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● Supernovae:  classification and phenomenology
● Basics of stellar evolution & death scenarios in overview
● White dwarfs and thermonuclear supernovae                                      

                                                                                                              
                                                                                            

● Gravitational (core-collapse) supernovae:  evolution stages
● SN modeling: some technical aspects
● Status of 2D and 3D SN modeling                                                        

                                                                                                              
                                                                    

● Supernova models: Predictions of observable signals
● Neutron stars: birth and death
● Black holes and gamma-ray bursts: Sources of heavy elements
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For concise reviews of much of what I will say, see

ARNPS 62 (2012) 407, arXiv:1206.2503
and
PTEP 2012, 01A309, arXiv:1211.1378



Supernova Phenomenology 
and Classification



SN 1994d





  Crab Nebula: 
                          

Gaseous 
supernova 

remnant with 
neutron star, 

which radiates
as pulsar

Source: http://www.spacetelescope.org/images/html/heic0515a.html;
Credit: NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). 
Acknowledgement: Davide De Martin (www.skyfactory.org)



1572:  Tycho Brahe 
observes "new star" that 

remains visible for months

Supernova Remnant Tycho

(CHANDRA satellite image) 

Tycho SNR



Cassiopeia 
A Nebula



● 1–10 supernovae explode in the Universe every second
● ~2 per 100 years in the Milky Way  (historical records of ~10 past 

events, several with visible remnants)
● Several 100 distant supernovae observed every year in surveys    

                                                                                                          
                                                                  

● Energy release in radiation:                                1049  erg                 
Release of kinetic energy of ejected gas:           1051 erg                 
                                  (1 erg = 10–7 J;    1051 erg = 1 bethe)               
                                                                                                          
 

● Hypernovae and gamma-ray bursts (GRBs) can release up to 100 
times more energy, but occur only in < 1% of all core collapses!   

Supernovae in the Universe



Historically Reported Supernovae in the Milly Way Within the 
Past 1000 Years



Supernova 1987A



Supernova 1987A:  Light Curve

Maximum 
Luminosity 
~2*108 L

sun

about 1 year

 ~104 L
sun



Supernova 
1987A
as a 

teenager



Supernova 1987A

● Birthday:  Februar 23rd, 1987
● Birth place:  Large Magellanic Cloud
● Distance:  about 170,000 lightyears
● Origin:  blue supergiant star with about 20 solar masses
● Importance:                                                                                       

          *   only nearby supernova in the past 400 years that was      
               visible to the naked eye                                                     
          *   unprecidented wealth of observational data                       
          *   first measurement of extragalactic neutrinos                      
          *   confirmation of neutron star birth theory                             
          *   unambiguous information about strongly turbulent            
               processes during stellar explosions                                   
    



Supernova 1987A

Two dozen (of 1058) 
neutrinos were captured 

in underground 
laboratories!





Supernova Classification Scheme

Energy source:                 
thermonuclear burning  
C, O  --->  Si, Ni

Energy source:                 
gravitational binding 
energy of compact 
remnant   (NS, BH)



Supernova Classification Scheme



Supernova Light Curves



Supernova Spectra



Superluminal Supernovae



Role of Supernovae

● strongest cosmic explosions
● sources of heavy elements
● driving force of cosmic cycle of matter
● sources of neutrinos and gravitational waves: 

fundamental physics
● acceleration of cosmic radiation
● birth sites of neutrons stars and black holes
●

●

●



SNe in the Cosmic Cycle of Matter



Supernova Types: Basic Differences 

Thermonuclear Supernovae 
(Type Ia):

Low-mass stars (< 8‒10 Msun)
Highly evolved (old white dwarfs)
Binary systems

Thermonuclear burning  
                         C, O  --->  Si, Ni
Complete distruction of star

Core-Collapse Supernovae
(Type II, Ib, Ic):

Massive stars (> 8‒10 Msun)
Extended envelopes (esp. Type II)
Single stars (binaries possible for 
Type Ib,c)
Nuclear burning by (shock) 
compression
Compact remnants are left behind: 
neutron star or black hole



 Fundamentals of 
Stellar Evolution



Stellar Evolution Equations
      Assumed: spherical symmetry, Newtonian gravity, single star









Basic Principles of Stellar Evolution

  

                            

              Radiating and evolving stars become hotter             
      (have “negative specific heat”)       



● More massive stars evolve faster and live shorter!



Basic Principles of Stellar Evolution

  

                              T3/ρ  ~  M2                       

           *    As star contracts and its density grows, T increases like ρ1/3 

   *    For given density, stars with larger mass M are hotter



Evolution Tracks of Massive Stars

● Central density increases roughly like 3rd power of central 
temperature

T
3 /ρ 

= co
nst





Stellar Burning Stages

(Woosley & Janka, Nature Physics 1. 2005)



Basic Principles of Stellar Evolution

  

                              τ
nuc

 ~  M−2                       

             More massive stars evolve faster and live shorter



Stellar Equations of State

● Stellar gas is in different regimes 
of equation of state properties as 
stars evolve

● Normal stars: gas behaves like 
classical Boltzmann gas (P

gas
)

● As temperature and density 
rises, the stellar gas can become 
degenerate and relativistic (P

deg
)

● NR gas:    ε
Fermi 

/T ~ ρ2/3/T

● ER gas:    ε
Fermi 

/T ~ ρ1/3/T

Onset of degeneracy:
ε

Fermi
 / kT > 1

P = P
gas

 + P
deg

 + P
photons



Stellar Evolution towards Degeneracy
● When stellar gas becomes 

degenerate: further contraction does 
not lead to strong heating

● Stars cool at nearly fixed density

● Maximum central density and 
burning stage depends on stellar 
mass



Stars reach limiting burning stage and become degenerate:      
                                                                                             
0.013 M

sun
 < M < 0.08 M

sun
 :   deuterium burning                     

  0.08 M
sun

 < M < 0.5 M
sun

   :   hydrogen burning                      

    0.5 M
sun

 < M < 7‒8 M
sun

  :   hydrogen and helium burning   

                                                                                                
                                                                                                
  

M < 8 M
sun

:   final stage of evolution is a   white dwarf     
           before they reach the central carbon burning                     
               

Stellar Evolution towards Degeneracy



Chandrasekhar Mass Limit for WDs

Chandrasekhar-Mass:                                         

Maximum mass for a stable equilibrium of a cold star 
whose pressure is dominated by fully degenerate, 
ultrarelativistic fermions.
For  M > M

Ch
  gravitational instability and collapse occurs.



Final Stages of Stellar Evolution

● M > 8 M
sun

:  stars develop             

onion shell structure before they 
undergo gravitational collapse             
  

● M > 10 M
sun

:  iron cores formed

● M = 8–25 M
sun

:  neutron star  
and  supernova explosion

● M > 25 M
sun

:  black hole        

and  (sometimes)                
hypernova explosion

Onion-shell structure



● Stars with M
*
 > 8 M

sun
:             approach gravitational instability:                   

                   Hydrostatic (mechanical) equilibrium breaks down                     
                                                                                                                      
----------->   collapse of stellar core to neutron star or black hole                    
                 
       

● Mechanical equilibrium impossible when adiabatic index of EoS                  
                                                                                                                        

               Г
EoS

 = (∂lnP/∂lnρ)
s
  <  Г

crit
 =  4/3  +  δ

GR
 – δ

rot
 + δνloss                                     

              

 
(Reason:  for  Г

EoS
 
 
=  (4/3 + ε)  with  ε < 0  stabilizing pressure gradient     

 increases less steeply with density than destabilizing gravitational force:    
                                                          P/R  ∞ ρ5/3+ε ;   GM/R2 ∞ ρ5/3 )
  

Final Stages of  Stellar Evolution



Final Stages of Massive Star Evolution
Stars with ~8–9 M

sun
 develop 

degenerate ONeMg cores        
―>  collapse by                         
        rapid e-capture                  
    

Stars with ~9–100 M
sun 

develop 

Fe cores                               
―>  collapse by nuclear            
        photodisintegration            
        

Stars with > 100 M
sun

 approach 

gravitational instability before 
O-burning 
―>  collapse by                         
        e+e− pair fomation

   
(Janka, ARNPS 62. 2012)



Final Stages of Massive Star Evolution

(Wheeler et al. 1990)

Stars with ~8–9 M
sun

 develop 

degenerate ONeMg cores        
―>  collapse by                         
        rapid e-capture                  
    

Stars with ~9–100 M
sun 

develop 

Fe cores                               
―>  collapse by nuclear            
        photodisintegration            
        

Stars with > 100 M
sun

 approach 

gravitational instability before 
O-burning 
―>  collapse by                         
        e+e− pair fomation

   



Core Collapse Events and Remnants

        Heger et al. (2003)
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Core Collapse Events and Remnants
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Core Collapse Events and Remnants
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Core Collapse Events and Remnants
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Core-Collapse Events

● Observational diversity:  Large variability due to structure of stellar 
mantle and envelope at time of explosion, also on environment!

● Intrinsic explosion differences:  Events also differ largely in energy 
and Ni production   <-------->   different explosions mechanisms?          
                       

● Determining factors of stellar evolution:                                                  
           *    mass of progenitor star                                                            
           *    “metallicity” (i.e., heavy element abundances of stellar gas at formation) 
           *    binary effects                                                                           
           *    mass loss during stellar evolution                                           
           *    stellar rotation and magnetic fields

● These factors decide about:                                                                    
           *    neutron star (NS) or black hole (BH) formation in collapse;   
           *    explosion mechanism, explosion energy, & Ni production;    
           *    lightcurve and spectral properties <—> SN classes;              
           *    anisotropy of explosion

             A heterogeneous class with growing diversity
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