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Plan of the talk

� Why we need stats

� When we mostly need stats

� Why what-it-is-best-known doesn’t work when we mostly need it 
(and work well instead when we don’t need it)?

� What are numbers returned by the most known statistical tests?

� If prior are bad, why astronomers talk about Malmquist or 
Eddington bias?

� A simple example of a non-academic case: determination of the 
variance (width) of a distribution in presence of a background 
population

� Mixture of regressions, i.e. colour-magniture relation, Fundamental 
Plane, cluster scale relationship, Tully-Fisher relation, Magorrian
relation, etc.



This talk is an open discussion. 

Don’t esitate: ask me when I am unclear, when
you want to make comments or to pose 
questions, to suggest a solution, or  … when
you want

I’m provocative, but serius. 

Caveat: talk for astronomers. 





In which occasions we really need stats?

In most papers the measured effect is not overwhelming (obvious results have 
been already published before!). Most of the times we are working with small 
samples, tiny effects or complex problems and a number of subtle issues. It is 
precisely in these cases that we are interested in statistics. 

We cannot avoid to work in this ‘gray area’:

1) we need to convince TAC about our good proposal, we just have an hint of 
something interesting, and we need better data 

2) we cannot ask to a transient event (e.g. GRB) to become permanent enough to 
allow us to move our measurement in the ‘statistical significant’ area

3) sometime a larger sample does not exist, having already observed the whole 
universe (in the microwave, for example) or all galaxies in a given group

4) sometime the ‘problem’ has nothing to do with sample size, and thus do not 
disappear enlarging the sample  (e.g. 60% of the hundred thousand galaxies of 
the nearby universe have negative SFR)

5) if we have just two determination of an important physical quantity (SFR at 
z=6) why we cannot combine them to take profit of both? 

6) if I don’t publish my favorite result someone else will publish it (and will get 
credit for the result)!

It is in this gray area that many times standard methods fail.



How to be wrong: I, defs

Mixture distributions arise when data come from two 
distribution:

� signal intensity or surface brightness and background

� red and blue galaxies

� two objects in the field of view of my instrument

� galaxy SED (two stellar populations)

� Galaxies in the space of their parameters (re, µe, 
concentration, σv, etc)

Mixture are ubiquitous in astronomy



How to be wrong: II, a toy example

The problem:

Determine parameters of the sum 
(mixture) of two 1-D gaussians
of unknown (to be determined) 
center and width.

a 2 D example:

Thesis: the most likely value of 
the parameters are wrong.



How to be wrong: III, the maths



How to be right: use Bayes



Gory details
The posterior probability of σ1 is:

In the example we took

because the precise choice of the prior is unimportant, 
and computed the integral with a computer (a MCMC).

Average Likelihood, not maximum



Summary about maximum likelihood 
and mixtures

The problem is a general characteristic of mixture of distributions 
with variable variance (width), not only of gaussians

The problem do not disappear ‘in the long run’, at the contrary the 
chance of failure increases with sample size! and anyway the TAC
will not give you infinite time (and data).

Don’t maximize the likelihood, then, for mixture distributions if you 
want to measure

� velocity (colour or whatever) dispersion in presence of a background

� signal intensity or surface brightness in presence of a background

� red and blue galaxies

� two objects in the field of view of my instrument

� galaxy SED (two stellar populations)

Use bayes, instead (see a later slide for an example).



A second failure of usual methods: with 
small samples standard results depend 
on the chosen parameterization.
Do faint red galaxies evolve?

Aim: measure a (number) deficit of faint red galaxies as a 
function of redshift

De Lucia et al. (2007) compute L/F, number of bright galaxies 
over number of faint galaxies

Stott et al. (2007) compute F/L, i.e. the reciprocal of the 
above

As astronomer, I hope to see the trend on L/F mirrored on 
F/L, right? 

Bad discovery: No, it doesn’t. Why? Lets go to the heart of 
the problem: error weighted averages of two data points.



How to be wrong, I.

Two data points, with errors:

(L/F)1=3±0.9  (L/F)2=0.3333±0.1

formula for error-weighted average:

wtd average = Σ (valuesi/σ2) / Σ (1/σ2) 

average of (L/F)1, (L/F)2-> 0.37, near to (L/F)2 (smaller error)

Consider reciprocal values (F/L)1=1/(L/F)1 and (F/L)2=1/(L/F)2:

(F/L)1=0.3333±0.1 (F/L)2=3±0.9 

wtd average of them -> 0.37, near (F/L)1, not near (L/F)2!

with reciprocal (to go back to the original quantity): 2.77 vs 0.37

(and they differ more than their error)



Further example, with points 1 σ away each other: 

(L/F)1=1.23±0.9  (L/F)2=0.3333±0.1

av of (L/F)1, (L/F)2-> 0.34, very near to (L/F)2 (smaller error)

the error wtd average of the reciprical: 1.48 

reciprocal of the above: 0.68 midway between (L/F)1 and (L/F)2
What is wrong? 

The problem is still there with a small/normal size sample.  

Were you aware of the problem? Are you happy if your science conclusions depend 
on something about which you ignore the existence ?  Have authors checked 
whether their fit is insensitive to the chose parameterization?

The problem comes from a) the freedom (in the frequentist paradigm) of choosing 
the parameterization, b) the smallness of the sample (rules usually hold 
asymptotically)  and c) the refuse of admit that two contradictory priors have 
been taken (because priors does not exist for frequentists!). Bayesian methods 
don’t have estimators among which to choose, offer methods that hold from n=0 
and have priors (that should change coherently with re-parameterization). 



Problems don’t come from small samples only:

how to find impossible (unphysical) results  
i.e. finding something that cannot occur, 
like negative masses



2003,  ApJ 584, 210

2005, ApJ 624, 571

2004, MNRAS 348, 1355

SFR
Negative masses
accelerating the 
expansion of the 
universe? (joke)



Galaxies come in positive units. 
Maybe.

Radius
N

Radius

Average of many local groups

(2005, ApJ 633, 122)

First discovery of z>1 groups (2005, MNRAS, 357, 1357)



… fractions smaller than 0

(1984, ApJ 284, 426) Maximum likelihood (best) 
estimates sometime fail to
provide acceptable results.

Every physically acceptable
value is better than the claimed
best value!

What “best” does it means?



Other funnies

� fraction larger than 1

� completeness larger than 100 %

�V/Vmax >1

�Negative star formation rates

� scatter plausibly negative

� negative S/N

� imaginary (as sqrt(-300) km/s) velocity dispersions



Where the problem comes from:

Measurements near boundaries (fractions, 
completeness, hardness ratios, 
sources/features with few counts …)

-> forgetting to account for boundaries

native instead with the Bayesian framework, 
that explicitly account for the fact that 
some values of the physical quantity are 
impossible.



Simple example:
p(signal|data)=c*p(data|signal)*p(signal)                        <- Bayes theorem

if data=3 and expected (average) backgound is 5:

= c* Poisson(x=3; λ=5+signal) * p(signal)

Since prior p(signal)=0 if signal<0, then posterior(    signal<0)=0

uniform prior, mean: 1.63; shading: 
shortest 68 % confidence interval

vs 3-5=-2
A



Malmquist/Eddington correction



p(θ|data)= c * p(data|θ) * p(θ)

ex. modelled around Kenter
et al 2005, ApJS 161, 9 (x-
ray survey with sources as
faint as 2-4 photons).  

p(µ|4) = c* p(4| µ) p(µ)

at the studied fluxes, the 
prior p(µ) (=number counts
for astronomers) is well
known, p(µ)= µ-βwith beta 
approx 2.5 (euclidian slope).

4 photons are observed but
the posteriori mean is about
2.5! Well accepted by
astronomers, that known
that ….



Actually, the example shown that prior knowledge (the fact 
that there are much more faint systems than bright ones), 
cannot be ignored, if one does not whish be wrong most of 
the times (claiming that the true source flux is 4 photons). 
To say, ‘I have no prior’ or ‘I dislike priors’ lead to be wrong 
more often than claimed.

The same mis-estimation holds true for every noisy variable, 
such as velocity dispersion when measured with small 
samples, when the number density of systems changes a lot 
over the range where the likelihood is considerably not null. 

The only way to make inferences  and not to be wrong is 
following the Bayes theorem, any other calculus is either 
equivalent or wrong (Cox 1946, Am. J. Phys. 14, 1).



A selected application of mixture 
modeling: measuring a dispersion

Assumed uniform priors, in next slides, because a smarter choice is not 
compulsory (don’t change results).

Gaussian +Constant



Let’s start simple
- a huge sample (1000 galaxies, 50% background)

- drawn from the very same distribution used from the analysis: 
Gaussian+constant

Input: v=1000 km/s

Robust (Beers): v=1400 km/s 
(and a negligible error)

Bayes: v=940±85

Robust

Bayes



Making things difficult, i.e. nearer to reality

In real world applications we 
ignore if our data are 
drawn from the supposed 
distribution. Here: do my 
galaxies come from a 
Gaussian or something 
similar to it?

Added difficulty: simulated 
data from a perturbed 
(tilted) distribution and 
Bayes-analysed supposing 
it is Gaussian

Summary: as before …



25 galaxies, no bkg 25 galaxies, 50% bkg

The same holds true for synthetic data generated from a Gaussian.

Science: all x-ray dark cluster for their  become normal x-ray 
emitting clusters, because of the ‘Robust’ over-estimation of σv or 
the neglected Bayes (Malmquist) correction (Andreon et al. 2007, 
MNRAS in press, arXiv:0710.1023)

1000 
simulations

1000 
simulations



Reminder

The developed mixture model of inhomogeneous 
(of varying amplitude) Poisson process holds for 
whatever quantity subject to a Poisson 
fluctuations, and thus it is applicable to other 
problems. Actually, I develop it to measure the 
(X-ray) flux and core radius of a very faint 
extended source (a cluster of galaxies): it is just 
matter of renaming the variable v with the name 
(ra,dec), and replace the Gaussian in I(v) with a 
β-model(ra, dec, ellipticity, core radius, β). 



Regressions
Astronomers are interested in estimating as quantities vary 
as a function of each other: e.g. Tully-Fisher, Faber-
Jackson, Magorrian relations, Fundamental-Plane, cluster 
scaling relations, GRBs (Ghirlanda) relations, etc.

How to determine the parameter of these regressions? 
There is no consensus in the astronomical literature: 
direct-, inverse-, orthogonal-, Bivariate Correlated Error 
and Intrinsic Scatter- (BCES), Measurement Error and 
Intrinsic Scatter- (MEIS), etc.    -fit?



There is no consensus among astronomers, but there is 
just one single solution among Bayesian statisticians.

For variables with names appropriate for the colour-
magnitude relation (assumed linear, with an intrinsic 
scatter σintr) and data with hetheroscedastic (not of 
equal magnitude) errors, the likelihood is given by a 
Gaussian:

e.g. D’Agostini (2003) and Gelman et al (2004) books, or Andreon (2006, 
MNRAS 369, 969), Kelly et al. (2007, ApJ 665, 1489). 



Why astronomer’ techniques do not work

Ordinary Last Square fit

Bivariate Correlated Error 
and Intrinsic Scatter fit

Press et al. (numerical 
recipes)

Estimated slope Estimated intrinsic dispersion

Input value Input value

Simplified bayesian
solution

Kelly et al 2007, ApJ 665, 1489



As usual, reality is more complicated: 
there are interlopers/outliers!

Use then a mixture of regression:

As usual for iid data:



Abell 1185 cluster (Andreon, Cuillandre et al. 
2006, MNRAS 372, 60)

Astro: the scatter around the colour-
magnitude relation put a strong 
constraint on the age of stars in these 
objects and, indirectly, on the ages of 
the galaxies themselves.

Problem: background galaxies (about 4 
for every cluster galaxy).



1D and 2D posterior for the 13 parameter problem, 
based on a short (for display purpose) MCMC



Summary

Bayesian methods work when we mostly need them:

� when other methods returns unsatisfactory results, as in the case 
of the toy mixture model, of velocity dispersion, or when unphysical 
values are found

� we don’t need to await a larger sample

� when there is no agreement among astronomers on the good 
procedure to use, as for the regression problem

� embody the Malmquist or Eddington correction

� (clarify what other procedures compute, as p-values or weighted 
average of small samples; p-values to be shown if time allow)

Don’t forget that the scientific paradigm suggests to prefer a 
procedure that work over one that might, or might not, work.



Addressed parameter 
estimation problems:

� fractions, completeness, hardness ratios

� scale (e.g. velocity dispersion), with heteroscedastic errors  
when either a summary is available (a Beer scale) or when the 
full information is available (individual velocities), accounting 
for instrument (limited) resolution

� luminosity function

� spatially structured Poisson process (x-ray flux of an 
extended source, richness) 

� trends (linear regressions) between quantities (e.g.  CM, …), 
each with heteroscedastic errors and in presence of an 
intrinsic dispersion

all in presence of a background. 

see also my bayesian primer for astronomers from my homepage



Model selection problems 
addressed:
� Is the LF Schechter-like or should a dip be added ?

� Is the CM linear or bended?

� Which models describe the mass buildup of galaxies in cluster, and 
which models should be rejected? 

� Do my (mass buildup) model need to be refined (with a further 
degree of complexity) in light of the data?

� Does the fraction of obscured  AGN depend on flux, luminosity, or 
redshift?

� Is the dependence of the fraction of obscured and absorbed AGN 
vs my favorite quantity the same?

� Does the fraction of blue galaxies depend on the cluster velocity 
dispersion? 

see my Inference homepage



Thank you

http://www.brera.mi.astro.it/~andreon/inference/
Bayesian_primer_for_astronomers.html

http://www.brera.mi.astro.it/~andreon/inference/
Inference.html



p-values are not probability of the 
hypothesis
the probability of rejecting the null hypothesis is often taken equal to 
the p-value, i.e. the number returned by tests like Kolmogorov-
Smirnov, χ2, Student’s t, Wilcoxon rank, Kendal, …. tests.

1) these tests sometime return widely different numbers (such as
0.001 and 0.861). How it is possible if the (wished-for) probability 
takes (hopefully) one single value?

2) how it is possible that some of them do not use errors: may a
probability not depend on error bars? for example do you trust a
trend equally if errors on data points are huge or small (and you use 
a test statistics that does not use errors)?

All these tests return p(>Data |hypothesis) not p(hypothesis|Data)

Let’s go with an astronomical example



Hp: “a source is there”
p-value=p(>I0|background)= 0.003 = 0.3 %

Is my target real at 99.7 %? (=1 minus the p-value)

x is the fraction of the sky occupied by sources

In a sample of N sky positions, there are xN sources and 0.003(1-x)*N 
(false) detections. Therefore, there are xN true source out of the 
total xN+ 0.003(1-x)*N detections. The fraction of true sources is the 
ratio of the above numbers: 

p(true source | I0, x)= x/(x+ 0.003(1-x))

1) if x=0.07 % (appropriate for Chandra typical exposures) 

p(true source|…)= 19 % (not 99.7 !) i.e. 4 out 5 detection are junk. “99.7”
means that 3 out 1000 are junk! It’s the same, in your opinion?

2) if x=5 %, p(true source|…)= 95 %; if x=20%, p(true source|…)= 99%

p values and probability for the hypothesis are two different things, that

takes different numbers, don’t mistakenly take one for the other!



The whished-for number, the probability of the null 
hypothesis, depends on the prior probability (x in our 
example), yet almost every time a trend/effect is stated 
to exist and a ‘probability to reject the null hypothesis is 
quoted’ no prior probability is taken (stated). The prior 
may change a 99.7% (i.e. almost sure) result in a 19 % 
sure (i.e. highly uncertain) result. 

Don’t quote p-value as probability of rejecting the null 
hypothesis, because they are not such thing.



4
3

M
K

U
P

h
y
s
ta

t0
5
 H

ig
h

lig
h

ts
(yet another) Chronology (from S. Andreon’s web 

page)

• Homo apriorius establishes probability of an hypothesis, no matter what 
data tell.

• Homo pragamiticus establishes that he is interested by the data only.

• Homo frequentistus measures probability of the data given the 
hypothesis.

• Homo sapiens measures probability of the data and of the hypothesis.

• Homo bayesianis measures probability of the hypothesis, given the data.


