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Abstract

One of the most relevant problems in the extraction
of scienti�cally useful information from wide �eld as-
tronomical images (both photographic plates and CCD
frames) is the recognition of the objects against a noisy
background and their classi�cation in unresolved (star-
like) and resolved (galaxies) sources. In this paper we
present a neural network based method capable to per-
form both tasks and discuss in detail the performance of
object detection in a representative celestial �eld. The
performance of our method is compared to that of other
methodologies often used within the astronomical com-
munity.

1. Introduction

Astronomical wide �eld imaging (hereafter WFI) and
its most extreme case, all sky surveys such as the Palo-
mar Sky Surveys (POSS I & II), are the main tools
to tackle astronomical problems requiring statistically
signi�cant samples of optically selected objects. In the
past, WFI has also been the main supplier of targets
for photometric and spectroscopic follow-up's at tele-
scopes of the 4 meter class. The exploitation of the
new generation telescopes in the 8 meter class, which
are mainly aimed to observe targets which are too faint
to be detected on photographic material (the POSS-II
detection limit in B is � 21:5 mag) requires new digi-
tised surveys realized with large format CCD detectors
mounted at 2 meter class dedicated telescopes. Much
e�ort is currently devoted worldwide to construct such
facilities: the MEGACAM project at the CFH, the ESO
Wide Field Imager at the 2.2 meter telescope, the Sloan
- DSS and the ESO/OAC VST, to quote only some of
the ongoing or planned experiments. One aspect which
is never too often stressed is the humongous problem

posed by the handling, processing and archiving of the
data produced by these instruments: the VST, for in-
stance [2] is expected to produce a ow of almost 20
GByte of data per night or 10 Tbyte per year of oper-
ation. Such a huge ow of data cannot be e�ectively
dealt with traditional data reduction packages and calls
for modern A.I. based approaches.

In this paper we present a new, neural network (NN)
based method, capable to perform object detection and
star/galaxy separation. Due to space limitation we
shall focus our attention mainly on the experimental
results relative to the �rst step.

2. Preprocessing and object detection

After the standard preprocessing of the data [1] we per-
form the following steps:

{ we �rst run a 3x3 or 5x5 window on the image in
order to determine the value of the central pixel;

{ we then use Robust Principal Component Analysis
(PCA) NNs to reduce to 3 the dimensionality of the
input space.

{ Therefore, since supervised NN's need a large am-
ount of labeled data to obtain a good classi�cation, we
use unsupervised NN's to segment the pixels into six
classes (one for the backround and �ve for the objects).

{ We then group the �ve objects classes into one and
are left with two classes only: background and objects.

{ Finally, in order to split overlapping objects, we
run a simple but e�ective deblending algorithm, capa-
ble to isolate the objects against the noisy background.

2.1 Preprocessing and object detection

PCAs can be neurally realized in various ways; we used
a feedforward neural network with only one layer which



is able to extract the principal components of the stream
of input vectors. The structure of the PCA NN can be
summarized as follows: there is one input layer, and
one forward layer of neurons totally connected to the
inputs; during the learning phase there are feedback
links among neurons, that classify the network struc-
ture as either hierarchical or symmetric, depending on
the feedback connections of the output layer neurons.
Typically, Hebbian type learning rules are used. Many
di�erent versions and extensions of the basic learning
algorithm have been proposed in recent years [16], [20],
[9]. After the learning phase, the network becomes
purely feedforward. [9] proved that PCA neural al-
gorithms can be derived from optimization problems,
such as variance maximization and representation of
error minimization, and derived the so called robust
PCA algorithms and nonlinear PCA algorithms . More
precisely, in the robust generalization of variance max-
imization, the objective function f(z) is assumed to be
a valid cost function [9] such as ln cos(z) and jzj. This
leads to the adaptation step of the learning algorithm:
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In the hierarchical case l(j) = j and in the symmet-
ric case l(j) = M . The learning function g, derivative
of f , is applied separately to each component of the ar-
gument vector. In previous experiments [23] we found
that the hierarchical robust NN of eq.1 with learning
function g(t) = tanh(�x) performs better than all the
other PCA NN's and linear PCA.

2.2 Unsupervised NNs

The NNs used in this section are based on the classi-
cal unsupervised neural models: Kohonen Self Organiz-
ing Maps [11], Neural-Gas [13], Growing Cell Structure
(GCS) [6], on-line K-means clustering algorithm [12],
Maximum Entropy NN [19]. All these methods allow
to partition the input space into clusters and to assign a
weight vector corresponding to the template character-
istic of a cluster in the input space to each neuron. As a
consequence, after the learning, an input pattern is as-
signed to the class corresponding to the nearest neuron.

We preferred to reduce the well-known complexity of

the post-processing labeling adding an unsupervised sin-
gle layer NN to the output of the �rst layer NN. In this
way, the second layer NN learns from the weights of the
�rst layer NN and clusters the neurons on the basis of a
similarity measure or a distance. The iteration of this
process gives the unsupervised hierarchical NN's. The
number of neurons at each layer decreases from the �rst
to the output layer, and, as a consequence, the NN takes
a pyramidal aspect. The NN takes as input a pattern
x and then the �rst layer �nds the winner neuron. The
second layer takes the �rst layer winner weight vector
as input and �nds the second layer winner neuron and
so on until the top layer. The activation value of the
output layer neurons is 1 for the winner unit and 0 for
all the others.

By varying the learning algorithms we obtain di�er-
ent NN's with di�erent properties and abilities. For in-
stance, by using only SOMs we have a Multi-layer SOM
(ML-SOM) [10] where every layer is a two-dimensional
grid. We can easily obtain ML-NeuralGas, ML-Maxim-
um Entropy or ML-K means organized on a hierarchy
of linear layers [21]. The ML-GCS has a more complex
architecture and has at least 3 units for layer. By vary-
ing the learning algorithms in the di�erent layers we
can take advantage from the properties of each model
(for example since we cannot have a ML-GCS with 2
output units, then we can use another NN in the out-
put layer). A hierarchical NN with a number of output
layer neurons equal to the number of the output classes
simpli�es the expensive post-processing step of label-
ing the output neurons in classes, without reducing the
generalization capacity of the NN.

3. Star/Galaxy separation

The �rst step in order to perform star/galaxy separa-
tion is to identify the most signi�cant features. Then
we run an optimizedMulti-Layer Perceptron (MLP). [4]
and [17] summarize methods to overcome the problems
related to local minima and slow time convergence of
the above algorithm.

The object features were chosen following the litera-
ture [8], [14], [15], and selected by a simple sequential
forward selection process [4], so as to select the most
performing ones. In particular, we took in considera-
tion the following features:

� Six features describing the ellipses circumscribing
the objects: the photometric baricenter coordi-
nates, the isophotal ux, the semimajor axis, the
semiminor axis, the position angle, and the object
area (A) in pxls.



� Twelve features suggested by Odewahn [15]: the
object diameter, the ellipticity, the average sur-
face brightness(hSuBri), the central intensity (I0),
the �lling factor, the area logarithm, the har-
monic radius and �ve simple gradients of the light
distribution G14, G13, G12, G23 and G34 de�ned
as:

Gij =
Tj � Ti
ri � rj

where Ti is the average surface brightness within an
ellipse, with position angle �, semimajor axis ri < a
and ellipticity ell. To this aim, four equidistant radii ri
are selected with ri = i a=4; i = 1; : : : ; 4.

� Two more features are taken from Miller [14]: the
two ratios Tr = hSuBri =I0 and TcA = I0=

p
A.

� Finally, �ve features from FOCAS [8]: the second
and the fourth total moments of the light distri-
bution, the central intensity averaged in a 3 � 3
area, the ellipticity averaged over the whole ob-
ject area and, �nally, the "Kron" radius de�ned
as:

rKron =
1P

(x;y)2A I (x; y)

X
(x;y)2A

I (x; y) r (x; y)

In order to optimize the classi�cation system perfor-
mance it is necessary to reduce the feature number. To
do so we need training and test sets for a subset of our
objects. In our case we selected a subset of the Infante
and Pritchet catalog [7], [18] built with deeper images
obtained under sub-arcsec seeing conditions. We ex-
perimented both unsupervised and supervised NN's for
both the feature selection and the classi�cation phases,
but since unsupervised NN's did not reach appreciable
results, in this paper we present only result with MLP's.

The sequential backward elimination strategy [4] works
as follows: let us suppose to initially have allM features
in one set and to run the NN's with this set. Then, we
build M di�erent sets with M�1 features each one and
we run one NN for each set and take the set obtaining
the best classi�cation, in this way eliminating the less
signi�cant feature. Usually, after this �rst step the clas-
si�cation error decreases if there are noisy or redundant
features. Then, we repeat these steps eliminating one
feature at each step.

For what concerns supervised learning NN's, we used
some MLP's [4] with one hidden layer of 20 neurons and
only one output, assuming value 0 for star and value 1
for galaxy. After the training, we calculate the NN out-
put as 1 if it is greater than 0:5 and 0 otherwise for each

pattern of the test set. The most performing learning
algorithm was a hybrid conjugate gradients-quasi New-
ton method to take advantage of both the algorithms.

4. Experimental Results

4.1 The data

In order to test the performances of our method we used
a 2000x2000 arcsec2 area centered on the North Galac-
tic Pole extracted from the slighly compressed POSS-II
F plate n. 443 (available via network at the CADC).
POSS-II data were linearized using the sensitometric
spots recorded on the plate. The average FWHM of
our data was 3 arcsec. The same area has been widely
studied by others and, in particular, by [7], [18] who
used deep observation obtained at the 3.6 m CFHT
telescope in the F photographic band under good seeing
conditions (FWHM < 1 arcsec), to derive a catalogue
of objects complete down to mF � 23. Their catalogue
is therefore based on data of much better quality and
accuracy than ours.

The selected region, a relatively empty one, slightly pe-
nalizes our NN detection algorithms which easily recog-
nize objects of quite di�erent sizes and - on the contrary
of what happens to other algorithms - work well even
on very crowded area, such as the center of nearby clus-
ters of galaxies, as our preliminary test on a portion of
the Coma clusters (imaged on the same POSS-II plate)
shows [22].

4.2 The processing

This POSS-II �eld was processed through several NN
detection algorithms (PCA NN's, Hierrchical Unsuper-
vised NN's, MLP's) and also through S-Extractor (=SE-
x; [3]) which has come to be a standard in the astro-
nomical community. For what the SEx application to
our dataset is concerned refer to [1].

For the NN's, we used the PCA NN's to reduce the
input space to 3 dimensions. Then we run the unsuper-
vised NN's on the 3-D input related to the 5 � 5 and
3 � 3 running windows (in our experiments the best
performing NN's were: Neural gas (NG3), ML-Neural
gas (MLNG3 or MLNG5), ML-SOM (K5), GCS+ML-
Neural gas (NGCS5). We just wish to stress here that,
since the background subtraction is a vital part of the
detection, and in order not to give an unfair advan-
tage to any of the detections algorithms, all algorithms
including SEx, were run on the same background sub-
tracted image.

Fig. 1 gives the number of \True" objects detected by



SEx (upper panel), id est objects having a counterpart
in the [18] catalog. As it can be seen, the SEx cata-
log is uncomplete for mF < 21 mag, which is roughly
the plate completness limit. The lower panel shows
instead the relative performance of the NN's, de�ned
as the ratio between the number of \True" objects de-
tected by the speci�c NN and SEx, respectively. All
the NN's and SEx turn out to be roughly equivalent in
detecting \True" objects brighter than mF = 21, while
for objects fainter than the completeness limit of the
plate, only MLNG5 is as e�cient as SEx, followed by
MLNG3. Therefore, di�erences among catalogs con-
cern only galaxies fainter than the plate completeness
limit.

Fig. 2 shows the number of \False" objects detected
by SEx (upper panel), where \False" means objects
not having a counterpart in the [7] catalog, and there-
fore include a few \True" objects not catalogued by
[7] (mainly because they are too bright). We believe
that all objects brighter than mF = 20 mag are really
\True" since they are detected both by SEx and NN's
with high signi�cance. The lower panel shows the rel-
ative performances of the NN's, de�ned as the ratio of
the number of \False" objects detected by the NN and
by SEx. For objects brighter than mF = 19 mag, NN's
and SEx have similar performances, while atmF = 19:7
mag, SEx works better (but only for a few objects, see
upper panel). NN's catalogues present, however, less
false detections. MLNG5, which is also quite e�cient
in detecting \True" objects, has a 20% cleaner detec-
tion rate in the highly populous bin mF = 21:7 mag.
MLNG3 is less e�cient in detecting \True" objects but
is even cleaner of false detections.

Fig. 3 shows the number of missed objects by SEx (up-
per panel). \Missed" means being in the [7] catalog,
but not included in our catalogs. Obviously, the step
increase below 21 mag coincides with the completeness
limit of our photographic material. The lower panel
gives the relative performances of the NN's, de�ned as
the ratio between the number of objects missed by the
speci�c NN and by SEx. MLNG3 and MLNG5 have
performances almost constant at � 1 mag, while the
other NN's miss objects at mF � 21 � 22 mag which,
however, are still fainter than the plate completeness
limit.

The class of \Missed" objects needs more attention. It
is likely that most of the objects fainter than mF = 21
mag are too faint to be detected with a 100% con�dence
level, so we focus �rst on brighter objects. They can be
divided in:

{ objects detected by [7] which correspond to empty

regions in our images. They can be missing because
variable, fast moving, or with an overestimated lumi-
nosity in [7]. They can also be missed because spurious
in the template catalog or simply because they are too
faint.

{ \True", nearby objects which are blended in our
image but not in that of [7];

{ parts of isolated single large objects incorrectly
split by [7];

{ a few detections aligned in the E-W direction on
the two sides of the images of a bright star. They are
likely false objects (di�raction spikes detected as indi-
vidual objects).

Therefore, a fair fraction of the \Missed" objects are
truly non existent and the performances of our detec-
tion tools are therefore lower bounded atmF < 21 mag.
We wish to stress here that even though there is nothing
like a perfect catalogue, the template by [7] is among
the best ones ever produced to our best knowledge.

In [7], objects are classi�ed in 2 major classes, star &
galaxies, and a few minor classes (merged, noise, spike,
defects, etc.), that we neglect. The e�ciency of the
detection is shown in Fig.4 for three representative de-
tection algoritms: MLNG5, K5, and SEx. At mF < 21
mag, the detection e�ciency is large, close to 1 and
independent on the central concentration of the light.
Please note that there are no objects in the image hav-
ing mF < 16 mag and that in the following bin there
are only 4 galaxies. At fainter magnitudes (� 22 � 23
mag) detection e�ciencies di�er as a function of both
the algorithm and of the light concentration. In fact,
SEx, MLNG5, and to less extent K5, turn out to be
more e�cient in detecting galaxies rather than stars (in
other words: \Missed" objects are preferentially stars).
For SEx, a possible explanation is that a minimal area
above the background is required in order for the object
to be detected. At mF � 22 � 23 mag, noise uctua-
tions can a�ect the isophotal area of unresolved objects
bringing it below the assumed treshold (4 pixels). This
bias is minimum among the three considered detection
algoritms, for the K5 NN. However, this is more likely
due to the fact that K5 misses more galaxies than the
other algorithms, rather than to the fact that it detects
more stars.

5. Concluding Remarks

In conclusion: MLNG3 and MLNG5 turn out to have
performances similar to SEx in detecting objects: they
produce catalogs which are cleaner of false detections
but, at the same time, are also slightly more uncom-
plete than SEx.



Figure 1: Number of \True" objects detected by SEx
(upper panel); relative performance of the NN's, de-
�ned as the ratio of the number of true objects detected
by the NN and by SEx, respectively (lower panel).

Figure 2: Number of false objects detected by SEx (up-
per panel); relative performance of the NNs, de�ned as
the ratio of the number of \False" objects detected by
the NN and by SEx (lower panel).

Figure 3: Number of objects \Missed" by SEx (upper
panel); relative performance of the NN's, de�ned as the
ratio of the number of objects missed by the NN and
by SEx (lower panel).

Figure 4: Percent number of detected objects by
MLNG5, K5 and SEx.



We also want to stress that since the less performing
NN's produce catalogs which are much cleaner of false
detections, they can be used to select candidates for
possible follow{up detailed studies at magnitudes where
many of the objects detected by SEx would be false (i.e.
the selected objects would be in large part true, and not
just noise uctuations).
A posteriori, one could argue that performances similar
to those of each of the NN's could be achieved by run-
ning SEx with appropriate settings. However, it would
be unfair (and methodologically wrong) to make a �ne
tuning of any of the detection algorithms using a pos-
teriori knowledge.
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