to reduce the input feature number from �n � n� to M.

We considered only the first three components because, according

to the PCA, they contain almost 93 per cent of the information,

while the remaining 7 per cent is distributed over all the other

components.

(iii) The M-dimensional projected vector W ´ I is the input of a

second NN which classifies the pixels in the various classes.

(iv) Finally, we merge all classes except the background one in

order to reduce the classification problem to the usual

`object=background' dichotomy.

Much attention also has to be paid to the choice of the type of

PCA. After several experiments, we found that ± for our specific

task, which is characterized by a large dynamical range in the

luminosities of the objects (or, equivalently, in the pixel values) ±

PCAs can be split into two large groups: PCAs with linear input±

output mapping (hereafter linear PCA NNs) and PCAs with non-

linear input±output mapping (non-linear PCA NNs) (see Section

2.1). Linear PCA NNs were found to misclassify faint objects as

background. Non-linear PCA NNs based on a sigmoidal function

allowed, instead, the detection of faint sources. This can be better

understood from Figs 6 and 7, which give the distributions of the

training points in the simpler case of two-dimensional inputs for

the two types of PCA NNs.

Linear PCA NNs produce distributions with a very dense core

(background and faint objects) and only a few points (luminous

objects) spread over a wide area. Such behaviour results from the

presence of very luminous objects in the training set, which

compress the faint ones to the bottom of the scale. This problem

Figure 5. Single-band segmentation: process scheme.

Figure 6. Illustration of the coefficients distribution in two dimensions of

the three-dimensional eigenvector space of the input patterns. Non-linear

PCA NNs are the best performing because the spatial distributions obtained

in the input transformed space are more spread out, as shown in the example.

Figure 7. Clustering before and after the application of the tanh function in the learning of the PCA NN.
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can be circumvented by avoiding very luminous objects in the

training set, but this would make the whole procedure too much

dependent on the choice of training set.

Non-linear PCA NNs, instead, produce better sampled distribu-

tions and a better contrast between background and faint objects.

The sigmoidal function compresses the dynamical range, squeez-

ing the very luminous objects into a narrow region (see Fig. 7).

Overall, the best performing NN (Tagliaferri et al. 1998) turned

out to be the hierarchical robust PCA NN with learning function

g�t� � tanh�ax� given in equation (5). This NN was also the fastest

among the non-linear PCA NNs.

The principal component matrices are detailed in Tables 1±3

and 4±6 for the 3 � 3 and 5 � 5 cases, respectively. In Tables 1±3,

numbers are rounded to the closest integer because they differ

from an integer only at the 7th decimal place. Not surprisingly, the

first component turns out to be the mean in the 3 � 3 case. The

other two matrices can be seen as antisymmetric filters with

respect to the centre. The convolution of these filters (see Fig. 8)

with the input image gives images where the objects are the

regions of high contrast. Similar results are obtained for the 5 � 5

case.

At this stage we have the principal vectors and, for each pixel,

we can compute the values of the projection of each pixel in the

eigenvector space. The second step of the segmentation process

consists of using unsupervised NNs to classify the pixels into a

few classes, having as input the reduced input patterns which have

been just computed. Supervised NNs would require a training set

specifying, for each pixel, whether that pixel belongs to an object

or to the background. We no longer consider such a possibility,

because of the arbitrariness of such a choice at low fluxes, the lack

of elegance of the method and the problems that are encountered

in the labelling phase. Unsupervised NNs are therefore necessary.

We considered several types of NNs.

As already mentioned several times, our final goal is to classify

the image pixels into just two classes: objects and background,

which should correspond to two output neurons. This simple

model, however, seldom suffice to reproduce real data in the

bidimensional case (but similar results are obtained also for the

three-dimensional or multidimensional cases), because any

unsupervised algorithm fails to produce spatially well-separated

clusters and more classes are needed. A trial and error procedure

shows that a good choice of classes is 6: fewer classes produce

poor classifications while more classes produce noisy ones. In all

cases, only one class (containing the lowest luminosity pixels)

represents the background, while the other classes represent

different regions in the object images.

We compared hierarchical, hybrid and unsupervised NNs with 6

output neurons. From theoretical considerations and from

preliminary work (Tagliaferri et. al 1998) we decided to consider

only the best performing NNs, i.e. neural gas, ML±neural gas,

ML±SOM and GCS�ML±neural gas. For a more quantitative

and detailed discussion see Section 3.6, where the performance of

these NNs is evaluated.

After this stage all pixels are classified into one of six classes.

We merge together all classes with the exception of the

background one, and reduce the classification to the usual

astronomical dichotomy: object or background.

Finally, we create the masks, each one identifying one structure

composed of one or more objects. This task is accomplished by a

simple algorithm, which, while scanning the image row by row,

when it finds one or more adjacent pixels belonging to the object

class expands the structure including all equally labelled pixels

adjacent to them.

Once objects have been identified we measure a first set of

parameters. These are as follows. The photometric barycentre of

the objects is computed as

�x �
P
�x;y�[Ax ´ I�x; y�

flux
and �y �

P
�x;y�[Ay ´ I�x; y�

flux
;

where A is the set of pixels assigned to the object in the mask,

I(x, y) is the intensity of the pixel (x, y), and

flux �
X
�x;y�[A

I�x; y�

is the flux of the object integrated over the considered area. The

semimajor axis of the object contour is defined as

a � max
�x;y�[A

k�x; y�2 � �x; �y�k � max
�x;y�[A

r�x; y�;

Table 1. First transposed
eigenvector 3 � 3:

1 1 1
1 1 1
1 1 1

Table 2. Second transposed
eigenvector 3 � 3:

22 24 24
1 0 1
4 4 2

Table 3. Third transposed
eigenvector 3 � 3:

4 0 23
4 0 24
3 0 24

Table 4. First transposed eigenvector 5 � 5:

0.184082 0.196004 0.192174 0.172190 0.135904
0.207895 0.225043 0.223247 0.202225 0.161833
0.216280 0.236501 0.236244 0.215310 0.173737
0.207416 0.228742 0.229733 0.210264 0.170427
0.181968 0.202628 0.204979 0.188628 0.153777

Table 5. Second transposed eigenvector 5 � 5:

0.333702 0.313831 0.211281 0.095904 20.015149
0.340559 0.244218 0.181150 0.022373 20.018147
0.230683 0.121065 0.006941 20.130654 20.200468
0.052375 20.053280 20.130905 20.292818 20.308128

20.039431 20.078693 20.241601 20.257146 20.256896

Table 6. Second transposed eigenvector 5 � 5:

0.043911 20.140093 20.208548 20.245815 20.308660
0.114738 20.053939 20.109611 20.273351 20.340794
0.239802 0.210806 0.015948 20.166681 20.230214
0.300927 0.256129 0.042729 20.009986 20.113216
0.322900 0.244557 0.165326 0.004180 20.122482
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with position angle defined as

a � arctan
y 0 2 �y

x 0 2 �x

� �
;

where (x 0, y 0) is the most distant pixel from the barycentre

belonging to the object. The semiminor axis of the faintest

isophote is given by

b � max
�x;y�[A

sin arctan
y 2 �y

x 2 �x

� �
2 a

h i��� ��� ´ r�x; y�:

These parameters are needed in order to disentangle overlapping

objects.

3.4 Object deblending

Our method recognizes multiple objects by the presence of

multiple peaks in the light distribution. The search for double

peaks is performed along directions at position angles bi �
a� ip=n with 0 < i < n: In contrast to FOCAS (Jarvis & Tyson

1981), we sample several position angles because objects are not

always aligned along the major axis of their light distribution, as

FOCAS implicitly assumes. In our experiments the maximum n

was set to 5. When a double peak is found, the object is split into

two components by cutting it perpendicularly to the line joining

the two peaks.

Spurious peaks can also be produced by noise fluctuations, a

case which is very common in photographic plates near saturated

objects. A good way to minimize such noise effects is, just for

deblending purposes, to reduce the dynamical range of the pixel

values, by rounding the intensity (or pixel values) into N equi-

spaced levels.

Multiple (i.e. 3 or more components) objects pose a more

complex problem. In the case shown in Fig. 9, the segmentation

mask includes three partially overlapping sources. The search for

double peaks produces a first split of the mask into two

components which separate the third and faintest component

into two fragments. Subsequent iterations would usually produce a

set of four independent components, therefore introducing a

spurious detection. In order to solve the problem posed by

multiple `non-spurious' objects erroneously split, a recomposition

loop needs to be run. Most celestial objects ± it does not matter

Figure 8. A portion 300 � 300 of the original image (top left). The same image convolved with the principal eigenvector matrices: first, second and third

eigenvectors (top right, bottom left and bottom right, respectively).
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whether they are resolved or unresolved ± present a light

distribution rapidly decreasing outwards from the centre. If an

object has been erroneously split into several components, then

the adjacent pixels on the corresponding sides of the two masks

will have very different values. The implemented algorithm

checks each component (starting from the one with the highest

average luminosity and proceeding to the fainter ones) against the

others. Let us now consider two parts of an erroneously split

object. When the edge pixels have a luminosity higher than the

average luminosity of the faintest component, the two parts are

recomposed. This procedure also takes care of all spurious

components produced by the haloes of bright objects (an artefact

which is a major shortcoming of many packages available in the

astronomical community).

3.5 Contour regularization

The last operation before measuring the parameters of the objects

consists of the regularization of the contours because, owing to

noise, overlapping images, image defects, etc., segmentation

produces patterns that are not similar to the original celestial

objects that they must represent. For the contour regularization,

we threshold the image at several sigma over the background and

we then expand the ellipse describing the objects in order to

include the whole area measured in the object detection.

3.6 Results on the object detection phase

After the above-described steps, it becomes possible to measure

and compare the performances of the various NN models. We

implemented and compared neural gas (NG3), ML±neural gas

(MLNG3 or MLNG5), ML-SOM (K5) and GCS�ML±neural gas

(NGCS5), where the last digit in the NN name indicates the

dimensions of the running window.

Attention was paid to choosing the training set, which needed to

be at the same time small but significant. By trial and error, we

found that for PCA NNs and unsupervised NNs it was enough to

choose ,10 subimages, each one ,50 � 50 pixels wide and not

containing very large objects. As all the experienced users know,

the choice of the SEx parameters (minimum area, threshold in

units of the background noise and deblending parameter) is not

critical and the default values were chosen (4 pixel area, 1.5s ).

Table 7 shows the number of objects detected by the five NNs

and SEx. It has to be stressed that ,2100 objects out of the 4819

available in the IP92 reference catalogue are beyond the detection

limit of our plate material. SEx detects a larger number of objects

but many of them (see Table 7) are spurious. NNs detect a slightly

smaller number of objects but most of them are real. In particular,

MNG5 loses, with respect to SEx, only 79 real objects but detects

400 fewer spurious objects; MNG3 has a slightly poorer

performance in detecting true objects but is even freer of spurious

detections.

The upper panel of Fig. 10 shows the number of `True' objects

(i.e. objects in the IP92 catalogue). Most of them are fainter than

mF , 21:5 mag; i.e. they are fainter than the plate limit. The lower

panel shows instead the number of objects detected by the various

Figure 9. Deblending of three partially overlapping sources. In the left panel, the original image is plotted. In the central and right panels, we show the result

after the first and the second steps. The correct result is achieved after a recomposition loop.

Table 7. Number of objects grouped into `Total', `True'
and `False' detections integrated over the whole
magnitude range. The reference catalogue consists of
4819 objects, among which ,2400 are too faint to be
visible on our plate material.

Detections
Catalogues Total `True' objects False' objects

K5 1942 1738 204
MLNG3 2742 2059 683
MLNG5 3776 2310 1466
NG3 1584 1477 107
NGCGS5 1862 1692 170
SEx 4256 2388 1866

Figure 10. Upper panel: number of `True' objects in the reference

catalogue; lower panel: number of objects detected by a given NN and by

SEx relative to the total number.
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NNs relative to SEx. The curves largely coincide and, in

particular, MLNG5 and SEx do not statistically differ in any

magnitude bin while MLNG3 slightly differs only in the faintest

bin �mF , 21:5�:
The class of `Missed' objects (i.e. objects which are listed in the

reference catalogue but are not in the NNs or SEx catalogues)

needs a detailed discussion. We focus first on brighter objects.

They can be divided into the following classes.

(i) A few `True' objects with a nearby companion which are

blended in our image but are resolved in IP92.

(ii) Parts of isolated single large objects incorrectly split by

IP92 (a few cases).

(iii) A few detections aligned in the east±west direction on the

two sides of the images of a bright star. They are likely false

objects (diffraction spikes detected as individual objects in the

IP92 catalogue).

(iv) Objects in IP92 that correspond to empty regions in our

images: they can be missing because they are variable, fast-

moving or with an overestimated luminosity in the reference

catalogue; they can also be missed because they are spurious in

the template catalogue.

Therefore, a fair fraction of the `Missed' objects is truly non-

existent and the performances of our detection tools are lower

bounded at mF , 21 mag: We wish to stress here that even though

there is no such thing as a perfect catalogue, the IP92 template is

among the best ever produced, to our knowledge.

The upper panel of Fig. 11 is the same as in Fig. 10. The lower

panel shows instead the fraction of `false' objects, i.e. the objects

detected by the algorithms but not present in the reference

catalogue. IP92 concentrated on faint objects and masked out the

bright ones, therefore their catalogue may exclude a few `True'

objects (in particular at mF , 17�: We believe that all objects

brighter than mF � 20 mag are really `True' because they are

detected both by SEx and NNs with high significance. For objects

brighter than mF � 20 mag; the NNs and SEx have similar

performance. They differ only at fainter magnitudes. The cata-

logue with the largest contamination by `False' objects is SEx,

followed by MLNG5, MLNG3 and the other NNs, which are

much less contaminated. MLNG5 is quite efficient in detecting

`True' objects and has a 20 per cent cleaner detection rate in the

highly populous bin mF � 21:7 mag: MLNG3 is less efficient than

MLNG5 in detecting `True' objects but it is even cleaner than

MLNG5 as regards false detections.

Let us now consider whether or not the detection efficiency

depends on the degree of concentration of the light (stars have

steeper central gradients than galaxies). In IP92 objects are

classified into two major classes, stars and galaxies, and a few

minor ones (merged, noise, spike, defects, etc.) that we neglect.

The efficiency of the detection is shown in Fig. 12 for three

representative detection algorithms: MLNG5, K5 and SEx. At

mF , 21 mag; the detection efficiency is large, close to 1 and

independent of the central concentration of the light. Please note

that there are no objects in the image having mF , 16 mag and

that in the first bin there are only four galaxies. At fainter

magnitudes (,22±23 mag�; detection efficiencies differ as a

function of both the algorithm and the light concentration. In

fact, SEx, MLNG5 and to a lesser extent K5, turn out to be more

efficient in detecting galaxies than stars (in other words,

`Missed' objects are preferentially stars). For SEx, a possible

explanation is that a minimal area above the background is

required in order for the object to be detected at mF , 22±23 mag

and noise fluctuations can affect the isophotal area of

unresolved objects, bringing it below the assumed threshold

(4 pixels). This bias is minimum for the K5 NN. However, this

is more likely a result of the fact that K5 misses more galaxies

than the other algorithms, rather than the fact that it detects more

stars.

In conclusion, MLNG3 and MLNG5 turn out to have high

performance in detecting objects: they produce catalogues that are

freer of false detections at the price of a slightly larger

Figure 11. Upper panel: as in Fig. 10; lower panel: fraction of `False'

objects detected by the algorithms and not present in the reference

catalogue (IP92).

Figure 12. The percentage number of objects detected by MLNG5, K5 and

SEx.
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incompleteness than the SEx catalogues below the plate

completeness magnitude.

We also want to stress that because the poorer performing NNs

produce catalogues that are much freer of false detections, the

selected objects are in large part `true', and not just noise

fluctuations. These NNs may therefore be very suitable to select

candidates for possible follow-up detailed studies at magnitudes

where many of the objects detected by SEx would be spurious.

Deeper catalogues having a large number of spurious sources,

such as those produced by SEx or other packages, are instead

preferable if, for instance, they can be cleaned by subsequent

processing (for instance by matching the detected objects with

other catalogues).

A posteriori, one could argue that a performance similar to that

of each of the NNs could be achieved by running SEx with

appropriate settings. However, it would be unfair (and methodo-

logically wrong) to make a fine tuning of any of the detection

algorithms using a posteriori knowledge. It would also make

cumbersome the automatic processing of the images that is the

final goal of our procedure.

3.7 Feature extraction and selection

In this section we discuss the feature extraction and selection of

the features that are useful for the star/galaxy classification.

Features are chosen from the literature (Godwin & Peach 1977;

Jarvis & Tyson 1981; Odewahn et al. 1992, hereafter O92; Miller

& Coe 1996), and then selected by a sequential forward selection

process (Bishop 1995), in order to extract the most performing

ones for classification purposes.

The first five features are those defined in the previous section

and describing the ellipses circumscribing the objects: the

photometric barycentre coordinates (xÅ, yÅ), the semimajor axis

(a), the semiminor axis (b). and the position angle (a ). The sixth

one is the object area, A, i.e. the number of pixels forming the

object.

The next twelve features have been inspired by the pioneering

work of O92: the object diameter �dia � 2a�; the ellipticity �ell �
1 2 b=a�; the average surface brightness �kSuBrl � �1=A� �P
�x;y�[AI�x; y��; the central intensity �I0 � I� �x; �y��; the filling

factor � f fac � pab=A�; the area logarithm �c2 � log�A��; the

harmonic radius �r21�; which is defined as

r21 � 1

flux

X
�x;y�[A

I�x; y�
r�x; y� ;

and five gradients G14, G13, G12, G23 and G34, defined as

Gij � Tj 2 Ti

ri 2 rj

;

where Ti is the average surface brightness within an ellipse, with

position angle a , semimajor axis ri � i a=4; i � 1;¼; 4; and

ellipticity ell.

Two more features are added following Miller & Coe (1996):

the ratios Tr � kSuBrl=I0 and TcA � I0=
���
A
p

:
Finally, five FOCAS features (Jarvis & Tyson 1981) have been

included: the second (C2) and the fourth (C4) total moments,

defined as

C2 � M20 �M02

M00

and C4 � M40 � 2M22 �M04

M00

;

where Mij are the object central momenta, computed as

Mij �
X
�x;y�[A

�x 2 �x�i�y 2 �y�jI�x; y�;

the average ellipticity,

E �
�����������������������������������������
�M20 2 M02�2 �M2

11

q
M02 �M20

;

the central intensity averaged in a 3 � 3 area; and, finally, the

`Kron' radius, defined as

rKron � 1

flux

X
�x;y�[A

I�x; y�r�x; y�:

For each object we therefore measure 25 features, where the

first 6 are reported only to ease the graphical representation of the

objects and have a low discriminating power. The complete set of

the extracted features is given in Table 8.

Our list of features therefore includes most of those usually

used in the astronomical literature for the star/galaxy classifica-

tion.

Are all these features truly needed? And, if this is not the case

and a smaller subset contains all the required information, what

are the most useful features? We tried to answer these questions by

evaluating the classification performance of each set of features

through the a priori knowledge of the true classification of each

object, as it is listed in a much deeper and higher quality reference

catalogue.

Most of the defined features are not independent. The presence

of redundant features decreases the classification performance,

Table 8. Extracted features.

Number Features Symbols Number Features Symbols

1 Isophotal Area A 14 Gradient 1±2 G12

2 Photometric Barycenter Abscissa xÅ 15 Gradient 2±3 G23

3 Photometric Barycenter Ordinate yÅ 16 Gradient 3±4 G34

4 Semimajor Axis a 17 Average Surface Brightness kSuBrl
5 Semiminor Axis b 18 Central Intensity I0

6 Position Angle a 19 Ratio 1 Tr

7 Object Diameter dia 20 Ratio 2 TcA

8 Ellipticity of the Object Boundary ell 21 Second Total Moment C2

9 Filling Factor ffac 22 Fourth Total Moment C4

10 Area Logarithm c2 23 Ellipticity (Averaged over the whole E
11 Harmonic Radius r21 Area)
12 Gradient 1±4 G14 24 Peak Intensity Ip

13 Gradient 1±3 G13 25 Kron Radius rKron
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because any algorithm would try to minimize the error with

respect to features that are not particularly relevant for the task.

Furthermore, by introducing useless features the computational

speed would be lowered.

The feature selection phase was realized through the sequential

backward elimination strategy (Bishop 1995), which works as

follows: let us suppose we have M features in one set and run the

classification phase with this set. Then, we build M different sets

with M 2 1 features in each one and run the classification phase

for each set, keeping the set that attains the best classification.

This procedure allows us to eliminate the less significant feature.

Then, we repeat the procedure M 2 1 times, eliminating one

feature at each step. In order to reduce the computation time

further we do not use the validation set and the classification error

is evaluated directly on the test set. It has to be stressed that this

procedure is common in the statistical pattern recognition

literature where, very often, for this task simplified models are

also introduced. This however could be avoided in our case,

because of the speed and good performance of our NNs.

Unsupervised NNs were not successful in this task, because the

input data feature space is not separated into two non-overlapping

classes (or, in simpler terms, the images and therefore the

parameters of stars and galaxies fainter than the completeness

limit of the image are quite similar), and they reach a performance

level much lower than supervised NNs.

Supervised learning NNs give far better results. We used an

MLP with one hidden layer of 19 neurons and only one output,

assuming value 0 for star and value 1 for galaxy. After the

training, we calculate the NN output as 1 if it is greater than 0.5

and 0 otherwise for each pattern of the test set. The experiments

produce a series of catalogues, one for each set of features.

Fig. 13 shows the classification performance as a function of the

adopted features. After the first step, the classification error

remains almost constant up to n � 4; i.e. up to the point where

features that are important for the classification are removed.

A high performance can be reached using just six features. With

a lower number of features the classification worsens, whereas a

larger number of features is unjustified, because it does not

increase the performance of the system. The best performing set of

features consists of features 11, 12, 14, 19, 21 and 25 of Table 8.

They are two radii, two gradients, the second total moment and a

ratio that involves measures of intensity and area.

3.8 Star/galaxy classification

Let us discuss now how the star/galaxy classification takes place.

The first step is accomplished by `teaching' the MLP NN using

the selected best features. In this case we divided the data set into

three independent data sets: training, validation and test sets. The

learning optimization is performed using the training set, while the

early stopping technique (Bishop 1995) is used on the validation

set to stop the learning to avoid overfitting. Finally, we run the

MLP NN on the test set.

As comparison classifier, we adopt SEx, which is based on an

MLP NN. As features useful for the classification, SEx uses eight

isophotal areas and the peak intensity plus a parameter, the

FWHM of stars. As the SEx NN training was already realized by

Bertin & Arnouts (1996) on 106 simulated images of stars and

galaxies, we limit ourselves to tuning SEx in order to obtain the

best performances on the validation set. Both SEx and our system

use NNs for the classification, but they follow two different,

alternative approaches: SEx uses a very large training set of

simulated stars and galaxies; our system uses noisy, real data.

Furthermore, while the features of SEx are fixed by the authors,

and the NNs output is a number x, 0 , x , 1; our system selects

the best performing ones and its output is an integer: 0 or 1 (i.e.

star or galaxy). Therefore, we use the validation set for choosing

the threshold that maximizes the number of correct classifications

by SEx (see Fig. 14).

The experimental results are shown in Fig. 15 where the errors

are plotted as a function of the magnitude. At all magnitudes

NExt misclassifies fewer objects than SEx. Out of 460 objects,

SEx makes 41 incorrect classifications, NExt just 28.

In order to check the that our feature selection is optimal, we

also compared our classification with those obtained using our

MLP NNs with other feature sets, selected as shown in Table 9.

The total number of misclassified objects in the test set of 460

elements was as follows: O-F, 43 errors; O-L, 30 errors; O-S, 35

Figure 13. Classification performance as a function of the eliminated

features.

Figure 14. Optimization of the classification performance of SEx for

different choices of the stellarity index parameter.
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errors; GP1, 48 errors; GP2, 49 errors. Fig. 16 shows the

classification performance of the considered feature sets as a

function of the magnitude of the objects. Results for stars are

presented as solid lines, while for galaxies we used dotted lines.

The performance of NExt is presented in the top left panel:

galaxies are correctly classified as long as they are detected,

whereas the correctness of the classification of stars drops to 0 at

mF � 21: Fainter stars are almost absent in the IP92 catalogue,

thus explaining why the classification performances for stars stop

at brighter magnitudes than galaxies. O92 selected a 9-feature set

(O-F) for the star/galaxy classification. Their set (central left

panel) shows slightly poorer performance for bright �mF � 17�
galaxies and for faint stars �mF � 19� than the set of features

selected by us (upper left panel). They select also a smaller (four)

set of features (O-F) quite useful for classifying large objects. The

classification performance of this set, when applied to our images,

turns out to be better than that of the larger feature data set: in fact,

bright galaxies are not misclassified (see the bottom left panel).

Even with respect to our data set O-F performs well: their set is

slightly better in classifying bright galaxies, at the price of

achieving poorer performance for faint stars. The further set of

features by O92 (O-S) was aimed at the accurate detection of faint

sources and performs similarly to their full set: it misclassifies

bright galaxies and faint stars. The performance of the traditional

classifiers, magnitude versus area (GP1) and magnitude versus

brightness (GP2), is presented in the central and lower right

panels. With just two features, all the faint objects are classified as

galaxies, and owing to the absence of stars in our reference

catalogue, the classification performances are 100 per cent.

However, this is not a real classification. At bright magnitudes,

the performance of the traditional classifiers is as good as, or

slightly worse than, NExt.

4 S U M M A RY A N D C O N C L U S I O N S

In this paper we discuss a novel approach to the problem of

detection and classification of objects on WF images. In Section 2

we briefly review the theory of some types of NNs which are not

familiar to the astronomical community. Based on these con-

siderations, we implemented a neural network based procedure

(NExt) capable of performing the following tasks: (i) detecting

objects against a noisy background; (ii) deblending partially

overlapping objects; (iii) separating stars from galaxies. This is

achieved by a combination of three different NNs, each per-

forming a specific task. First we run a non-linear PCA NN to

reduce the dimensionality of the input space via a mapping from

pixels intensities to a subspace individuated through principal

component analysis. For the second step we implemented a

hierarchical unsupervised NN to segment the image and, finally,

after a deblending and reconstruction loop we implemented a

supervised MLP to separate stars from galaxies.

In order to identify the best performing NNs we implemented

Table 9. Adopted sets of features.

Source Code Number of the corresponding feature
in Table 8

Odewhan full set O±F 7, 8, 17, 18, 9, 10, 14, 15, 16
Odewhan large galaxies set O±L 17, 14, 15, 16
Odewhan small galaxies set O±S 17, 18, 16, 7
Godwin & Peach like 1977 first GP1 17, flux
Godwin & Peach like 1977 second GP2 10, flux

Figure 15. Classification performance of SEx and our NN-based methods.

Figure 16. Classification performance of SEx and our NN based methods.

The solid and dotted lines denote the performance for stars and galaxies,

respectively.
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and tested in homogeneous conditions several different models.

NExt offers several methodological and practical advantages with

respect to other packages.

(i) It requires only the simplest a priori definition of what an

`object' is.

(ii) It uses unsupervised algorithms for all those tasks where

both theory and extensive testing show that there is no loss in

accuracy with respect to supervised methods. Supervised methods

are in fact used only to perform star/galaxy separation because, at

magnitudes fainter than the completeness limit, stars are usually

almost indistinguishable from galaxies and the parameters charac-

terizing the two classes do not lie in disconnected subspaces.

(iii) Instead of using an arbitrarily defined and often specifically

tailored set of features for the classification task, NExt, after

measuring a large set of geometric and photometric parameters,

uses a sequential backward elimination strategy (Bishop 1995) to

select only the most significant ones. The optimal selection of the

features was checked against the performances of other classifiers

(see Section 3.8).

In order to evaluate the performance of NExt, we tested it

against the best performing package known to the authors (i.e.

SEx) using a DPOSS field centred on the North Galactic Pole. We

want also to stress here that ± in order to have an objective test,

and in contrast to what is currently done in the literature ± NExt

was checked not against the performance of an arbitrarily chosen

observer but rather against a much deeper catalogue of objects

obtained from better quality material.

The comparison of NExt performance against that of SEx

shows that in the detection phase NExt is at least as effective as

SEx in detecting `true' objects but much freer of spurious detec-

tions. As far as classification is concerned, the NExt NN performs

better than the SEx NN: 28 errors for NExt against 41 for SEx for

a total of 460 objects, most of the errors referring to objects fainter

than the plate detection limit.

Other attempts, besides those described in the previous sections,

to use NNs for similar tasks have been discussed in the literature.

Bazell & Peng (1998) used the same North Galactic Pole field (but

extracted from POSS-I plates) as used in this work. They tested

their star/galaxy classification NN on objects which are both too

few (60 galaxies and 27 stars) and too bright (a random check of

their objects shows that most of the galaxies extend well over than

20 pixels) to be of real interest. It also needs to be stressed that,

owing to their preprocessing strategy, their NNs are forced to

perform cluster analysis on a huge multidimensional imput space

with scarcely populated samples.

Naim (1997) instead follows a strategy that is similar to ours

and makes use of a fairly large data set extracted from POSS-I

material. He, however, trained the networks to achieve the same

performance as an experienced human observer while, as already

mentioned, NExt is checked against a catalogue of `True' objects.

Even though his target is the classification of objects fainter and

larger than those we are dealing with, he tested the algorithm in a

much more crowded and difficult region of the sky near the

Galactic plane.

O92 make use of a traditional MLP and succeeded in

demonstrating that AI methods can reproduce the star/galaxy

classification obtained using traditional diagnostic diagrams by

trained astronomers. Their aim, however, was less ambitious than

that of `performing the correct star/galaxy classification', which is

the final goal of NExt.

This paper is a first step toward the application of AI methods to

astronomy. Foreseen improvements of our approach are the use of

Independent Component Analysis (ICA) NNs instead of PCA NNs

and the adoption of Bayesian learning techniques to improve the

classification performance of MLPs. These developments and the

application of NExt to other wide-field astronomical data sets

obtained at large-format CCD detectors will be discussed in

forthcoming papers.
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